
Spring 2010

Prof. Hyesoon Kim

• Benchmarking is critical to make a design

decision and measuring performance

– Performance evaluations:

• Design decisions

– Earlier time : analytical based evaluations

– From 90’s: heavy rely on simulations.

• Processor evaluations

– Workload characterizations: better understand

the workloads

• Benchmarks

– Real applications and application suites
• E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H,

EEMBC, MediaBench, PARSEC, SYSmark

– Kernels
• “Representative” parts of real applications

• Easier and quicker to set up and run

• Often not really representative of the entire app

– Toy programs, synthetic benchmarks, etc.
• Not very useful for reporting

• Sometimes used to test/stress specific
functions/features

• GFLOPS, TFLOPS

• MIPS (Million instructions per second)

• Speedup of arithmeitc means != arithmetic
mean of speedup

• Use geometric mean:

• Neat property of the geometric mean:
Consistent whatever the reference
machine

• Do not use the arithmetic mean for
normalized execution times

n

n

i

i
1

on timeexecution Normalized

• Often when making comparisons in comp-

arch studies:

– Program (or set of) is the same for two CPUs

– The clock speed is the same for two CPUs

• So we can just directly compare CPI’s and

often we use IPC’s

• Average CPI = (CPI1 + CPI2 + … + CPIn)/n

• A.M. of IPC = (IPC1 + IPC2 + … + IPCn)/n

• Must use Harmonic Mean to remain  to

runtime

Not Equal to A.M. of CPI!!!

• H.M.(x1,x2,x3,…,xn) =

n

1 + 1 + 1 + … + 1

x1 x2 x3 xn

• What in the world is this?

– Average of inverse relationships

• “Average” IPC = 1

A.M.(CPI)

= 1

CPI1 + CPI2 + CPI3 + … + CPIn

n n n n

= n

CPI1 + CPI2 + CPI3 + … + CPIn

= n

1 + 1 + 1 + … + 1 =

H.M.(IPC)

IPC1 IPC2 IPC3 IPCn

• Stanford graphics benchmarks

– Simple graphics workload. Academic

• Mostly game applications

– 3DMark:

– http://www.futuremark.com/benchmarks/3dmar

kvantage

– Tom’s hardware

• Still graphics is the major performance

bottlenecks

• Previous research: emphasis on graphics

• Several genres of video games

– First Person Shooter

• Fast-paced, graphically enhanced

• Focus of this presentation

– Role-Playing Games

• Lower graphics and slower play

– Board Games

• Just plain boring

Event

Physics

Collision

Detection

Particle

AI

Rendering Display

Computing

• Current game design principles:

– higher frame rates imply the better game

quality

• Recent study on frame rates [Claypool et al. MMCN

2006]

– very high frame rates are not necessary, very

low frame rates impact the game quality

severely

Snapshots of animation [Davis et al. Eurographics 2003]

time

Game

workload

Computational

workload

Rendering

workload

Other

workload

Rasterization

workload

• Case study

– Workload characterization of 3D games, Roca,

et al. IISWC 2006 [WOR]

– Use ATTILA

• Average primitives per frame

• Average vertex shader instructions

• Vertex cache hit ratio

• System bus bandwidths

• Percentage of clipped, culled, and

traversed triangles

• Average triangle sizes

• GPU execution driven simulator
• https://attilaac.upc.edu/wiki/index.php/Architecture

• Can simulate OpenGL at this moments

https://attila/

• Attila architecture

Index Buffer

Vertex cache Vertex Request Buffer

Streamer

Primitive Assembly

Clipping

Triangle Setup

Fragment Generation

Hierarchical Z HZ Cache

Hierarchical
Z buffer

Z Cache

Z test

Z Cache

Z test

Interpolator

Color
cache

Blend

Color
cache

Blend

MC0 MC1 MC2 MC3

Register
File Texture

Cache

Texture
Address

Texture
Filter

Shader

Shader

Shader

Shader

Shader

Unit Size Element width

Streamer 48 16x4x32 bits

Primitive Assembly 8 3x16x4x32 bits

Clipping 4 3x4x32 bits

Triangle Setup 12 3x4x32 bits

Fragment Generation 16 3x4x32 bits

Hierarchical Z 64 (2x16+4x32)x4 bits

Z Tests 64 (2x16+4x32)x4 bits

Interpolator --- ---

Color Write 64 (2x16+4x32)x4 bits

Unified Shader (vertex) 12+4 16x4x32 bits

Unified Shader (fragment) 240+16 10x4x32 bits

Table 2. Queue sizes and number of threads in the
ATTILA reference architecture

• Execution driven:

– Correctness, long development time,

– Execute binary

• Trace driven

– Easy to develop

– Simulation time could be shorten

– Large trace file size

• No simulation is required

• To provide insights

• Statistical Methods

• CPU

– First-order

• GPU

– Warp level parallelism

• Hardware performance counters

– Built in counters (instruction count, cache

misses, branch mispredicitons)

• Profiler

• Architecture simulator

• Characterized items

– Cache miss, branch misprediciton, row-buffer

hit ratio

• States Lab setting

• Recommended deadline (1/25)

– No penalty until 1/27

• Newsgroup:

– Active participants will get extra credit

• Lab assignment TAing

– Volunteer

– Graduate (who have taken CS6290 course)

– Send email to me.

