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• Benchmarking is critical to make a design 

decision and measuring performance 

– Performance evaluations:

• Design decisions 

– Earlier time : analytical based evaluations 

– From 90’s: heavy rely on simulations. 

• Processor evaluations 

– Workload characterizations: better understand 

the workloads  



• Benchmarks

– Real applications and application suites
• E.g., SPEC CPU2000, SPEC2006, TPC-C, TPC-H, 

EEMBC, MediaBench, PARSEC, SYSmark

– Kernels
• “Representative” parts of real applications

• Easier and quicker to set up and run

• Often not really representative of the entire app

– Toy programs, synthetic benchmarks, etc.
• Not very useful for reporting

• Sometimes used to test/stress specific 
functions/features



• GFLOPS, TFLOPS 

• MIPS (Million instructions per second)



• Speedup of arithmeitc means != arithmetic 
mean of speedup

• Use geometric mean:

• Neat property of the geometric mean:
Consistent whatever the reference 
machine

• Do not use the arithmetic mean for 
normalized execution times
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• Often when making comparisons in comp-

arch studies:

– Program (or set of) is the same for two CPUs

– The clock speed is the same for two CPUs

• So we can just directly compare CPI’s and 

often we use IPC’s



• Average CPI = (CPI1 + CPI2 + … + CPIn)/n

• A.M. of IPC = (IPC1 + IPC2 + … + IPCn)/n

• Must use Harmonic Mean to remain  to 

runtime

Not Equal to A.M. of CPI!!!



• H.M.(x1,x2,x3,…,xn) = 

n
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• What in the world is this?

– Average of inverse relationships
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• Stanford graphics benchmarks 

– Simple graphics workload. Academic 

• Mostly game applications

– 3DMark: 

– http://www.futuremark.com/benchmarks/3dmar

kvantage

– Tom’s hardware  



• Still graphics is the major performance 

bottlenecks 

• Previous research: emphasis on graphics 



• Several genres of video games

– First Person Shooter

• Fast-paced, graphically enhanced

• Focus of this presentation

– Role-Playing Games

• Lower graphics and slower play

– Board Games

• Just plain boring
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• Current game design principles:

– higher frame rates imply the better game 

quality

• Recent study on frame rates [Claypool et al. MMCN 

2006]

– very high frame rates are not necessary, very 

low frame rates impact the game quality 

severely



Snapshots of animation [Davis et al. Eurographics 2003]
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• Case study

– Workload characterization of 3D games, Roca, 

et al. IISWC 2006 [WOR]

– Use ATTILA





• Average primitives per frame 

• Average vertex shader instructions  

• Vertex cache hit ratio

• System bus bandwidths 

• Percentage of clipped, culled, and 

traversed triangles 

• Average triangle sizes



• GPU execution driven simulator
• https://attilaac.upc.edu/wiki/index.php/Architecture 

• Can simulate OpenGL at this moments 

https://attila/




• Attila architecture 
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Unit Size Element width

Streamer 48 16x4x32 bits

Primitive Assembly 8 3x16x4x32 bits

Clipping 4 3x4x32 bits

Triangle Setup 12 3x4x32 bits

Fragment Generation 16 3x4x32 bits

Hierarchical Z 64 (2x16+4x32)x4 bits

Z Tests 64 (2x16+4x32)x4 bits

Interpolator --- ---

Color Write 64 (2x16+4x32)x4 bits

Unified Shader (vertex) 12+4 16x4x32 bits

Unified Shader (fragment) 240+16 10x4x32 bits

Table 2. Queue sizes and number of threads in the 
ATTILA reference architecture



• Execution driven:

– Correctness, long development time,

– Execute binary 

• Trace driven

– Easy to develop

– Simulation time could be shorten 

– Large trace file size



• No simulation is required 

• To provide insights 

• Statistical Methods 

• CPU 

– First-order 

• GPU

– Warp level parallelism 



• Hardware performance counters 

– Built in counters (instruction count, cache 

misses, branch mispredicitons)

• Profiler 

• Architecture simulator

• Characterized items 

– Cache miss, branch misprediciton, row-buffer 

hit ratio



• States Lab setting 

• Recommended deadline (1/25) 

– No penalty until 1/27 

• Newsgroup:

– Active participants will get extra credit 

• Lab assignment TAing

– Volunteer 

– Graduate (who have taken CS6290 course)

– Send email to me.  


