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Abstract

Fetch gating mechanisms have been proposed to gate the proces-
sor pipeline to reduce the wasted energy consumption due to wrong-
path (i.e. mis-speculated) instructions. These schemes assume that all
wrong-path instructions are useless for processor performance and
try to eliminate the execution of all wrong-path instructions. However,
wrong-path memory references can be useful for performance by pro-
viding prefetching benefits for later correct-path operations. There-
fore, eliminating wrong-path instructions without considering the use-
fulness of wrong-path execution can significantly reduce performance
as well as increase overall energy consumption.
This paper proposes a comprehensive, low-cost speculation control

mechanism that takes into account the usefulness of wrong-path exe-
cution, while effectively reducing the energy consumption due to use-
less wrong-path instructions. One component of the mechanism is a
simple, novel wrong-path usefulness predictor (WPUP) that can accu-
rately predict whether or not wrong-path execution will be beneficial
for performance. The other component is a novel branch-count based
fetch gating scheme that requires very little hardware cost to detect
if the processor is on the wrong path. The key idea of our specula-
tion control mechanism is to gate the processor pipeline only if (1) the
number of outstanding branches is above a dynamically-determined
threshold and (2) the WPUP predicts that wrong-path execution will
not be beneficial for performance. Our results show that our proposal
eliminates most of the performance loss incurred by fetch gating mech-
anisms that assume wrong-path execution is useless, thereby both im-
proving performance and reducing energy consumption while requir-
ing very little (51-byte) hardware cost.

1.. Introduction

Current high performance processors use speculative execution
through branch prediction to maximize the number of useful instruc-
tions in the pipeline. If speculative execution turns out to be incorrect,
the pipeline is flushed. Flushed wrong-path instructions unnecessarily
consume power/energy unless they are useful for performance.

In order to reduce the wasted power/energy due to wrong-path in-
structions, several fetch gating mechanisms have been proposed [16,
4, 12, 2, 7, 8]. These mechanisms decide whether or not to gate
(i.e. stall) the fetch engine of the processor based on branch predic-
tion confidence [11], performance monitoring, or instruction utiliza-
tion rates. They explicitly or implicitly assume that wrong-path in-
structions are NOT useful for performance and hence eliminating their
fetch/execution will always save energy. However, NOT all wrong
path instructions are useless. Previous research has shown that some
wrong-path instructions can be very beneficial for performance be-
cause they might prefetch into caches data and instructions that are
later needed by correct-path instructions [21, 18]. Thus, the execu-
tion of wrong-path instructions can not only improve performance but
also lead to energy savings through reduced execution time. With
increasing memory latencies and instruction window sizes, the pos-
itive performance impact of wrong-path instructions becomes more
salient [18]. Therefore, effective fetch gating mechanisms need to take
into account the usefulness of wrong-path instructions.

Figure 1 shows the performance and energy consumption of an
“ideal” fetch gating scheme that immediately gates the fetch engine
when a mispredicted branch is fetched, using oracle information. This
scheme is impossible to implement, but shows the potential of pre-
viously proposed fetch gating schemes. Ideal fetch gating improves
performance of most benchmarks (by 2.3% on average excluding mcf
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Figure 1. Change in retired instruction per cycle (IPC) performance and en-

ergy consumption with ideal fetch gating

and parser).1 Furthermore, ideal fetch gating results in significant en-
ergy savings for most benchmarks (18.0% on average excluding mcf ).
However, two benchmarks show opposite, undesirable behavior even
with ideal fetch gating. For mcf, ideal fetch gating both reduces per-
formance (by 29.5%) and increases energy consumption (by 15.0%).
For parser, ideal fetch gating also reduces performance (by 5.3%) but
saves energy (by 27.9%). As shown in [18], these two benchmarks
take advantage of wrong-path memory references. In mcf, since many
(36.9% of) wrong-path instances (or episodes) prefetch a large num-
ber of useful wrong-path L2 cache misses for later correct-path in-
structions (99.8% of L2 misses generated on the wrong path are use-
ful), eliminating all wrong-path operations reduces both performance
and energy efficiency. On the other hand, few (2.0% of) wrong-path
episodes have significant prefetching benefits (37.3% of L2 misses
generated on the wrong path are useful) in parser while many others
do not. Therefore, ideal fetch gating reduces performance in parser
but it still improves overall energy efficiency.

Because the performance benefit of wrong-path memory references
is significant for some applications, a speculation control (e.g. fetch
gating) scheme that does not take into account the prefetching benefits
of wrong-path instructions can hurt overall performance and result in
increased energy consumption. As such, the net effect of speculation
control can be exactly the opposite of what it is designed to achieve
(i.e. reduced energy consumption). In order to overcome this prob-
lem, the goal of this paper is to propose new speculation control tech-
niques that predict the usefulness of wrong-path episodes on top of a
fetch gating mechanism that is implemented with low hardware cost.
If a wrong-path episode is predicted to be useful for performance, the
proposed mechanism does not gate the fetch engine.

Previously proposed fetch gating mechanisms [16, 2, 7, 8] have one
other important limitation. They require a significant amount of addi-
tional hardware to decide whether or not to gate the fetch engine. For
example [16, 2] require a branch confidence estimator, [7] requires sig-
nificant changes to critical and power-hungry pipeline structures such
as the instruction scheduler, and [8] requires a large (4KB) wrong-path
predictor. The additional hardware not only increases the complexity
of the processor but also consumes both dynamic and static energy,
which can offset the energy savings from fetch gating. Therefore, sim-
ple and more power/energy-efficient speculation control mechanisms
are very desirable. To this end, we propose a fetch gating technique
that does not require large hardware structures or significant modi-
fications to critical portions of the pipeline. The key insight of our
technique is that the probability of having at least one mispredicted
branch instruction in the pipeline increases as the number of outstand-

1Performance improvement of ideal fetch gating is mainly due to the elim-

ination of the cache pollution caused by wrong-path memory references [18].
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Benchmark gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

L2 data misses 37407 2250 14374 4576397 20947 139112 694 43047 1076502 99205 245810 825

Total L2 misses 38427 4916 53824 4577214 25300 141214 4598 45720 1083592 115601 246765 3841

L2 Misses per 1K Inst 0.301 0.130 1.026 36.611 0.306 1.478 0.063 0.913 4.459 0.857 1.164 0.048

Memory intensive? No No Yes Yes No Yes No Yes Yes Yes Yes No

Table 1. Number of L2 cache misses for SPEC2000 integer benchmarks (A benchmark is memory intensive if its L2 MPKI > 0.5)

ing branch instructions increases. As such, branch-count based fetch
gating gates the pipeline if the number of branch instructions in the
pipeline exceeds a threshold value, which is determined based on the
current branch misprediction rate. We show that simply adjusting the
number of outstanding conditional branches based on branch predic-
tion accuracy is effective at reducing the number of wrong-path in-
structions, without requiring costly confidence estimation or wrong-
path prediction hardware.

Contributions: We make four major contributions in this paper:

1. We show that ignoring the performance benefits of wrong-path
execution and thus using speculation control assuming wrong-
path execution is always useless can significantly degrade perfor-
mance and increase energy consumption. We describe via code
examples why it makes sense to take into account the perfor-
mance benefits of wrong-path execution.

2. We introduce the concept of wrong path usefulness prediction
(WPUP) and propose two low-cost WPUP mechanisms that
can be used with any previously proposed speculation control
scheme. To our knowledge, no previously proposed speculation
control scheme explicitly takes into account the usefulness of
wrong-path instructions. We show that our new WPUP mecha-
nisms eliminate almost all of the performance loss due to fetch
gating, while requiring very little (only 45-byte) hardware cost.

3. We propose a new fetch gating mechanism, branch-count based
fetch gating, that achieves the performance and energy bene-
fits of previously proposed fetch gating schemes, while requir-
ing much smaller hardware cost. The key idea of branch-count
based fetch gating is to gate the pipeline if the number of branch
instructions in the pipeline exceeds a threshold value, which is
determined based on the current branch misprediction rate. As
such, branch-count based fetch gating does not require a confi-
dence estimator, a wrong-path predictor, or significant changes
to pipeline structures.

4. We combine WPUP and branch-count based fetch gating to pro-
vide a comprehensive speculation control scheme that is aware
of the benefits of wrong-path instructions. We show that our
combined proposal provides the best performance and energy ef-
ficiency, while requiring very little (51-byte) hardware cost.

Our evaluations show that our comprehensive speculation control
proposal that requires only 51 bytes of storage significantly reduces
the performance loss incurred by fetch gating mechanisms that assume
wrong-path execution is useless. On a relatively conservative proces-
sor with an 11-stage pipeline, our proposal improves performance by
up to 8.1%, and reduces energy consumption by up to 4.1% compared
to a previously proposed fetch gating scheme [16]. On a more ag-
gressive baseline processor with a 30-stage pipeline, our proposal im-
proves performance by up to 15.4% and 4.7% on average. As such,
our proposal shows the value of taking into account the benefits of
wrong-path execution, a concept largely ignored by previous research
in speculation control.

2.. Motivation: Benefits of Wrong-Path Execution

Wrong-path instructions affect execution of the correct path by
changing the state of the processor’s memory subsystem. Wrong-path
memory references generated by the wrong-path instructions or the
prefetcher can be beneficial for performance if they fetch cache lines
that will later be needed by instructions on the correct program path.
On the other hand, wrong-path memory references can be detrimen-
tal to performance if they fetch cache lines that will not be needed
by instructions on the correct program path, if they fetch cache lines
that evict the cache lines that will be needed by correct-path instruc-
tions, or if they tie up bandwidth and resources in the processor or
the memory system that are needed to service the correct-path refer-
ences. Previous research [18, 19] has shown that both positive and
negative effects of wrong-path memory references are mainly due to

the changes (prefetching or pollution) they cause in the L2 cache (as
opposed to the changes they cause in L1 instruction/data caches and
other memory system resources). Therefore, we focus our analyses on
effects of wrong-path execution on the L2 cache.

We first provide a brief analysis of the usefulness of wrong-path
memory references to motivate why speculation control techniques
should be aware of the usefulness of wrong-path execution. Table 1
shows the number of L2 cache misses for each benchmark in the SPEC
CPU 2000 integer suite and Figure 2 shows the distribution of total L2
cache misses based on whether the miss is generated on the wrong
path and whether or not the cache line allocated in the L2 cache is
used by a correct-path memory instruction with the processor model
described in Section 4. Correct-path miss indicates the number of L2
cache misses that are generated by correct-path instructions. Unused,
partially used, and used wrong-path miss indicate the number of L2
cache misses that are generated by wrong-path instructions but never
used, used when missing cache lines are still outstanding in the miss
status holding registers (MSHRs) (i.e. not in the L2 cache yet), and
used when the cache lines are in the L2 cache, respectively. In other
words, partially used and used wrong-path misses together quantify
the useful prefetching effect of wrong-path memory references into
the L2 cache.
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Figure 2. Normalized L2 cache miss breakdown

Clearly, a larger number unused wrong-path misses indicates a
larger amount of disturbance (pollution) caused by wrong-path mem-
ory references in the L2 cache. Hence, if a processor correctly gates
wrong-path instructions, it can potentially achieve performance im-
provement as well as power/energy savings if the fraction of unused
cache lines is large. This is the case for most benchmarks except
mcf and parser. For example, for gcc, the performance improvement
of fetch gating can be significant (11.9% in Figure 1) because many
wrong-path L2 cache misses are never used (23.4% out of all cache
misses).

On the other hand, a larger number of used/partially-used misses
indicates that wrong-path instructions are prefetching useful data into
the L2 cache. For mcf, most of the wrong-path misses are used (99.8%
of all wrong-path misses are either used or partially-used). Due to the
large number of total L2 cache misses (almost all of which are useful),
ideally eliminating wrong-path instructions hurts performance signifi-
cantly in mcf as shown in Figure 1. For parser, wrong-path misses are
frequently used (37.3% of all misses are used/partially-used wrong-
path misses). However, ideally eliminating all wrong-path instructions
induces less performance degradation than seen inmcf. This is because
parser has a higher portion of unusedwrong-path misses (14.2% of all
misses) and a smaller number of total L2 cache misses than mcf.

Our Goal: Thus, wrong-path instructions are not always harm-
ful to performance as commonly (and perhaps implicitly) assumed by
previous speculation control schemes. On the contrary, they can be
quite beneficial for performance. Therefore, it is important to dis-
tinguish when wrong-path references are beneficial for performance
in order to design a more intelligent, performance-aware speculation
control mechanism that does not gate the fetch engine when wrong-
path memory references provide prefetching benefits. Note that the
hardware cost for the mechanism must be small enough to guarantee
that the achieved energy savings is not offset by the energy consump-
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 // ...
 

 while (node) {
   

      

     

 

     } 

 //....

}
     node = node−>child;
     // control−flow independent point (reconvergence point)

     }

         // ...

BB 1

BB2

BB4

BB5

BB6

 node_t *node;
 // initialize node

     if (node−>orientation == UP) { // mispredicted branch

Load A
Load B

Load B
Load A

Load D

Store C

BB3

Store C

        node−>potential= node−>basic_arc−>cost

         node−>potential= node−>pred−>potential 
     else { /* == DOWN */

                                             − node−>basic_arc−>cost;

                                           + node−>pred−>potential;

Load

..........

Br BB4

BB 2

Jmp BB5

Load A

Store C

Load B
............

BB 3

............
Load D
............

Jmp BB1

BB 5 

............
BB 6

Br BB6
BB 1

Load A

Store C

Load B
............

Not taken path

BB 4

Taken path

Figure 3. Example of wrong-path prefetching from mcf (mcfutil.c)

tion of the additional hardware. Our goal in this paper is to design such
a low-cost speculation control technique that is aware of the usefulness
of wrong-path execution.

Motivation for Detecting Wrong-Path Usefulness in the
MSHRs: We observe in Figure 2 that partially used wrong-path
misses account for a significant portion of the total number of use-
ful wrong-path misses (used + partially used wrong-path miss) for
both mcf and parser (66.6% and 37.5% respectively), the only two
memory-intensive applications where wrong-path misses significantly
affect the L2 cache. As such, MSHRs [14], bookkeeping registers
where outstanding misses are buffered until they are fully serviced by
the memory system, can be a good candidate for detecting the use-
fulness of wrong-path execution by detecting partially-used wrong-
path misses. It is also more cost-effective to track the usefulness of
a wrong-path reference within MSHRs than within the L2 cache be-
cause MSHRs have much fewer entries than the L2 cache. Therefore,
the wrong-path usefulness predictors (WPUP) we will propose use the
MSHRs to detect whether a wrong-path memory reference is useful
for later correct-path instructions and use this information to train the
WPUP structures dynamically.

2.1. Why Can Wrong-Path Execution Be Useful?

We briefly describe two code examples to provide insights into why
wrong-path execution can provide prefetching benefits for correct-
path execution. We found that there are two major code constructs
that lead to prefetching benefits on the wrong path: (1) Hammocks:
control-flow hammocks that use the same data on both sides of the
hammock, (2) Control-flow independence: control-flow independent
program portions that are executed twice, once before a misprediction

and once after.2

Figure 3 shows a program segment from mcf and its control flow
graph that takes advantage of wrong-path prefetching due to both ham-
mocks and control-flow independence. The conditional branch instruc-
tion in basic block (BB) 2 is a frequently mispredicted branch. The
load and store instructions (Load A, B and Store C) in both BB3 and
BB4 refer to the same load and store addresses. Therefore, regardless
of whether or not the branch in BB2 is mispredicted, the cache lines
for the data of the loads and the store in either BB 3 or 4 are touched.
Hence, the basic block that is executed on the wrong path of the branch
in BB2 always provides prefetching benefits (due to the fact that same
data is used on both sides of a hammock).

Note that in Figure 3 the load instruction in BB5 (Load D) is
control-independent of the branch in BB2. Moreover, the data address
of the load is not dependent on any operation in BB3 or BB4. Hence,
Load D loads the same data regardless of the direction of the branch at
BB2. If the branch at BB2 is mispredicted, the miss generated by Load
D (executed on the wrong path) would later be needed when the pro-
cessor recovers from the misprediction and executes Load D on the
correct path. Hence, wrong-path execution of a control-independent
program portion can provide prefetching benefits for its later correct-
path execution.

2We refer the interested readers to Mutlu et al. [18] for a detailed analysis

of code structures that cause wrong-path prefetching benefits. Our characteri-

zation of the code constructs that lead to prefetching benefits on the wrong path

is a subset of the code constructs described in [18].

Figure 4 shows a code section from the put into match table func-
tion of the parser benchmark to illustrate a control-flow hammock
structure that causes a useful wrong-path memory reference. This
function adds a node to the appropriate (left or right) hash table de-
pending on the value of the dir (direction) parameter passed to the
function (lines 4-7). Depending on the value of dir, two different
functions are called. The arguments passed to the called functions, m
and t[h], are the same regardless of the value of dir. In other words,
instructions in the if block (line 5) and instructions in the else block
(line 7) use the same data. Therefore, when the branch of the if state-
ment (line 4) is mispredicted, a wrong-path load instruction generates
a request for t[h]. Shortly after the mispredicted branch is resolved
and the processor starts execution on the correct path, a correct-path
load instruction will generate a request for the exact same data, which
would already be in the cache or in flight.

1: void put_into_match_table (... , t, dir, ...) {

2: // compute h

3: // initialize m

4: if (dir == 1) {

5: t[h] = add_to_right_table_list(m, t[h]);

6: } else {

7: t[h] = add_to_left_table_list(m, t[h]);

8: }

9: }

Figure 4. Example of wrong-path prefetching from parser (fast-match.c)

In our analysis, we found that most of the code structures that take
advantage of the prefetching effect of wrong-path instructions are re-
peatedly executed (e.g. the code structures in Figures 3 and 4 are
located and called within frequently-executed loop bodies). There-
fore, it is conceivable to design a history based prediction mechanism
that estimates the usefulness of wrong-path execution. The goal of
the WPUP mechanism we will propose in the next section is to de-
tect useful wrong-path prefetching provided by frequently-executed
code structures (similar to those shown in Figures 3 and 4), and to dis-
able fetch gating when wrong-path execution is predicted to provide
prefetching benefits.

3.. Performance-Aware Speculation Control:

WPUP and Branch-count Based Fetch Gating

Our performance-aware speculation control technique consists of
two prediction components as shown in Figure 5: 1. a wrong-path use-
fulness predictor (WPUP) and 2. a new fetch gating scheme: branch-
count based fetch gating. The fetch gating scheme predicts if the pro-
cessor is on the wrong path. WPUP predicts whether wrong-path ex-
ecution would provide useful prefetching benefits. The speculation
control scheme gates the fetch engine only if the processor is predicted
to be on the wrong path and wrong-path is predicted not to provide

prefetching benefits.3

WPUP

Useful 

Performance−aware speculation control

Fetch Gating

Look up

Fetch Engine

Gate enable Branch count

Figure 5. Performance-aware speculation control mechanism

3.1. Wrong Path Usefulness Prediction (WPUP)

We propose two techniques to detect the usefulness of wrong-
path episodes. These mechanisms work at different granularities: 1.
Branch PC-based WPUP is a fine-grained scheme that predicts wrong-
path usefulness for each mispredicted or wrong-path branch instruc-

3This mechanism can simply be implemented by looking up the both predic-

tors in parallel and ANDing the predictions. In our implementation, to reduce

power/energy consumption, WPUP is looked up only when the fetch gating

scheme predicts that the processor is on the wrong-path.
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tion, 2. Phase-based WPUP predicts wrong-path usefulness in a more
coarse-grained fashion during different program phases.

3.1.1. Branch Program Counter(PC)-based Wrong Path
Usefulness Prediction Branch PC-based WPUP uses a set-
associative cache structure (WPUP cache) to store the PCs of branches
that lead to useful wrong-path prefetches.4 For example, the branch in
BB2 in Figure 3 will lead to useful prefetches (loads in BB3 or BB4,
and BB5) if it is mispredicted. When the processor encounters such a
useful mispredicted or wrong-path branch, it trains the WPUP cache
with the program counter of the branch. The fetch engine keeps track
of the PC of the latest branch instruction in a register (LBPC) by updat-
ing it whenever a branch is fetched. When the fetch gating mechanism
decides to gate the fetch engine, the fetch engine looks up the WPUP
cache with the PC of the latest fetched branch. If the PC of the fetched
branch is present in the WPUP cache, then the processor predicts that
the wrong path of the fetched branch (if mispredicted) would provide
prefetching benefits and therefore, discards the gating decision.

In contrast to conventional cache structures, the WPUP cache does
not require a data store. The tag store contains the tags (higher bits of
the PC) of the branches that are found to provide wrong-path prefetch-
ing benefits along with the LRU replacement information.

Detecting the Usefulness of Wrong-Path Memory References:
In order to know exactly whether or not a wrong-path memory refer-
ence is useful and to find the corresponding latest branch PC that re-
sulted in the useful wrong-path reference, the processor either requires
separate storage or needs to store the PC address of the mispredicted
branch that caused the wrong-path memory request along with each
L2 cache line. Unfortunately, the amount of this extra information can
be prohibitive. For example, assuming a 1024-line cache, storing a
16-bit partial PC address with each L2 cache line would require 2KB
extra storage to detect the latest branch PC that leads to wrong-path
useful memory references. In order to eliminate the need for such ex-
tra storage, we propose a simple scheme that detects the usefulness
of wrong-path memory references using the existing MSHRs [14] and
extending them with a few additional fields. Since MSHRs have a
small number of entries, storing information with each MSHR entry
is more cost-effective than storing the same information with each L2

cache line.5

The WPUP mechanism uses the L2 MSHRs to detect useful
branches that will train the predictor. The scheme detects two proper-
ties: (1) whether an outstanding cache miss in the MSHRs is generated
by a wrong-path instruction and (2) whether it is useful (i.e. used by a
correct-path instruction while the miss is being serviced). If a wrong-
path miss in the MSHRs is determined to be useful, the branch that
lead to the wrong-path miss is marked as useful in the WPUP cache
(i.e. the PC of the branch is inserted into the WPUP cache).

Hardware Support: As described below, we augment several
hardware structures in a conventional out-of-order processor to sup-
port the detection of branches that result in wrong-path prefetches.
Note that, to reduce hardware cost, we use the lower 16 bits of the PC
to identify a branch instruction, instead of its full 64-bit PC:6

1. Fetch engine:

(a) Latest branch PC register (LBPC, 16 bits): is added to the fetch
engine. It stores the PC of the latest fetched/predicted branch.

2. Inter-stage pipeline latches (decode, rename, and issue):

4Note that most fetch gating mechanisms do not know exactly which branch

among all fetched conditional branches is mispredicted. Therefore, it is difficult

to keep track of only the PC of the mispredicted (or wrong-path causing) branch

in the fetch engine to look up the WPUP cache with. For example, if branch

A is fetched and later branch B is fetched on the predicted path of branch A,

the fetch engine does not know whether branch A or branch B is mispredicted

until they are resolved later. For this reason, in the WPUP cache, we decide to

keep track of the PC of the latest branch fetched before a useful wrong-path

memory instruction is fetched.
5Our experiments show that detecting useful wrong-path memory refer-

ences using both MSHRs and L2 cache lines only negligibly (by 0.01%) im-

proves the performance of our WPUP mechanisms.
6We found that using only 16 bits of the PC does not affect the performance

of our proposed speculation control scheme.

(a) Branch PC field (BPC, 16 bits): A branch PC is associated with
every instruction packet fetched in the fetch stage, indicating the
youngest branch before the packet. This field is used to send the
latest branch PC of the packet through the pipeline.

3. Load/store queue (LSQ) entries:
(a) Branch PC field (BPC, 16 bits): A branch PC is associated with

every load/store instruction, indicating the youngest branch be-
fore the load/store. This field in the LSQ stores the latest branch
PC at the time the load or store was fetched.

4. L2 MSHRs:
(a) Branch PC field (BPC, 16 bits): stores the latest branch PC from

the branch PC field of the LSQ entry of an L2-miss-causing
load/store instruction.

(b) Branch ID field (BID, 10 bits): stores the branch ID from the
branch ID field of the LSQ entry of an L2-miss-causing memory
instruction. Branch ID is conventionally used for branch mispre-
diction recovery in some out-of-order execution processors.

(c) Wrong Path field (WP, 1 bit): is set when the corresponding
memory request is known to be generated on the wrong path
(when a branch older than or equal to the associated branch in
the MSHR entry is resolved and found to be mispredicted).

Operation: When a branch is fetched, LBPC is updated with the
PC of the branch. This LBPC is transferred through the front-end
pipeline stages (i.e. using the BPC field in each pipeline latch) along
with the corresponding instruction packet. Both BPC and branch ID
are recorded in the LSQ when an entry is allocated for a load/store,
and are transferred to the L2 MSHRs if the load/store’s memory re-
quest misses in the L2 cache. Once a branch is resolved as mispre-
dicted, the corresponding branch ID is sent to both the L2 MSHRs
and the branch misprediction recovery mechanism. The ID of the mis-
predicted branch is used to search the MSHRs for entries that are allo-
cated after the resolved mispredicted branch. The MSHR control logic
compares the ID of the resolved branch to the branch ID fields of the
MSHR entries. If the resolved branch ID is older than the branch ID
of the MSHR entry, the MSHR entry is known to be allocated on the

wrong path and its WP field is set.7 With this mechanism, a wrong-
path memory request can be detected as long as it has not been fully
serviced before the mispredicted branch is resolved. We found that
this scheme can detect 94% of all wrong-path L2 cache misses.

Whenever an outstanding wrong-path MSHR entry is hit (i.e.
matched) by a later memory request to the same cache line, our mech-
anism estimates that the MSHR entry is useful for correct-path in-
structions. Thus, the WPUP cache is updated with the BPC (Branch

PC) field stored in the MSHR.8 Note that this scheme is inexact in
the sense that the later memory request to the same cache line may
not necessarily be generated by a correct-path instruction. However,
we have found (and our evaluation shows) that this simplification does

not affect the performance of WPUP.9

If the fetch gating mechanism (described in Section 3.2) predicts
that the processor is on the wrong path, the processor accesses the
WPUP cache with the current LBPC. If there is a hit in the WPUP
cache, the processor does not gate the fetch engine, predicting that
wrong path would provide prefetching benefits. Otherwise, the pro-
cessor gates the fetch engine to save power/energy. Unlike conven-
tional caches, the LRU information in the WPUP cache is not updated
on a hit because frequent lookups by the fetch engine do not mean that
the corresponding branch results in useful wrong-path prefetches.

Note that none of the additional hardware changes made to support
wrong-path usefulness detection significantly increase the complexity
of the structures they augment. The only time-critical structure that is

7Depending on the choice a microarchitecture makes in handling wrong-

path memory requests, this mechanism might already be implemented in cur-

rent processors. A processor that cancels wrong-path memory requests after

a branch misprediction resolution requires a similar mechanism to detect and

invalidate wrong-path memory requests.
8If the corresponding set in the WPUP cache is full, the LRU entry in the

set is overwritten.
9We found that if a wrong-path memory request is later referenced by an-

other memory request while in the MSHR, the latter request is very likely (with

95% probability) on the correct path.
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augmented is the LSQ. However, the branch PC field added to each
LSQ entry is used only for bookkeeping and therefore it does not par-
ticipate in the content-addressable search of the LSQ entries.

3.1.2. Phase-based Wrong Path Usefulness Prediction Fig-
ure 6 shows the phase behavior of wrong-path usefulness for each
100K-cycle interval of mcf over the whole execution time. There are
two distinct phases for the usefulness of wrong-path memory refer-
ences. Until 75M cycles, wrong-path episodes do not result in use-
ful memory references. In contrast, after 75M cycles, wrong-path
episodes result in very useful references. We found that this phase
behavior is due to execution of large loops whose bodies result in
wrong-path prefetching benefits as discussed in Section 2.1. Loops
that provide wrong-path prefetching benefits are executed in some
phases, while others that do not are executed in other phases. As
such, it might not be necessary to distinguish wrong-path usefulness
on a per-branch basis because branches that do not provide wrong-
path prefetching benefits might not be executed during the same phase
as branches that do. To exploit such phase behavior in wrong-path
usefulness, we would like to design a mechanism that can estimate
wrong-path usefulness based on coarse-grained phase behavior.
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Figure 6. Phase behavior of wrong-path usefulness for mcf

We can simply detect the phase behavior of wrong-path useful-
ness using a counter (wrong-path usefulness counter - WPUC) and the
MSHR-based wrong-path usefulness detection mechanism described
in Section 3.1.1. We use a time-interval of 100K cycles to update
and reset the WPUC counter in order to detect the phase behav-
ior of wrong-path usefulness. At the beginning of a time-interval,
WPUC is reset to 0. During a time-interval, WPUC is incremented
by 1 whenever a wrong-path MSHR is hit by a later memory re-
quest. At the beginning of the next time interval, the value of WPUC
is tested. If the value of WPUC is greater than a certain thresh-
old (phase wpup threshold), the processor disables the fetch gating
mechanism in the interval, predicting that the wrong-path episodes in
the interval would be useful for performance.

This mechanism is advantageous because it does not require a hard-
ware structure similar to the WPUP cache used in PC-based WPUP.
All it requires is a simple hardware counter in addition to the support in
the MSHRs required for detecting useful wrong-path requests. Note,
however, that this is a coarser-grained WPUP scheme than the branch
PC-based WPUP and hence may mispredict finer grained changes
in wrong-path usefulness behavior. Nevertheless, we found that in
most cases wrong-path usefulness is a coarse-grained function of pro-
gram phase behavior rather than branch PC addresses: in other words,
phase-based WPUP can outperform PC-based WPUP because it can
better predict the usefulness of wrong-path memory references for the
SPEC 2000 integer benchmarks.

3.2. Fetch Gating Mechanism: Branch-count Based

Fetch Gating

We propose a low-cost fetch gating mechanism which leverages
the observation that the probability of having a mispredicted branch
instruction increases as the number of outstanding unresolved branch
instructions in the pipeline increases. This mechanism requires (1) a
count register that counts the number of outstanding branch instruc-
tions (branch count register, BCR) and (2) logic modifications in the
branch resolution unit. Once a branch instruction is fetched (or de-
coded), the processor increments BCR by 1. When a branch instruc-

tion is resolved in the branch resolution unit, the processor decrements
BCR by 1. If the BCR value is larger than a certain threshold T at any
given time, the fetch engine stops fetching instructions. Due to the
phase behavior of branch misprediction rate [23], a constant threshold
value for T can inhibit correct-path instruction fetches significantly (if
T is too low) or miss opportunities to remove wrong-path instruction
fetches (if T is too high). Therefore, we adjust the threshold T dynam-
ically based on the average branch prediction accuracy in a given time
interval. If the average branch prediction accuracy is high, then T is
set to a high value. Setting T to a high value makes it more difficult
to gate the pipeline, which is desirable when the prediction accuracy
is high. If the average branch prediction accuracy is low, T is set to a
low value. Setting T to a low value makes it easier to gate the pipeline,
which is desirable when the prediction accuracy is low. For example,
if branch prediction accuracy is 99% in an interval, the threshold is set
to 18 on our baseline processor. If branch prediction accuracy is 95%,
the threshold is set to 13. In our study, we use 7 discrete values for T
depending on the branch prediction accuracy (shown later in Table 5).
These threshold values are determined empirically through simulation.

4.. Methodology

4.1. Simulation Methodology

We use an execution-driven simulator of a processor that imple-
ments the Alpha ISA to evaluate our proposal. Our processor faith-
fully models the fetch and execution of wrong-path instructions and
branch misprediction recoveries that occur on both the correct path
and the wrong path. The memory system models bandwidth limi-
tations, port contention, bank conflicts, and queuing effects at every
level in the memory hierarchy. The baseline processor does not in-
validate any memory requests from wrong-path instructions so that
the wrong-path memory requests are eventually serviced and installed

into the cache.10 Our baseline processor includes a very aggressive
stream prefetcher that was shown to improve the performance of our
system significantly [24]. The parameters of the baseline processor
are shown in Table 2.

I-cache: 64KB, 4-way, 2-cycle; fetch up to 2 branches per cycle;
Front end

11-stage pipeline (fetch, decode, rename, and execute)

hybrid : 64K-entry gshare [17] and 64K-entry PAs predictor [26]

with 64K-entry selector;
Branch predictors

4K-entry BTB; 64-entry return address stack;

minimum misprediction penalty: 11 cycles

8-wide fetch/issue/execute/retire; 128-entry reorder buffer;
Execution core

32-entry load-store queue; 128 physical registers

L1 D-cache: 64KB, 4-way, 2-cycle, 2 read ports, 1 write port;

On-chip caches L2 unified cache: 1MB, 8-way, 8 banks, 10-cycle, 1 port

LRU replacement and 64B line size, 32 L2 MSHRs

memory latency: 300 cycles; 32 memory banks;

Buses and memory 32B-wide core-to-memory bus at 4:1 frequency ratio;

bus latency: 40-cycle round-trip

stream prefetcher: 32 streams and 16 cache line
Prefetcher

prefetch distance (lookahead) [25]

Table 2. Baseline processor configuration

We modified the Wattch power model [5] and augmented it to our
simulator for power/energy simulation. We used a 0.10µm process
technology at 1.2V Vdd and 2GHz clock frequency. We model the
power consumption of all processor units faithfully so that the energy
benefits of our speculation control mechanism is not over-estimated.
Additional hardware structures used by the evaluated techniques (e.g.
the WPUP cache structure, confidence estimator) are faithfully mod-
eled in the power model. All our experiments use Wattch’s aggressive
clock-gating (CC3) option, where the power consumption of units is
scaled linearly with port usage but unused portions of units still con-
sume 10% of their maximum power.

We also model a more aggressive processor that is able to perform
runahead execution [20] to evaluate the effect of our speculation con-
trol mechanism. Table 3 shows the parameters of this aggressive pro-
cessor.

10Previous studies [21, 22, 18] have shown that this option provides better

baseline performance than squashing wrong-path requests when a mispredicted

branch is resolved.
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Benchmark gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

Performance (IPC) 2.38 1.98 1.59 0.59 2.83 1.97 3.23 2.59 2.76 3.21 1.75 2.34

Branch prediction accuracy (%) 94.17 92.22 94.95 96.89 96.12 95.65 98.87 99.96 98.94 99.52 92.08 94.91

Fraction of wrong path among all fetched inst. (%) 41.87 60.24 44.96 35.22 37.06 48.94 16.27 0.37 19.32 9.41 49.62 48.72

Fraction of wrong path among all executed inst. (%) 14.21 26.17 14.73 10.06 10.48 17.39 4.79 0.09 4.75 2.23 17.23 14.16

Table 4. Characteristics of baseline processor for SPEC2000 integer benchmarks

Branch predictors minimum misprediction penalty: 30 cycles (30-stage front end)

512-entry reorder buffer; 128-entry load-store queue;
Execution core

512 physical registers; 512-byte runahead cache for runahead mode

Buses and memory memory latency: 400 cycles; bus latency: 50-cycle round-trip

Table 3. Aggressive processor configuration

We use the SPEC 2000 integer benchmarks compiled for the Al-
pha ISA with -fast optimizations and profiling feedback enabled.
The benchmarks are run to completion with a reduced input set [13]
to reduce simulation time. Table 4 shows the baseline performance
(in terms of IPC), branch prediction accuracy of the evaluated bench-
marks, and the fraction of fetched/executed instructions that are on the
wrong path. Table 1 has already shown information about the memory
behavior of the evaluated benchmarks. All results presented in this
paper are normalized to the baseline unless otherwise specified.

5.. Results

5.1. Evaluation of the Branch-count Based Fetch Gat-

ing Mechanism

Figure 7 shows the change in performance and energy consumption
with ideal (ideal), Manne’s (fg-manne), and our branch-count based
fetch gating mechanisms (fg-br). We used 14 as the miss distance
counter (MDC) threshold for a 4K-entry, 4bit-MDC JRS confidence
estimator [11] and 3 as the gating threshold for Manne’s fetch gat-
ing (These thresholds were optimized to favor Manne’s scheme). The
thresholds used for branch-count based fetch gating as a function of
the branch prediction accuracy are shown in Table 5. Branch predic-
tion accuracy is measured and evaluated every 100K cycles.

Br prediction accuracy(%) 99+ 97-99 95-97 93-95 90-93 90-85 85-

Threshold 18 16 13 12 11 7 3

Table 5. Branch-count based fetch gating thresholds
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Figure 7. Performance and energy consumption of branch-count based fetch

gating and Manne’s fetch gating

As shown in Figure 7, the average performance and energy savings
our branch-count based fetch gating scheme provides are better than
Manne’s fetch gating even though our scheme requires significantly
less hardware cost (i.e. no need for a confidence estimator). This
is because the accuracy and the coverage of our branch-count based
fetch gating mechanism are higher (15.5% and 29.3% respectively)

than those of Manne’s fetch gating (13.2% and 19.9% respectively).11

11Accuracy of fetch gating is calculated by dividing the number of fetch-

gated cycles when the processor is actually on the wrong path by the total num-

Our mechanism achieves better energy savings for vpr, gcc, mcf, crafty,
parser and twolf. Overall, the energy savings of the branch-count
based scheme is higher than Manne’s (by 0.6%) while its performance
loss is lower (by 0.2%). Hence, the branch-count based fetch gat-
ing scheme more efficiently eliminates wrong-path instructions than
Manne’s scheme by eliminating the hardware cost and design com-
plexity introduced by a confidence estimator.

Figure 7 also shows that we cannot expect fetch gating to save
significant energy in eon, perlbmk, gap, and vortex. Even the ideal
fetch gating scheme reduces energy consumption by only 6.8%, 0.3%,
7.1%, and 3.9% respectively in these benchmarks. Because the branch
prediction accuracy is very high (98.9%, 99.9%, 98.9% and 99.5% re-
spectively as shown in Table 4), these benchmarks do not fetch or
execute as many wrong-path instructions as the other benchmarks do,
as shown in Table 4. Therefore, realistic fetch gating mechanisms
achieve almost no energy savings for these benchmarks.

Note that both our and Manne’s fetch gating mechanisms result in
significant performance loss inmcf (∼9%) and parser (∼5%) because
neither of the schemes takes into account the usefulness of wrong-path
references. This shortcoming also results in increased energy con-
sumption in mcf with both schemes due to the increased execution
time. Next, we present results when our wrong-path usefulness predic-
tion techniques are used in conjunction with the fetch gating schemes
to make speculation control performance-aware.

5.2. Evaluation of Wrong Path Usefulness Prediction

Mechanisms

As we showed in Section 5.1, both idealized and realistic fetch
gating mechanisms hurt performance significantly for mcf and parser.
We apply our WPUP techniques to the branch-count based fetch gating
mechanism to recover the performance loss.

5.2.1. Branch PC-Based Wrong Path Usefulness Predic-
tion Figure 8 shows the change in performance and energy consump-
tion when branch PC-based WPUP is used in conjunction with branch-
count based fetch gating. We vary the size of the WPUP cache from 8
to 128 entries and fix its associativity to 4. As the number of WPUP
cache entries increases up to 32, mcf ’s performance improves com-

pared to the fetch gating mechanism without a WPUP.12 With a 32-
entry WPUP cache, a wrong-path usefulness predictor improves per-
formance by 8.0% on mcf while also reducing energy consumption by
3.4%. Hence, utilizing WPUP eliminates almost all the performance
loss incurred in mcf due to fetch gating.

Note that for benchmarks other than mcf, PC-based WPUP does
not significantly affect performance or energy consumption. This is
because wrong-path execution in these benchmarks (other than parser)
does not provide significant prefetching benefits. In parser, we found
that PC-based WPUP does not work well because the usefulness of
wrong-path memory references is not a function of which branches
are mispredicted but rather a function of program phase behavior.

5.2.2. Phase-based Wrong Path Usefulness Prediction Fig-
ure 9 shows the change in performance and energy consumption when
phase-based WPUP is used in conjunction with branch-count based
fetch gating. We vary the phase wpup threshold from 5 to 20. For

ber of fetch-gated cycles. Coverage of fetch gating is calculated by dividing

the number of fetch-gated cycles when the processor is actually on the wrong

path by the total number of cycles when the processor is on the wrong path.
12For the baseline configuration, a 32-entry WPUP cache is optimal for per-

formance and energy savings. A larger WPUP cache leads to storing some stale

branches that do not lead to useful wrong-path references any more, which re-

sults in incorrect prediction of some useless wrong-path episodes as useful.

One other way of overcoming this “information staleness” problem is to flush

the WPUP cache periodically.
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Figure 8. Performance and energy consumption with PC-based WPUP

comparison, we also show the performance and energy consumption
of the best-performing PC-based WPUP with a 32-entry WPUP cache.
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Figure 9. Performance and energy consumption with phase-based WPUP

Phase-based WPUP improves the performance of mcf and parser
significantly compared to fetch gating without a WPUP. With a
phase wpup threshold of 5, performance improves by 8.8% for mcf
and by 3.1% for parser. Phase-based WPUP eliminates almost all of
the negative performance impact of fetch gating in mcf. On average,
the best phase-based WPUP reduces the performance degradation of
fetch gating from -3.7% to -0.9%. For mcf, energy consumption also
reduces by 2.3% compared to branch-count based fetch gating without
a WPUP.

Results with various phase wpup thresholds show the trade-off
between performance and energy consumption for parser. As the
threshold increases, performance decreases and energy savings in-
creases because a larger threshold reduces the likelihood that a wrong-
path episode is predicted to be useful. In parser, the energy reduc-
tion obtained due to the execution time improvement caused by use-
ful wrong-path references does not outweigh the energy increase due
to the execution of more wrong-path instructions. Hence, as fewer
and fewer wrong-path episodes are predicted to be useful (i.e. as the
threshold increases), energy consumption reduces because the fetch
engine is gated to prevent the execution of wrong-path instructions.

Why does Phase-based WPUP Perform Better than PC-Based
WPUP? The average performance of phase-based WPUP is higher
than that of the PC-based WPUP, mainly because wrong-path useful-
ness is better predictable using program phase behavior rather than
branch PCs in the parser and mcf benchmarks. This is because phase-

based WPUP also takes into account the L2-miss behavior in a given
interval whereas PC-based WPUP has no notion of either phases or
L2-miss behavior in phases. If no wrong-path L2 misses happen in an
interval, wrong-path periods are not predicted as useful by the phase-
based scheme whereas they may be predicted as useful by the PC-
based scheme because the PC-based scheme relies only on the past
behavior of the wrong-path periods caused by a branch instruction.

Even though phase-based WPUP saves slightly less energy, it is
simpler to implement than PC-based WPUP because it does not re-
quire a cache structure. Since phase-based WPUP provides higher
performance while requiring less complexity, we believe it provides a
better implementation trade-off than the PC-based WPUP.

5.2.3. Effect of Wrong Path Usefulness Prediction on
Manne’s Fetch Gating Technique Our WPUP techniques can be
used in conjunction with not only our branch-count based fetch gat-
ing scheme but also other fetch gating mechanisms. We evaluate the
WPUP techniques with Manne’s fetch gating mechanism. Figure 10
shows the performance and energy consumption of Manne’s fetch
gating without a WPUP (fg-manne), with the PC-based WPUP (fg-
manne-pc-wpup) and with the phase-based WPUP (fg-manne-phase-
wpup). We used a 32-entry, four-way set-associative cache structure
for the PC-based WPUP configuration and a phase wpup threshold
of 20 for the phase-based configuration.
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Figure 10. Manne’s fetch gating scheme with WPUP

Phase-based WPUP improves both the performance and energy
savings of Manne’s fetch gating mechanism. In mcf performance im-
proves by 9.8% while energy consumption reduces by 2.8%. In parser,
performance improves by 1.5% while energy consumption increases
by 1.3%. With phase-based WPUP, the average performance loss of
Manne’s fetch gating scheme is reduced to only -1.2% from -3.9%
while its energy savings are preserved. We conclude that employ-
ing wrong-path usefulness prediction is also effective at improving the
performance of Manne’s fetch gating.

Figure 10 also shows that our branch-count based fetch gating
mechanism with WPUP achieves better overall energy efficiency than
Manne’s fetch gating mechanism with WPUP. This is because branch-
count based fetch gating achieves better energy efficiency (without
WPUP) as we discussed in Section 5.1. Compared to Manne’s fetch
gating mechanism without a WPUP, our proposed techniques (branch-
count based fetch gating with PC-based WPUP) provide up to 8.1%
(2.5% on average) performance improvement along with up to 4.1%
(1.0% on average) reduction in energy consumption.

5.3. Effect on Fetched and Executed Instructions

Figure 11 shows the reduction in fetched and executed instructions
using our and Manne’s schemes. Branch-count based fetch gating re-
moves fetched and executed instructions by 11.0% and 1.4% on av-
erage respectively while Manne’s fetch gating does so by 9.8% and
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Benchmark gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf

base 0.000 0.000 0.002 1.124 0.001 0.022 0.000 0.011 0.001 0.005 0.007 0.000

fg-br 0.000 0.000 0.001 0.991 0.001 0.020 0.000 0.010 0.001 0.004 0.007 0.000

fg-br-pc-wpup 0.000 0.000 0.001 1.114 0.001 0.020 0.000 0.010 0.001 0.005 0.007 0.000

fg-br-phase-wpup 0.000 0.000 0.001 1.123 0.001 0.022 0.000 0.010 0.001 0.004 0.007 0.000

Table 6. Useful wrong-path L2 caches misses per wrong-path episode (UMPW)

2.1% respectively. This explains why branch-count based fetch gating

achieves better energy-efficiency as shown in Section 5.1.13
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Figure 11. Reduction of fetched and executed instructions

When WPUP is used in conjunction with branch-count based fetch
gating, fetched and executed instructions reduce by 8.6% and 1.1% on
average (up to 22.5% and 4.49%), respectively. Hence, using WPUP
slightly increases the fetched and executed instructions (especially in
mcf and parser) because it disables fetch gating for useful wrong-path
episodes. Even so, the reduction in fetched instructions is significant,
leading to the energy savings shown in previous sections.

5.4. Effect on the Usefulness of Wrong-Path Episodes

We provide more insight into the performance improvement pro-
vided by wrong-path usefulness prediction by analyzing wrong-path
usefulness with and without our techniques. To quantify wrong-path
usefulness, we define a new metric, Useful wrong-path L2 cache
Misses Per Wrong-path episode (UMPW) as follows:

UMPW =
Total Number of Useful Wrong Path L2 Cache Misses

T otal Number of Wrong Path Episodes

UMPW quantitatively shows the efficiency of wrong-path

episodes.14 If wrong-path prefetching is not salient in an application,
UMPW for that application will be close to zero. For an application
that takes advantage of wrong-path prefetching, a fetch gating mecha-
nism that does not take into account the usefulness of wrong-path ex-
ecution might reduce the number of useful wrong-path L2 misses by
executing fewer wrong-path instructions. Therefore, such a scheme
that is unaware of wrong-path usefulness would decrease UMPW and
therefore performance. On the other hand, a performance-aware spec-
ulation control scheme can increase UMPW (and hence performance)
by allowing wrong path execution to occur when it is predicted to be

13Note that the reduction in executed instructions is much lower than that in

fetched instructions in both fetch gating schemes. This is natural because many

wrong-path instructions are flushed before they are executed, as Table 4 also

shows.
14Note that this metric is not perfect because it does not take into account

the criticality and latency of useful wrong-path L2 cache misses. We only

use it to provide insight with a single easy-to-understand metric. The actual

performance improvement depends not only on the change in the number of

useful wrong-path L2 misses, but also on their timing, criticality, and whether

or not their latencies are hidden. However, defining a metric -separate from

absolute performance- that takes into account all these aspects is very difficult.

useful and useful L2 misses to be generated on the wrong path. The
larger the increase in UMPW a speculation control mechanism pro-
vides, the higher the performance improvement it can achieve.

Table 6 shows the UMPWs for the baseline and the baseline with
our mechanisms (branch-count based fetch gating, PC-based WPUP,
and phase-based WPUP). As expected, the UMPWs of all the bench-
marks except for mcf and parser are close to zero and show very little
change with our mechanisms, since these benchmarks have very little
wrong-path prefetching effect. In contrast, the UMPW for mcf drops
from 1.124 to 0.991 when the branch-count based fetch gating is ap-
plied to the baseline, resulting in a 9% performance loss (as shown in
Figure 7). However, both PC-based WPUP and phase-based WPUP
recover the loss in UMPW to 1.114 and 1.123 respectively. The im-
provement in UMPW explains why wrong-path usefulness prediction
improves performance significantly for mcf in Figures 8 and 9. A
similar effect is observed for parser with phase-based WPUP, which
improves the UMPW metric compared to branch-count based fetch
gating. We conclude that wrong-path usefulness prediction improves
performance by increasing UMPW.

5.5. Effect on the Energy-Delay Product

Figure 12 shows the Energy-Delay Product (EDP) comparison of
different WPUP prediction techniques when they are employed with
branch-count based and Manne’s fetch gating schemes. The high-
est savings in EDP is provided by combining our branch-count based
fetch gating with branch PC-based WPUP, which results in a 2.1% de-
crease in EDP compared to the baseline. Note that schemes that do not
take into account wrong-path usefulness (both Manne’s scheme and
branch-count based fetch gating scheme without WPUP) do not result
in significant savings in EDP; in fact Manne’s scheme without WPUP
increases EDP by 0.6%. We conclude that our wrong-path usefulness
prediction techniques are very effective at not only improving perfor-
mance but also finding the right balance between energy consumption
and performance.
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Figure 12. Energy-delay product of speculation control mechanisms

5.6. Hardware Cost and Power/Energy Consumption

of Our Speculation Control Techniques

Table 7 shows the hardware cost of the two proposed WPUP tech-
niques. The WPUP mechanisms do not add significant combinational
logic complexity to the processor. Combinational logic is required for
the update of WP-bits in the MSHRs and the update of WPUP cache
and WPUC. None of the required logic is on the critical path of the

processor.15 The storage overhead of PC-based WPUP is only 260
bytes, which is less than 0.16% of the baseline front-end size (assum-
ing a 64KB I-cache + 64KB branch predictor + 4K-entry BTB). The
overhead of phase-based WPUP is almost negligible: only 45 bytes.

Table 8 shows the hardware cost, power, and energy comparisons
of Manne’s fetch gating scheme (fg-manne) and our branch-count
based fetch gating scheme with PC-based/phase-based WPUP (fg-
br-pc-wpup/fg-br-phase-wpup). The total hardware cost of our two

15We varied the latency of the WPUP training mechanism from 1 to 500

cycles. The performance difference is negligible.
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Hardware cost Dynamic access

Fetch-gating WPUP Total frequency
Max. power Avg. power Avg. energy

fg-manne br.count (8bits) + confidence (2048B) - 2049B 0.15/inst 94.54mW 30.16mW 1.40mJ

fg-br-pc-wpup br.count (8bits) + bpred.accuracy (36 bits) 260B 266B 0.07/inst 25.13mW 4.55mW 0.22mJ

fg-br-phase-wpup br.count (8bits) + bpred.accuracy (36 bits) 45B 51B 0.07/inst 1.20mW 0.24mW 0.01mJ

Table 8. Hardware cost, power and energy consumption comparison of Manne’s and our speculation control schemes

PC-based WPUP Phase-based WPUP

Fetch engine LBPC 16bits -

Inter-stage latches BPC 16bits*11stages -

LSQ BPC 16bits*32entries -

BPC 16bits*32entries

MSHR BID 10bits*32entries
BID 10bits*32entries

WP 1bit*32entries
WP 1bit*32entries

WPUP (13bits(addr)+1bit(V)
Training storage

cache +2bits(LRU))*32entries
WPUC 5bits

Hardware cost 260 bytes 45 bytes

Table 7. Hardware cost of wrong-path usefulness predictors

schemes is 266 bytes/51 bytes, which is much less than 2049 bytes, the

cost of fg-manne.16 With a much smaller hardware cost, our schemes
are able to predict the usefulness of wrong-path instructions and pro-
vide better performance. Furthermore, the confidence estimator in
Manne’s scheme is accessed much more frequently than the WPUP
in our scheme, requiring 0.15 accesses per every instruction because
every branch should access the confidence estimator. However, our
WPUP is accessed 0.07 times per instruction because it needs to be
accessed only when the processor is predicted to be on the wrong path.
Due to reduced hardware cost and reduced access counts to hardware
structures, the extra hardware needed by our techniques (fg-br-pc-
wpup/fg-br-phase-wpup) consumes only 27%/1.3%, 15%/0.8%, and
16%/0.9% of the maximum power, average power, and average energy
of those of Manne’s scheme. We conclude that our speculation con-
trol technique provides improved performance and energy-efficiency
at very low hardware and energy cost.

5.7. Effect on a More Aggressive Processor

Table 9 shows gating thresholds for branch-count based fetch gat-
ing for the more aggressive processor and Figure 13 shows the perfor-
mance and energy impact of our schemes and Manne’s scheme on the
more aggressive processor configuration. As the performance impact
of wrong-path memory references becomes more salient on a proces-
sor with a large instruction window [18], fetch gating without WPUP
results in even more significant performance degradation. For exam-
ple, Manne’s fetch gating results in an average performance loss of
5.1% in the more aggressive processor. Compared to Manne’s scheme,
our speculation control mechanism with branch-count based fetch gat-
ing and phase-based WPUP improves performance by up to 15.4%
(4.7% on average) while increasing energy consumption by only 1.2%
on average. The EDP reduction of our speculation control mechanism
is 4.1% while that of Manne’s fetch gating is 2.8%. Note that this
is a good performance/energy trade-off [10]. Hence, our speculation
control scheme becomes more effective in controlling the performance
loss due to fetch gating as processors become more aggressive.

Br prediction accuracy(%) 99+ 97-99 95-97 93-95 90-93 90-85 85-

Threshold 60 50 40 30 20 15 13

Table 9. Branch-count based fetch gating thresholds for a more aggressive

processor

5.8. Effect on Runahead Execution

Figure 14 shows the performance and energy impact of our
schemes and Manne’s scheme on a runahead execution processor [9,

16Hardware cost of branch-count based fetch gating: Branch counters

(br.count) are used for counting the number of outstanding branches in our

fetch gating scheme, and the number of outstanding low-confidence branches

in Manne’s scheme. They are 8-bit counters because the maximum number of

instructions in the processor is not more than 2
8. Branch-count based fetch

gating also requires two 18-bit counters (that store the number of correctly

predicted branches and the number of total branches in an interval) in order to

measure branch prediction accuracy. Because we use 100K-cycle intervals and

the baseline processor can fetch up to two branches per cycle, 18 bit counters

are sufficient.
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Figure 13. Change in performance and energy with our speculation control

techniques on a more aggressive processor

20]. The performance and energy results are normalized to when runa-
head execution is employed on the more aggressive processor with-
out any fetch gating. Note that, on a processor employing runahead
execution, the performance degradation with both our and Manne’s
schemes for mcf is much less than that on a processor without runa-
head, since the prefetching effect of runahead execution reduces the
positive performance impact of the prefetching effect of wrong-path
execution. Nevertheless, our speculative control mechanism improves
performance by up to 2.6% compared to Manne’s scheme. Hence,
we conclude that our techniques are effective on runahead execution
processors as well.
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Figure 14. Change in performance and energy with our speculation control

techniques on a runahead execution processor

5.9. Comparison with the Just In Time Instruction

Delivery Mechanism

We compare our speculation control mechanisms with the Just In
Time (JIT) instruction delivery mechanism [12]. We chose the best-
performing JIT configuration in terms of energy-delay product among
the 27 configurations we examined. We set JIT specific parameters,
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minimum allowed instruction count in the pipeline, maximum instruc-
tion count increment unit, and noise margin to 128, 16 and 5% respec-
tively.

As shown in Figure 15, JIT saves energy by only 1.6% and de-
grades performance by only 0.8% on average, leading to an EDP im-
provement of 0.7%. Note that since JIT adjusts fetch gating decisions
based on the monitored IPC changes, it is able to impact performance
less than branch-count based fetch gating. On the other hand, branch
PC-based and phase-based WPUP with branch-count based fetch gat-
ing save energy by 3.4% and 3.0% while degrading performance by
1.4% and 1.2% respectively, resulting in EDP improvements of 2.1%
and 1.7%. Note that both of our mechanisms save more energy than
JIT on most of the benchmarks. These results demonstrate that our
mechanisms achieve better energy efficiency (EDP) than JIT at the ex-
pense of slightly higher performance degradation.
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Figure 15. Comparison with Just In Time Instruction Delivery Mechanism

5.10. Sensitivity to Processor Parameters

We have examined the sensitivity of our techniques to branch pre-
dictor type, memory latency, and L2 cache size. For brevity, we do not
present these results but refer the reader to [15], which contains the
sensitivity analyses. Our results show that our techniques are effective
with a wide variety of branch predictors, memory latencies, and L2
cache sizes.

6.. Related Work

6.1. Related Work on Fetch Gating and Dynamic Re-

configuration Mechanisms

Fetch (pipeline) gating was first proposed by Manne et al. [16].
Their fetch gating mechanism counts the number of low confidence
branches in the pipeline using a confidence estimator. If the num-
ber is more than a certain threshold, the fetch engine is gated to save
power/energy. Our study shows that counting the number of in-flight
branches and adjusting the threshold based on branch prediction ac-
curacy are enough to save energy without losing significant perfor-
mance and without requiring a separate confidence estimation struc-
ture. Furthermore, Manne et al.’s scheme does not take into account
the prefetching effect of wrong-path instructions.

Many other fetch gating and dynamic reconfiguration schemes
have also been proposed to reduce energy consumption [4, 6, 7, 12,
2, 8]. Baniasadi et al. [4] and Buyuktosunoglu et al. [6, 7] try to bal-
ance the front-end instruction supply rate and back-end execution rate.
Baniasadi et al. point out that if there is enough instruction parallelism
in the pipeline, having more instructions in the pipeline does not nec-
essarily improve performance. They measure parallelism using de-
code/commit rate difference and data dependence count among the in-
structions being decoded. Adaptive issue queue (AIQ) [6] resizes the
instruction scheduler based on its utilization to reduce power/energy

consumption without significantly hurting performance. Buyukto-
sunoglu [7] proposes a scheme that performs fetch gating based on the
utilization of the instruction scheduler and parallelism of the running
application. If parallelism is low and the utilization of the instruc-
tion scheduler is high, the mechanism gates the fetch engine. Aragon
et al. [2] extend the idea of fetch gating to multiple branch predic-
tion confidence levels. If a branch is very low-confidence, the most
aggressive fetch gating scheme is used. If a branch is relatively less
low-confidence, the fetch engine is not fully gated but it is throttled so
that it fetches fewer instructions than its maximum bandwidth allows.

Just in time (JIT) instruction delivery [12] dynamically adjusts the
total number of instructions (not only branch instructions) in flight by
monitoring IPC performance during certain intervals. BranchTap [1]
also dynamically adjusts the number of instructions in the pipeline
to reduce branch misprediction recovery cost in the presence of few
global checkpoints. BranchTap keeps track of the number of low-
confidence branches without an associated global checkpoint and gates
the fetch engine if this number is greater than a certain threshold. The
threshold is dynamically adjusted based on IPC during certain time
intervals, just like in JIT. Both JIT and BranchTap require a tuning pe-
riod to search for the optimal number of instructions in the pipeline to
achieve the best performance. If the performance of an application is
not stable for a long time, these mechanisms might not be able to stabi-
lize, which could result in performance loss. Our WPUP mechanisms
are partially orthogonal to and can be combined with BranchTap and
JIT. For example, a combined mechanism could gate the fetch engine
when the number of low-confidence branches without an checkpoint
exceeds a dynamically-determined threshold (as in BranchTap) only if
our WPUP mechanism predicts that wrong-path execution would not
be useful.

Collins et al. [8] gate the fetch engine using their dynamic control-
flow reconvergence prediction mechanism, utilizing the observation
that a misprediction in their reconvergence mechanism very likely re-
sults from the fact that the processor is on the wrong path. Finally,
Armstrong et al. [3] find that unusual or illegal pipeline events are
strongly correlated with branch mispredictions and propose gating the
fetch engine when the processor detects such events.

None of these previous works explicitly considers the performance
impact of wrong-path memory references. Especially the positive
performance effects of wrong-path execution are ignored in previous
works, implicitly assuming that all wrong-path episodes are useless
for performance. Our work improves the state-of-the-art by incorpo-
rating the usefulness of wrong-path execution into fetch gating deci-
sions. Moreover, many of these previously proposed schemes require
either large additional hardware structures (i.e. confidence estima-
tors [16, 2] or wrong-path predictors [8]) that increase the complex-
ity of the pipeline or significant changes to time-critical and power-
hungry portions of the pipeline such as the instruction scheduler [4, 6].
We propose branch-count based fetch gating that eliminates the addi-
tional large hardware structures without requiring significant changes
to time-critical and power-hungry portions of the pipeline.

Note that our WPUP mechanism can be incorporated into any of
the previously proposed fetch gating mechanisms to make the mech-
anism performance-aware by taking into account the prefetching ef-
fect of wrong-path memory references. In this paper, we show the
effectiveness of WPUP with both our novel branch-count based fetch
gating scheme and Manne’s confidence estimation based fetch gating
scheme.

6.2. Related Work on the Usefulness of Wrong-path

Memory References

Pierce et al. [21] study the effect of wrong-path memory references
on cache performance using traces generated by an instrumentation
tool. They show that the prefetching effect of wrong-path memory
references is more dominant than their pollution effect for most of the
SPEC92 C benchmarks. They also show that wrong-path instructions
can prefetch useful instruction and data cache lines over 50% of the
time.

Mutlu et al. [18] examine the effect of wrong-path memory refer-
ences on the actual performance of a high performance out-of-order
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processor using an execution-driven simulator. They show that not
modeling wrong-path execution can lead to errors of up to 10 percent
in performance. They find that wrong-path memory references are
usually beneficial for performance in most SPEC2000 benchmarks but
detrimental to performance in a few others. They also point out that
the performance impact of wrong-path memory references gets larger
memory latencies and instruction window sizes increase.

Building on this previous work on identifying the positive per-
formance impact of wrong-path references, we show that specula-
tion control schemes (i.e. fetch gating mechanisms) that do not take
the wrong-path prefetching effect into account can hurt performance
significantly. Unlike previous work that only evaluated the perfor-
mance impact of wrong-path memory references, we propose an im-
plementable mechanism that leverages and predicts the usefulness
of wrong-path references in order to increase the performance and
energy-efficiency of fetch gating.

7.. Conclusion

This paper introduces the concept and low-cost implementations of
wrong path usefulness prediction (WPUP) and its application to fetch
gating mechanisms to improve the performance and energy-efficiency
of speculation control, which has traditionally assumed that wrong-
path execution is always useless for performance. We challenge this
assumption and show that predicting the usefulness of wrong-path pe-
riods and not disabling wrong-path execution when it is estimated
to be useful actually results in better performance and better energy-
efficiency.

We propose simple PC-based and phase-based WPUP techniques
that are applicable to previously proposed fetch gating schemes. In
addition, we propose a branch-count based fetch gating scheme that
eliminates the need for a confidence estimator to guess that the pro-
cessor is likely to be on the wrong path. As such, we provide a very
low-cost, comprehensive speculation control mechanism that is aware
of the benefits of wrong-path execution. Our comprehensive mecha-
nism significantly reduces the performance degradation of fetch gating
while at the same time reducing energy consumption.
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