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Abstract

We present a novel algorithm for efficient removal of rolling
shutter distortions in uncalibrated streaming videos. Our
proposed method is calibration free as it does not need any
knowledge of the camera used, nor does it require calibra-
tion using specially recorded calibration sequences. Our al-
gorithm can perform rolling shutter removal under varying
focal lengths, as in videos from CMOS cameras equipped
with an optical zoom. We evaluate our approach across a
broad range of cameras and video sequences demonstrat-
ing robustness, scaleability, and repeatability. We also con-
ducted a user study, which demonstrates preference for the
output of our algorithm over other state-of-the art methods.
Our algorithm is computationally efficient, easy to paral-
lelize, and robust to challenging artifacts introduced by var-
ious cameras with differing technologies.

1. Introduction
Most current digital video cameras, from inexpensive cell-
phone cameras to high-end DSLRs, use active pixel sensors
based on CMOS technology, as opposed to a charge coupled
device (CCD). CMOS technology is appealing compared to
CCDs due to its low power consumption, X-Y readout with
optional skipping enabling on-chip exposure control during
capture, and ease in manufacture as it shares the underlying
process with almost all logic and microprocessors [13].

However, most cameras based on CMOS technology
employ column parallel readout, also known as electronic
rolling shutter [13]. Pixels within a row are read out simul-
taneously, but integration time is shifted row by row. A prior
readout with optional pixel-skipping, usually shifted by half
of a frame period is used to determine exposure time. As
image rows are exposed and readout at different instances in
time, electronic rolling shutter causes geometric image dis-
tortions ranging from shear, caused by low-frequency mo-
tions to wobble distortions caused by high frequency per-
turbations of the camera center. These wobble distortions
are specifically noticeable in videos captured by cameras
mounted on cars or helicopters and in videos captured by a
walking person, which has motion spikes due to impact of
the feet with the ground.

While these distortions are tolerable in still imaging,
their temporal inconsistency is exaggerated for video. The
magnitude of distortion primarily depends on the speed
of the readout, i.e. readout time tr w.r.t. the frame period
T (alternatively, one might consider the inter-frame delay
T − tr − te, with te being the exposure time[13]). For this
reason, high-end DSLRs with a faster readout time result in
less distortion.

Current state of the art approaches require that this read-
out time tr be determined a-priori [5, 8] in a controlled set-
ting, or be calibrated from a video sequence recorded by
the same camera prior to any corrections. This prevents the
use of these algorithms in situations where only the video
is available, without further knowledge of or access to the
camera or the scene.

In this paper, we introduce a novel calibration-free al-
gorithm for blind rolling shutter removal for video. Our
contributions are:
• A novel mixture model of homographies parametrized by

scanline blocks which faithfully models the inter-frame
distortions caused by an electronic rolling shutter.
• An efficient estimation procedure robust to foreground

motions leveraging regularization and iterative re-
weighted least squares.
• A thorough evaluation using various cameras and settings

as well as a user study, which demonstrates general prefer-
ence of our algorithm over others.
• A highly efficient solution, undistorting video at 5 - 10 fps

on a single machine.
As rolling shutter distortions are caused by perturba-

tions of the camera center, we perform joint rolling shut-
ter removal and video stabilization. Specifically, we im-
plemented the video stabilization method of Grundmann
et al. [7], replacing their frame-pair registration with our ho-
mography mixtures as described in section 3.4. Examples
of our results is shown in fig. 1.

2. Related work
Previous work on rolling shutter removal seeks to esti-
mate parametric motion between two frames from feature
matches while accounting for the time-varying manner of
the capture process across rows (or blocks of rows).
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Figure 1: Two examples rectified using our calibration free rolling shutter technique. Original frames on the left, our rectified result on
the right. Our model accounts for frame global distortions such as skew (left example) as well as local wobble distortions which compress
and stretch different parts of the frame (right example). Please see accompanying video.

Cho and Kong [4] employed global affine model estima-
tion, which is used to derive a per pixel velocity (displace-
ment per frame period). Rolling shutter correction is per-
formed by multiplying the velocity with the actual capture
duration between matches (expressed as the ratio of number
of scanlines between matches to the number of scanlines per
frame) yielding the actual displacement.

Liang et al. [11] use a per-row translation model obtained
by interpolating frame global translations (i.e. one transla-
tional model per frame-pair) via Bezier curves. The trans-
lation is found as the peak in a 2D histogram of translation
vectors obtained using block matching. Baker et al. [1] ex-
tend on this model by replacing Bezier interpolation with
L1 regularization across scanlines, allowing for more gen-
eral motions. They also account for independent motion,
albeit optimization is costly in this case (∼ 100s per frame).

Ringaby and Forssen [5, 6] extend upon Liang et al. [11]
by interpolating 3D camera poses, specifically rotation ma-
trices, across scanlines. In particular, they employ spher-
ical linear interpolation resulting in a non-linear optimiza-
tion problem.

The above mentioned rolling shutter removal techniques
are limited in that a prior calibration is required to achieve
good results. Baker et al. [1] assumes that the camera-
dependent inter-frame delay is known a priori. While they
demonstrate estimating this delay from a short clip recorded
by the same camera, the clip is required to contain wob-
ble distortion, which requires some degree of manual selec-
tion. Likewise, Ringaby and Forssen’s [6] 3D calibration
approach, requires considerable prior calibration. The in-
trinsic camera matrix is assumed to be known and constant
during capture. More importantly, the inter-frame delay
has to be determined prior to calibration, which is obtained
by flashing a light source of known frequency. Lastly, the
frame-rate is assumed to be known and remain constant dur-
ing capture. In this respect, it should be noted that modern

cell phone cameras employ dynamic frame-rates, e.g. the
iPhone4 varies the frame rate from 24 fps in low-light set-
tings to 30 fps if the scene is well lit [10].

Current video stabilization approaches, such as Liu
et al. [12] treat rolling shutter distortions as noise and do not
model it specifically. Similar, Grundmann et al. [7] model
rolling shutter distortions via frame global homographies
(i.e. one homography per frame-pair) and do not account
for the time-varying nature of the capture process.

Most recently, the use of dedicated hardware was pro-
posed to replace feature tracking within the rolling shutter
framework of Ringaby and Forssen’s [6]. In particular, Han-
ning et al. [8] and Karpenko et al. [10] simultaneously pro-
posed to measure the camera rotations from gyroscopes. In
addition to the inter-frame delay, both approaches require
prior offline calibration of camera and gyroscope, which
is performed per camera from a short video segment of a
planar scene using high quality SIFT matches [10] or KLT
feature tracks [8]. Our proposed algorithm does not require
any such hardware nor any specific calibration, and can be
applied to any video.

3. Calibration-free rolling shutter removal
We perform rolling shutter removal without the need for
prior calibration by expressing the rolling shutter distortions
parametrically as homography mixtures which are used to
unwarp the distortions present in the original.

Our algorithm proceeds as shown in fig. 2. For a given
video, we perform motion estimation, by first matching im-
age corner features across frame pairs to obtain potential
matches (section 3.1). After outlier rejection, we obtain a
parametric model for motion and rolling shutter distortion
between frames by fitting our homography mixtures to these
matches (section 3.2). We also estimate a 4 degree of free-
dom similarity that is stabilized over time to account for
global shake using the approach of Grundmann et al. [7],
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Figure 2: Overview of our algorithm.

resulting in per-frame crop window. Finally, the estimated
homography mixtures are used to unwarp the rolling shutter
distortions and the stabilizing crop is applied (section 3.4).

3.1. Feature extraction

To model the rolling shutter distortions between frames via
parametric homography mixtures, we require matching im-
age locations across frames. We follow the standard pro-
cedure by tracking KLT feature points using OpenCV to
obtain sparse feature matches across frame pairs [2].

In contrast to image registration of undistorted data, we
require dense coverage of high-quality features to model the
wobble distortions across rows. To obtain dense coverage,
we propose an adaptive version Shi and Tomasi’s feature
extraction [14]. The original algorithm determines corners
at pixel locations where both eigenvalues of the 2nd mo-
ment matrix are above a pre-defined threshold. This thresh-
old is usually chosen w.r.t. the maximum eigenvalue across
all pixels, effectively imposing a frame-global threshold.
We observed that this generally results in very few features
within low textured regions such as sky or road because the
foreground is highly textured, skewing the threshold unduly.
We mitigate this issue by dividing the image into a grid of
4x4 equally sized bins, exercising a local threshold within
each bin. To achieve scale independence we subdivide the
grid iteratively across 3 pyramid levels. The effect of this
technique can be seen in fig. 3.

In the presence of rolling shutter distortions, classical
methods for outlier rejection such as imposing a fundamen-
tal matrix or global homography constraint are not appli-
cable, as their assumption of a perspective transform be-
tween frames is violated. Similar to our adaptive feature ex-
traction, we perform outlier rejection locally within equally
sized bins across the image domain. Specifically, we ro-
bustly estimate the mean translation mt for each bin using
RANSAC and reject features that deviate from mt by more
than 2 pixels. We use an initial bin size of 1/4 of the frame
size that is uniformly downscaled by a factor of 2 across 3
pyramid levels. The final set of inliers is the union across
pyramid levels.

Figure 3: Uniform (left) vs. our adaptive features (right). Using a
local threshold w.r.t. the maximum eigenvalue of the 2nd moment
matrix within each bin of a grid in the image domain enables us
to track many more features in low contrast regions, such a grass
or sky. This is crucial for modeling the rolling shutter distortion
across frames. Also shown is the crop window used for stabiliza-
tion, as described in section 3.4.

3.2. Homography mixtures

To motivate our homography mixtures, we briefly review
the imaging process using fig. 4. After tracking and outlier
rejection, for each frame pair (Fi, Fi+1) we have obtained
a set of matching feature locations. For the subsequent dis-
cussion, we consider the matching feature pair (x, y) pic-
tured in fig. 4. Both features are assumed to image the same
3D location X and are expressed in projective space P2.

In case of a global shutter, each row of a frame Fi is
imaged at the same time Ti. Therefore, (x, y) are related by
x = PiX , y = Pi+1X , where Pi and Pi+1 represent the
corresponding projection matrices. Each projection matrix
can be decomposed into an intrinsic camera matrix Ki and
the camera center’s origin ti and orientation Ri at frame i,
i.e. Pi = Ki[Ri|ti]. In case of pure rotation (ti = ti+1 =
0), the projection matrices are invertible and both frames
are related by the relationship

x = PiP
−1
i+1y = KiRiR

T
i+1K

−1
i+1y ⇒ x = Hi,i+1y,

(1)
where Hi,i+1 is a 3x3 homography [9]. A similar linear
relationship for x and y holds in case of non-zero translation
if the scene is approximately in one plane or at infinity.

In case of rolling shutter, Pi and Pi+1 are not frame-
global but vary across rows. In this example, we try to re-
cover the camera position at times T (sx) and T (sy) when
image rows sx and sy of x and y were read out. Without
loss of generality, we set Ti = 0, the read-out time of each
row can be determined from its index:

T (sx) =
sx(1− d)

N
∈ [0, 1] and T (sy) =

N + sy(1− d)
N

,

where d is the camera dependent inter-frame delay, i.e. the
time passing between the read-out of the last row N and the
first of the next frame w.r.t. the frame period. Therefore, we
adopt the simplified notation P (sx) and P (sy), to denote
the camera position at times T (sx) and T (sy).

Current approaches to obtain P (sx) and P (sy) can
be categorized into interpolation and regularization tech-
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Figure 4: Motivation for homography mixtures. Matching feature
location (x, y) imaging 3D location X , are related by x = PiX ,
y = Pi+1X , in case of a global shutter. In case of rolling shutter,
Pi and Pi+1 vary across rows, depending on the corresponding
scan lines sx and sy . Please see section 3.2 for details.

niques, each assuming piece-wise smoothness of the camera
motion across rows.

Interpolation techniques: Liang et al. [11] use an inter-
polating translation model in the image domain (K = I),
resulting in Pi = [0 | ti], Pi+1 = [0 | ti+1] which are glob-
ally estimated (translations are actually defined for the mid-
dle scanline, however we shift this to the first for ease of
explanation.) The translation at row sx is then given by
P (sx) = [0 | q(T (sx), ti, ti+1)], where q is a Bezier curve
interpolating between translations ti and ti+1. Forssen and
Ringaby [5] extend this model to interpolate the rotation
matrices instead, i.e. Pi = K[Ri | 0], Pi+1 = K[Ri+1 | 0]
with unknown rotations Ri and Ri+1 and constant cam-
era matrix K. Interpolation between rotation matrices
is performed using spherical linear interpolation (slerp):
P (sx) = K[slerp(T (sx), Ri, Ri+1) | 0].

Regularization techniques: Baker et al. [1] uses a per row
translation model in the image domain (K=I), independently
estimating P (sj) = [0 | tj ] for each scanline sj . L1 regular-
ization is used to obtain piece-wise smoothness across rows,
i.e. |P (sj)− P (sj−1)| is optimized to be small.

Homographies mixtures: Our homography mixtures can
be regarded as generalization of above interpolation tech-
niques to local homographies with additional regularization
for improved stability. Note that, we can rewrite eq. (1) as
x = HiH

−1
i+1y, substitutingKiRi with an unknown homog-

raphy Hi. In the case of rolling shutter the homographies
depend on the row indices sx and sy resulting in the rela-
tion:

x = H(sx)H(sy)
−1y. (2)

Note, this relation in not limited to the case of zero trans-
lation, but also holds if the scene is approximately in one
plane or lies at infinity. We simplify eq. (2) by making the
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Figure 5: Homography mixtures defined over blocks of scanlines.
To avoid discontinuities across scanlines the homography Hx for
point x is given as mixture Hx :=

∑m
k=1 Hkwk(x), with wk(x)

being a gaussian weight centered around the middle of each scan-
line block k

assumption that all pixels within the vicinity of row sx get
mapped to row sy , i.e. the relationship in eq. (2) only de-
pends on the row index sx. This assumption holds for ar-
bitrary translations and small changes in scale, perspective
and rotation, suited for the small inter-frame motion of the
camera center in video. We therefore obtain:

x = H−1
x y, with Hx ∼ H(sx)H(sy)

−1.

For efficiency and stability reasons, we estimate Hx for
blocks of scanlines, as opposed to each scanline separately
(estimation of homographies from collinear points is de-
generated). Particularly, we partition the image domain
in m = 10 blocks, resulting in 10 unknown homogra-
phies Hk, k = 1..m needed to be estimated per frame to
model the rolling shutter distortions. To avoid discontinu-
ities across scanline blocks we smoothly interpolate the ho-
mographies using Gaussian weights as shown in fig. 5. The
homography for point x is defined as mixture

Hx :=

m∑
k=1

Hkwk(x), (3)

where wi(x) is a gaussian weight centered around the mid-
dle of each scanline block i. We use uniform sigma of 0.1
w.r.t. the frame height. Alternatively, to achieve interpola-
tion behavior (gaussian weights only amount to approxima-
tion), one could use cubic hermite spline weights. We ex-
perimented with Catmull-Rom splines [3] and found them
to be slightly less robust, when a scanline block contains
very few features due to lack of texture. We believe this is
caused by the fixed number of taps, as opposed to the ex-
ponential decaying gaussian weights, which extend across
the whole frame. An illustrative example is shown for the
translation component in fig. 8.

3.3. Estimation of mixtures

To fit a homography mixture Hk to a set of normalized
matches (xi, yi) ∈ [0, 1]× [0, 1], we generalize the normal-



ized direct linear transform (DLT) [9] to mixture models.
Specifically, for a match (x, y) = ([x1, x2, 1]

T , [y1, y2, 1]
T )

expressed as 3D vectors within the projective space P2,
equality after transformation only holds up to scale, i.e.

0 = y⊗Hxx = y⊗
m∑
k=1

Hkwk(x)x =

m∑
k=1

wk(x) ·y⊗Hkx,

(4)
where ⊗ denotes the cross product, and wk(x) is a known
quantity, as it only depends on x and the fixed middle po-
sition of block k. Using the general DLT [9], we transform
the expression y ⊗ Hkx to a set of 2 linear independent
equations:

Akxhk :=

(
0T −xT y2x

T

xT 0T −y1xT
)
hk,

where hk is the vector formed by concatenating the columns
ofHk. We can then solve for eq. (4) by combining the above
linearities for all mixture models k, yielding a 2× 9k linear
constraint

(
w1(x)A

1
x . . . wk(x)A

k
x

)︸ ︷︷ ︸
:Ax

h1...
hk


︸ ︷︷ ︸

:=h

= Axh = 0. (5)

Aggregating all linear constraintsAx for each feature match
(x, y) yields an homogenous linear system, which can be
solved for under the constraint ||h||2 = 1 using the SVD
of A. Alternatively, the system can be transformed into a
homogenous system by explicitly setting the bottom right
element of each homography to 1, i.e. hk(3, 3) = 1 ∀k,
which is a reasonable choice for video, as the small inter-
frame motions are virtually free of degenerated cases.

Robust estimation: While the choice of Gaussian
weights wk(x) ensures smoothness across scanlines, we
like to ensure that adjacent homographies hk do not differ
drastically. Furthermore, in case a block has fewer than 4
constraining matches, depending on the choice of the vari-
ance of the gaussian weights, eq. (5) can be under con-
strained and unstable to solve. We therefore propose to add
a regularizer λ||hk − hk−1||2 to the homogenous system,
where we chose λ = 1.5.

To further improve robustness w.r.t. outliers, we itera-
tively solve for h using iterative least squares. After each it-
eration, we evaluate the geometric error ex := ||y⊗Hxx||2,
which is used to scale Ax in eq. (5) by the inverse er-
ror 1

ex+ε
. As residual wobble for high contrast regions is

more noticable, we further chose to scale the inverse error
by the color variance (expressed in Lab color space) of its
surrounding patch, effectively approximating a patch-based
registration error. An example is shown in fig. 6.

Figure 6: Outlier robust homography mixture estimation using
IRLS weighting. Features with weight > 1 (residual distance less
than 1 pixel) shown in green, features with weight << 1 (resid-
ual distance considerably larger than 1 pixel) shown in red, using
smooth interpolation in-between. Our technique successfully dis-
counts foreground motion e.g. caused by moving objects or artic-
ulated bodies.

Reduced mixture models: One might ask, to which ex-
tent the different parameters (translation, affine and per-
spective) of a homography mixture vary across scanline
blocks, i.e. what the effective minimum number of de-
grees of freedom is. To answer this question, we mea-
sured the variance of each homography mixture parameter
across scanline blocks for two videos, normalized w.r.t. to
its mean. The result is shown in fig. 7 for a parametrization
of a general homography h as

h =

h1 h2 h3
h4 h5 h6
h7 h8 1

 . (6)

It can be seen that perspective (h7, h8) and scale (h1, h5)
can be regarded constant, while the parameters varying
most across scanline blocks are translation (h3, h6) and
skew (h4).

Therefore, we propose two reduced mixture models of
6 + 2k and respectively 4 + 4k degrees of freedom:

Hk =

(
A tk
wT 1

)
, and Ĥk =

 a bk txk
ck d tyk
w1 w2 1

 . (7)

Here A is a frame-global 2x2 affine matrix, wT =
(w1, w2)

T is the frame-constant perspective part and tk is
a block-varying translation. Likewise, a and d in Ĥk are
frame-global scale parameters. These reduced models have
the benefit of faster estimation and greater stability due to
fewer degrees of freedom. We used the model Ĥk in all our
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Figure 7: Normalized variance for each parameter of our homog-
raphy mixtures across scanline blocks for two different videos.
Shown are the 8 dof of a 3x3 homography h using the parametriza-
tion of eq. (6). Normalization is performed w.r.t. each parameter’s
mean. It can be seen that perspective (h7, h8) and scale (h1, h5)
are nearly constant, while translation h3, h6 and skew h4 have
high variance.This motivates our reduced mixture model.
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Figure 8: Example of block dependent translations tk (see eq. (7))
shown as crosses and smooth trace obtained by interpolating the
block-dependent translation via gaussian weights.

experiments, however Hk performs only marginally worse,
and should be chosen if real-time performance is desired.
An example plot of the block dependent translations tk is
shown in fig. 8.

3.4. Joint video rectification and stabilization

Using our computed homography mixtures we can per-
form rectification of the original video, effectively remov-
ing rolling shutter artifacts. To perform additional video
stabilization, we implemented the video stabilization frame-
work of Grundmann et al. [7] as it allows us to replace their
frame registration method with our homography mixtures.
As shown in fig. 2, for a given input video, for each frame-
pair we estimate our homography mixtures Hn and addi-
tionally 4 degree of freedom similarities Sn (translation in
x and y, scale and rotation). We stabilize the similarities us-
ing [7]. This results in a crop transform for each frame Bn
indicated in red in fig. 6 and fig. 3.

To account for distortions beyond similarities, [7] pro-
posed a bidirectional warping method. In particular, the
computed crop transformBn can be decomposed intoBn =
RnSn, with Sn being the underlying similarity and Rn a

Figure 9: Layout of our user study. Users are presented with the
original at the top and the results of two methods, labeled blindly
as ’A’ and ’B’. User is asked to chose among 4 choices: Prefer A,
prefer B, no preference or prefer original.

residual. If perfect stabilization can be achieved,Rn is zero,
i.e. the crop undoes the camera motion. However, due to
the additional constraint that the crop rectangle has to stay
within the frame, this is generally not the case. [7] proceeds
by replacing Sn with a homography, instead we chose to
replace Sn with our homography mixtures Hn, yielding a
per-frame rectification and stabilization warp B̂n = RnHn.
[7] address potential error accumulation over time using bi-
directional warping of the frame by B̂n w.r.t. equidistant
spaced keyframes. We extend on their approach by using
adaptively spaced key-frames to minimize potential distor-
tion. In particular, for a frame interval Fi, Fi+1, ..., Fk, we
compute the camera path w.r.t. origin Fi as homographies
H1, H2, ..Hk. Our goal is to select Hl, l = 1..k with the
least non-rigid distortion as the next key-frame. To this
end, each Hk is scored using 4 rigidity measures: Skew
and change in aspect ratio (obtained by applying QR de-
composition to Hk), modulus of perspective and average
feature residual after registration. Considering the variance
of each measure across frames, rigidity is defined using a
normal distribution around mean zero (respectively mean
one for aspect ratio). Lastly, assuming independence of the
four measures, Hl is found at the frame l = 1..k of highest
probability, i.e. highest rigidity.

4. Results

To evaluate our results qualitatively and compare to the re-
sults of six other authors, we conducted a user study with
54 participants. As shown in fig. 9, each participant is
shown the original and two results after rolling shutter re-
moval, labeled blindly as ”Method A” and ”Method B”.
Users were asked to choose which of the two presented
methods reduces wobble and shake best. We asked users
to disregard differences in aspect ratio, contrast or sharp-
ness, as we compiled the videos from several authors and
sources, each one using different video codecs and/or fur-
ther post-processing which makes uniform treatment diffi-
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Figure 10: Results of our user study consisting of 54 participants. We compare our algorithm to other authors on videos taken from their
papers (see top row for thumbnails). Users are shown original and two results (ours vs. other author’s, labeled blindly as method A and B).
Users are asked which method they prefer (if any) w.r.t. reducing wobble. Charts indicate user choices averaged over all tested sequences
(ranging from 1 to 3 videos, depending on other author’s presented results). Also shown are individual results for sequences. Please see
text for detailed discussion.

cult. In particular, users were presented with four choices
for each video: (a) Prefer Method A, (b) Prefer Method B,
(c) No preference - methods perform equally well and (d)
Neither - prefer the original.

We compare our approach to six current state-of-the-
art methods. Three of those methods are specifically de-
signed to perform rolling shutter removal using visual fea-
tures alone and require prior calibration as described in sec-
tion 2: Baker et al. [1], Forssen and Ringaby [6], Liang
et al. [11]. Further, two methods treat rolling shutter dis-
tortions as noise or as a global distortion: Liu et al. [12],
Grundmann et al. [7]. We also include the approach of
Karpenko et al. [10] which uses dedicated hardware in form
of gyroscopes to supplement the visual estimation task.

For each other method, we selected a reasonable subset
of rolling shutter distorted videos that were presented in that
work. The thumbnails and labels for each video are shown
at the top of fig. 10 and the aggregated responses of our

user study are shown below. In general, the majority of all
users showed strong preference towards our results when
compared to other methods. This preference is even more
pronounced when we only account for those users that actu-
ally showed a preference. We discuss the results w.r.t. each
method in detail below.

Compared to Baker et al. [1], 58% of all users preferred
our result, 15% preferred Baker et al. and the remaining
ones indicated no preference. As shown in fig. 10a, the ma-
jority of no preference votes were cast for the “race” video.
On the other two videos “helicopter” and “vegas”, users
prefered our solution by large margins. Note that Baker
et al. ’s approach requires the inter-frame delay to be known,
where our approach does not require this information.

In fig. 10b, we compare to Forssen and Ringaby[6].
In general, 75% of all users prefer our method with less
than 10 % showing no preference or preferring the orig-
inal. The results are quite similar across the three tested



Figure 11: Scenarios for qualitative evaluation. We chose 4 different scenarios, shown from left to right: panning, walking forward,
sidestepping and large depth variation. Each scene was recorded using 4 different cameras. Please see text and accompanying video.

videos. It should be noted that Forssen and Ringaby require
a calibrated camera and a priori known inter-frame delay,
whereas our approach does not require or use this informa-
tion.

Compared to Liang et al. [11], who model rolling shutter
as a global affine transform, 80% of all users preferred our
results (fig. 10c). In comparison to Karpenko et al. [10]
70% preferred our result, and 20% indicated no preference
(fig. 10d). Note, that Karpenko et al. determine the camera
motion from gyroscopes instead of feature tracks.

The remaining two approaches we compared to are pri-
marily video stabilization methods, that are somewhat ro-
bust to rolling shutter artifacts. Compared to Grundmann
et al. [7], 63% preferred our results, while a considerable
amount showed no preference (32%, fig. 10e). The results
of [7] for the sequences “iPhone”, “walk” and “helicopter”
were obtained using the freely available online implementa-
tion on YouTube. Most votes indicating no preference were
cast for the“iPhone” and “Walk” videos, both of which are
mostly affected by frame-global skew. On the “helicopter”
video however, which suffers mainly from wobble, all of
the 54 users preferred our solution. Lastly, we compare to
Liu et al. [12] in fig. 10f, where 76% prefer our result, while
20% show no preference.

In addition to the user study, we qualitatively evaluated
the robustness and reproducibility of our method across
different cameras. Specifically, we evaluated 4 cameras,
among them 3 mobile phones without stabilization (iPod,
Nexus 1 and Nexus S) and one mobile phone with gyro
based stabilization (iPhone4S) across 4 different challeng-
ing scenarios, shown in fig. 11. Each scenario was recorded
using each camera. Our method proved robust to signif-
icant foreground motion, changes in depth, high and low
frequency bounces and wobble. We showcase the results in
the accompanying video.

5. Summary

In this work, we presented a novel, calibration-free rolling
shutter removal technique, based on a novel mixture model
of homographies which faithfully models rolling shutter
distortions. Our technique has the significant practical ad-
vantage that it adapts to the camera, rather than requiring
a calibration procedure as previous approaches, resulting in

a substantially increased range of applicability. In addition,
our method is highly efficient (5 - 10 fps) while being robust
to foreground motions and various challenging scenarios.
We conducted a thorough evaluation using various cameras
and settings as well as a user study, which showed that the
majority of users prefer our results compared to other recent
efforts. Our method can fail when a scene is composed of
layers with significant differences in depth that cannot be
adequately modeled by homographies or if the visual signal
is too degraded (e.g. blur, missing features). In this case,
supplementing the visual signal with gyroscope information
should prove helpful.
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