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Abstract

We present a method to detect the regions of interests in
moving camera views of dynamic scenes with multiple mov-
ing objects. We start by extracting a global motion tendency
that reflects the scene context by tracking movements of ob-
jects in the scene. We then use Gaussian process regression
to represent the extracted motion tendency as a stochastic
vector field. The generated stochastic field is robust to noise
and can handle a video from an uncalibrated moving cam-
era. We use the stochastic field for predicting important
future regions of interest as the scene evolves dynamically.

We evaluate our approach on a variety of videos of team
sports and compare the detected regions of interest to the
camera motion generated by actual camera operators. Our
experimental results demonstrate that our approach is com-
putationally efficient and provides better predictions than
previously proposed RBF-based approaches.

1. Introduction
Analysis of videos of dynamic scenes with multiple moving
objects requires detection of regions of interest in the scene
based on the motions of the objects. Automatic extraction
of such regions of interest at any point in time over a video
sequence is crucial for dynamic scene understanding. This
is especially important for scenes captured by moving cam-
eras as the coverage of such dynamic scenes changes with
the movement of the camera. For example, in sports videos,
expert camera operators actively control the pan-tilt-zoom
(PTZ) of their cameras to best capture the dynamics of the
play as it unfolds. In surveillance videos, operators move
their cameras based on their interpretation of events and ac-
tivities in a crowded scene.

Automation of where to move the camera in such a
scene, which is driven by activities and events in the scene,
requires (1) knowledge of how the objects move in the
scene, (2) affordances related to how a camera can move
to best capture these movements, and most importantly (3)
ability to predict from motions of the camera and the dy-
namics of the scene where regions of interest are in the

Figure 1. Overview: Top: An example of the pan-tilt-zoom per-
formed by a camera operator. The field of view changes from the
region bounded by red lines to another bounded by blue lines, Bot-
tom (overhead view): Arrows indicates a motion field generated
only from the ground-motion of players with Gaussian process re-
gression. The certainty level of the velocity vector at each location
is represented by different colors. Circles indicate the predicted
future locations of interest which can be interpreted as the loca-
tion where the field of view of the camera will move. Color bar
represents the level of values (Red denotes higher values).

scene. Such automation can support the capture of the most
relevant (interesting) video footage, with smooth motions
and transitions. To achieve such automation, we leverage
the observation that the global motion field of the scene best
encodes the context of the dynamic scene and helps predict
future regions of importance. To that end, we present an
approach to extract such predictions from real data, which
can be used for planning camera motion with smooth tran-
sitions.

We propose a method for constructing a stochastic mo-
tion field from a set of sparse motions from sports footage,
and provide a method to identify the regions that adequately
capture the field of view for the activities in the scene. Fig-
ure 1 shows an example of the change of view over time as
the camera operator pans and widens the camera view dur-
ing a football play. The top figures show the two frames
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Figure 2. Overview of our approach: From input video to the
detection of future important locations.

with an overlapping region from left to right. The bottom
figure lays out the image on the football field and shows a
stochastic motion field on the ground generated using Gaus-
sian process regression, which allows for computing how
the play is unfolding, as the players are tracked and fol-
lowed over the field to determine regions of interest.

Our approach shares similar goals as [6], where motion
tracks are used to predict how groups of people move in a
scene. However, our approach does not depend on well-
configured static-multi-view videos for the precise motion
samples on the ground. We support more general and chal-
lenging configurations in which the input video (possibly
with noise) is from a single moving view, which is a more
practical scenario where a PTZ camera is able to both an-
alyze and move itself. In order to model such configura-
tions, we propose a method to predict the regions of interest
by constructing a vector field with Gaussian process regres-
sion. The vector field is built on the regression model and
covariance function that are modeled with residual terms,
and all the motion vectors at any location can be represented
by a set of means and variances. The means collectively re-
flect the motion tendency, whereas the variances quantify
the level of confidence of the motion tendency as the mo-
tions may be sparse and noisy.

Our contributions in this paper are: (1) A method to gen-
erate a stochastic motion field that represents a global mo-
tion tendency using Gaussian process regression (GPR). (2)
Techniques for predicting important future locations from
mean and variance fields computed from the stochastic vec-
tor field. (3) An evaluation method for measuring the good-
ness of predicted important regions. We utilize the Jaccard
coefficient [14] computed from the fields of view covered
by our approach and actual camera operators (the base-line
comparison). The Jaccard coefficient is an intuitive simi-
larity measure, the size of the intersection divided by the
size of the union of two sets. Based on our criterion, we
demonstrate that our approach can predict regions of im-
portance quite accurately. We demonstrate the validity of
our approach over a very complex data set, which will be
made available with the paper.

2. Related Work

There has been some work on automated video captur-
ing/directing that is relevant and worth mentioning. Pin-
hanez [11] introduced an automatic broadcasting system for
a TV cooking show. Since the show was recorded in a stu-

Figure 3. Registration of each frame onto the reference view
for a player tracking: Left: Original view, Right: A rectified
view used for tracking players.

dio in which only few panels move with a pre-defined script,
there was no need for either the analysis of multiple moving
objects or the prediction of regions of importance. Ariki et
al. [2] proposed a system that automatically broadcasts soc-
cer games by cropping the field of view of a virtual camera
from static wide angle view scenes. Their approach relied
mostly on the tracks of the foreground objects, and applied
them to the set of rules (i.e., each labeled event belongs to
a specific camera rule) for smooth transition of virtual cam-
eras.

Recently, Kim et al [6] introduced an approach to mea-
sure global tendencies from sparse set of motion with ra-
dial basis function interpolation. This approach is used to
predict the regions of importance in the scene of the soc-
cer videos captured from multiple-static cameras. This ef-
fort significantly motivates our work and we have even tried
some analysis on data used in this effort. The differences lie
in the fact that this work requires multiple static views for
the stable acquisition of motions on the ground, and does
not seem to be adequate for the scenario in which a PTZ
camera both analyzes the scene and adapts its field of view,
which is the case considered in this paper. We compare
to this work, specifically the use of Radial Basis Functions
(RBF) as compared to GPR flow in this paper.

In this work, we use Gaussian process regression to gen-
erate stochastic vector fields from a sparse set of motion
tendency vectors. Gaussian process [12] has been widely
used in many data regression problems such as modeling
motion trajectories and tracking objects [7, 4], and these
approaches motivate our work in generating stochastic flow
fields.

3. Detecting Regions of Interest

To automatically capture the dynamic sports scenes by iden-
tifying where the global motion tendency moves, we first
extract motions on the ground plane in the scene. We
then generate a stochastic motion field for representing the
global motion tendency. Finally, we detect the locations
where the motion field converges. Figure 2 shows the over-
all framework.



3.1. Computing Motion on the Ground

We first register video frames into the known field coor-
dinates using successive local features appearing in each
video frame [5]. Then we rectify video frames into a ref-
erence frame with successive homographies extracted from
the registration. We chose the first frame of each video clip
from the data sets as a reference for the registration (Fig-
ure 3 (Right)). This rectified video frame is used for extract-
ing the ground motion of each player by applying particle-
filter based tracking [8]. We then approximate the motion
vector on the ground as the vector between the center of bot-
tom edge of tracked blobs in each consecutive frame. In or-
der to construct the motion field from the extracted motions
on the ground, we project all the motions into the overhead-
view of the ground field as shown earlier in Figure 1 (Bot-
tom).

3.2. Stochastic Motion Field

Our task is to generate a dense motion field represent-
ing global tendency with sparse motion extracted from the
scene. Let x1, . . . ,xn ∈ <d be a set of locations of ex-
tracted motion, in which d is the dimension of the input
motion that we want to model. Each location x has a set
of noisy observed velocity vector components: yu (the ve-
locity component in the u-axis), yv (the velocity component
in the v-axis), (and optionally yt for modeling the compo-
nent in the time-axis). We assume that each velocity com-
ponent at the location x ∈ <d follows the regression model
ŷ = f(x) + ε, where ε ∼ N (0, σ2), i.e., Normal distribu-
tion.
Gaussian Process Regression. We propose using the
Gaussian process regression model, where f(x) is a
zero-mean Gaussian process with covariance function
K(x,x′′) : <d × <d → <. A Gaussian process is a col-
lection of random variables, any finite number of which
have a joint Gaussian distribution [12]. It is completely
specified by a mean function m(x) = E[f(x)] (typically
assumed to be 0) and a covariance function K(x,x′′) =
E[(f(x)−m(x))(f(x′′)−m(x′′))] = E[f(x)f(x′′)].

If we have training data D =

[
x1, · · · , xN

y1, · · · , yN

]
, the

N × N covariance matrix K is now defined as [K]jk =
K(xj,xk). We then define the observation vector y =
[y1, . . . , yN ]T ; y can be shown as a zero mean multivariate
Gaussian process with a covariance matrix K∗ = K + σ2I.
The posterior density for a test point x∗, p(y∗|x∗,D) is
a univariate normal distribution with the mean ȳ∗ and the
variance var(y∗):

ȳ∗ = k(x∗)T (K∗)−1y

var(y∗) = K(x∗,x∗)− k(x∗)T (K∗)−1k(x∗)

where k(x∗) = [K(x∗,x1), . . . ,K(x∗,xn)]
T . We use

Figure 4. Stochastic motion field and its certainty field gen-
erated from GPR: The arrows indicate the vectors in the field
generated from the motions of players. The colors of the arrows
represent the level of certainty. Red arrows have larger certainty
level (narrower confidence band) and blue ones have lower cer-
tainty level. Therefore extrapolated vectors are more likely to be
blue. Bold white lines indicate the references for the ground plane.
Note that all calculations were done in the overhead projection.

Gaussian Automatic Relevance Determination (ARD) ker-
nel [3] as the covariance function. We select and optimize
its hyper-parameters using the limited memory Broyden-
Fletcher-Goldfarb-Shanno (BFGS) optimizer [10] by maxi-
mizing the marginal log-likelihood of the training data.

We can then express the mean flow as a vector field for
two dimensional motions, Φ(x) = ȳ∗u(x)i + ȳ∗v(x)j ∈ <2

(u, v represent a spatial domain), and for three dimensional
motions as Φ(x) = ȳ∗u(x)i + ȳ∗v(x)j + ȳ∗t (x)k ∈ <3 (t in-
dicates a temporal domain) with a variance for each veloc-
ity component var(y∗u(x)), var(y∗v(x)), var(y∗t (x)) respec-
tively. Figure 4 shows the generated stochastic motion field
using mean field Φ(x). In the figure, the certainty level is
shown as color values indicating a 95% of distribution (con-
fidence band) with the mean and variances in each velocity
of the motion.

Comparison with the Deterministic Motion Field. We
note that the mean of the posterior density p(y∗|x∗,D)
can be interpreted as a linear combination of observations
y, i.e., a linear predictor: ȳ∗ =

∑
yi

αiyi where α =

(K∗)−1k(x∗). At the same time, it can also be written as:
ȳ∗ = λTk(x∗) =

∑
xi

λiK(x∗,xi) where λ = (K∗)−1y,

i.e., a weighted kernel sum that appears in the RBF ap-
proach shown in [6]. The GPR approach is similar to the
RBF, except for one key difference. RBF is used primar-
ily for interpolation of known observation values, whereas
GPR can operate on noisy observation values. By spec-
ifying the mean function m(x) and the covariance func-
tion K(x,x′′), we can construct confidence bands around
each predicted value to quantify the certainty level. Read-
ers can refer to [1] for more details on some key similari-
ties and differences between the RBF and GPR techniques.
In our experiments, we validate the effectiveness of confi-
dence bands for identifying convergence locations of mo-



tion trends.

3.3. Detecting Locations of Convergence

Detecting convergence locations of the motion field can
guide the movement of the PTZ camera as shown in [6].
The approach propagates and updates a magnitude of a ve-
locity along a motion field. However, this approach often
suffers from two problems. First, propagating every vector
(regardless of its similarity to actual global motion tenden-
cies) in the field has been shown to be computationally in-
tensive. Secondly, extrapolated velocity vectors with large
magnitudes can seriously bias accumulation and yield an
unstable localization of converging points.

We make several modifications to address the issues
listed above. First, instead of propagating a magnitude of
velocity, we transport certainty levels computed from GPR.
Second, we transport the certainties only for the locations
with high certainty levels. We note that confidence bands
predicted from GPR are wide for locations that are far away
from actual input motion vectors; these locations with ex-
trapolated velocity vectors are otherwise unnoticed under
the RBF computation [6], but can be accounted by our new
approach. Third, transporting the certainty level requires
updating only the last destination point and is computation-
ally more efficient.

We first define an evaluating function E(n,x,Φ), where
Φ is a motion field (mean field), x is a starting location, and
n is a number of the iteration. Starting from x, E(n,x,Φ)
follows the flow of Φ by integrating predicted velocity vec-
tors at each iteration. For example, if we denote the lo-
cation of a motion as xi = [ui vi] ∈ <2 (0 ≤ i ≤ n),
the evaluating function E(n,x,Φ) iterates the locations by
uk+1 = uk + ȳ∗u(uk), where y∗u(uk) is computed from
Φ(xk). We denote the final location returned by the func-
tion after n iterations as xn (See Figure 5). Through this
function, we transport the certainty value ρ (95% of con-
fidence, 1.96σ2) from x to xn along the field Φ. There-
fore, we only add the certainty values at the destination. We
evaluate E at each position in the field with velocity vectors
with sufficiently low variance. Figure 5 shows the resulting
accumulated distribution of certainties Ψ from the original
field Φ. In the following sections, we denote the locations
with the values accumulated more than 50% 1 of maximum
accumulated values in the field as merging points.

3.4. Measuring the Similarity with Field of View

We use the region of the field of view controlled by real
camera operators as the baseline comparison (see Figure 6).
For each approach to be compared against the baseline, we

1This threshold is used for outlining the accumulation of lower confi-
dences, and is chosen empirically. Based on our test, more precise thresh-
old from a specific data does not provide a dramatic improvement as the
difference between low and high accumulation is usually high.

Figure 5. Certainty transfer through stochastic motion field
and merging points: Top-left: The certainty level ρ at a lo-
cation x0 is transferred to the location xn through the stochastic
motion field Φ. Top-right: In a separate grid Ψ, the value ρ is
accumulated at the location of xn. Accumulated certainties in Ψ
will be used to predict locations of future importance. Bottom:
Colored circles indicate accumulated certainties from the motion
field shown in Figure 4 (red circles with larger accumulations and
blue ones with smaller accumulations). Note that we visualized
the only locations that have more than 80% of maximum accumu-
lation.

Figure 6. Evaluation for the comparison of actual camera op-
erator’s field of view: The region with solid yellow lines denotes
the camera operator’s field of view, whereas the region with dotted
yellow lines represent the field view 10 frames later. The convex
hull of only the locations of players is shown with purple lines.
The region with red lines is decided by the locations of players
and the merging points computed by GPR.

first construct a convex hull formed by the locations of play-
ers and convergence locations detected by the approach.
The similarity metric between the constructed convex hull
region of an approach and the baseline field of view is cho-
sen to be Jaccard coefficient. We measure the similarity
between the field of view decided by camera operators and
the region of the convex hulls in the evaluating frame. We
repeat this evaluation for each successive pair of the base-
line field of view and the convex hull region for an approach
as shown in Figure 7 (Top).

There are several reasons for this evaluation; first, we
want to validate our hypothesis that the predicted global
motion tendency and its merging points (in addition to the
locations of moving objects) can be used to adjust the field
of view. Second, we want to verify whether the prediction



based on motion tendency is similar to the field of view ad-
justed by actual camera operators. We note that the evalu-
ation of the second criterion is not possible under multiple
static-view camera approaches. Finally, we want to verify
whether the predicted regions of importance (represented
as player locations or merging points) computed from each
method can be readily deployed without additional post-
processing methods. The examples of such post-processing
methods include a bounding rectangle with margins [2] and
linear camera motions [6], which are not suitable for auto-
mated live application.

4. Evaluation and Results
For our experiments, we have worked with two different
data sets. First, we use American football video data taken
by real camera operators; the videos are taken from mov-
ing cameras and have various PTZ changes. The data set
consists of 8 different video clips (cv1 - cv8) from US Col-
lege football games. This data set is used for the compari-
son of existing algorithms to actual camera operators’ view-
adjustment. In addition, this evaluation will measure the
similarity between the predicted camera movement by each
approach and the actual camera operator’s decisions. Sec-
ondly, we also use video data sets from static-multi-view
videos for comparing our approach with existing methods
used for static videos. The data sets consist of several videos
from a soccer game used by [6]. We will contact the owners
of these datasets for releasing the data sets publicly along
with our results.

4.1. Similarity with Camera Operator’s View

Graphs in Figure 7 show the average similarity using
the Jaccard metric between camera operator’s field of view
and the region decided by each method (1.0 is ideal). As
expected, methods using the motion-field-based prediction
outperformed the method using only tracked results on ev-
ery data set. Among the methods, the 2D GPR-based pre-
diction was better than RBF-based approach, and was even
slightly better than the 3D GPR-based approach in most
cases. While the 3D GPR approach was shown to be ef-
fective in representing 2nd order movement of motion and
to be useful for motion recognition [7], the temporal deriva-
tives do not seem to play an important role in discovering
global motion tendency to identify the location of impor-
tance. The projected 2D tendency has sufficient representa-
tion for the task.

The GPR-based approach generally outperformed the
RBF method. Unlike the RBF interpolation-based ap-
proach, the GPR-based approach provides confidence bands
at each velocity vector. Using these confidence bands, we
can selectively propagate certainty values, whereas RBF in-
terpolation requires iterating over every velocity vector. As
a result, the GPR-based approach is less affected by (1) ex-

Figure 7. Quantitative evaluation for the comparison of actual
camera operator’s field of view: The values in vertical (y)- axis
in both graphs indicate a Jaccard coefficient between a camera op-
erator’s region and each computed region, which uses the location
of players (black), the 2D RBF (red), the 2D GPR (green), and the
3D GPR (violet) respectively. A graph in the top shows the evalu-
ation over all frames from one sample from our data set (cv5). The
bottom graph shows the average of Jaccard coefficient for all the
football data sets (cv1 to cv8).

trapolated velocity vectors than the RBF-based approach,
and (2) noise from registration and tracking of the original
video data.

Figure 8 describes a more reasonable comparison in
which we compare the region computed from each method
with future regions adjusted by camera operators by differ-
ing frame offsets from 10 to 40. This evaluation provides a
notion of how each method foresees the important regions in
the scene. 2D GPR-based approach outperforms the other
approaches including the method using only tracking infor-
mation. In addition, because the tracking-based approach
uses only the current locations of moving objects, its effec-
tiveness in directing the camera movement (shown via the
Jaccard coefficient) drops markedly as the frame offset is
increased from 10 to 40.

4.2. Computational Expense

Figure 9 shows the computational expense to perform
the RBF-based and GPR-based methods. Both RBF-based
and 2D GPR-based methods require the inversion of n by
n kernel matrix (generally O(n3)) and the weighted ker-
nel summations (O(n2))2. One key difference between the
two methods is the additional O(n2) computation incurred
in evaluating confidence values for the GPR-based method.
However, we argue that this additional computation actually
helps reduce the overall evaluation time compared to the
RBF-based method. While the RBF-based method prop-
agates and updates all the vectors followed by the motion
field, the GPR-based method transfers and updates only

2Note that there are fast methods for speeding up the matrix inversion
and the evaluation [13, 9]. Exploring this further remains our future work.



Figure 8. Evaluation of the future region of camera operator by differing frames: We evaluated each data set (cv1 to cv6 are shown
here) by comparing the field of view of camera operator in future frames with the predicted merging regions at current frame by differing
the frame difference from +10 to +40 frames. As shown in each figure, the method using only tracked player locations has lower similarity,
and is generally decreasing as it always stay at the current location of players while methods using motion field have larger similarity over
different frame offsets. In the results from cv4 and cv6, both GPR-based and RBF-based methods give similar results, while the other data
sets show that GPR-based approaches work better. In the two data sets (cv4 and cv6), because the actual region of interests are close to
boundary and fewer extrapolated vectors are involved in the prediction, both GPR-based and RBF-based methods give similar results.

the final destination by excluding the extrapolated vectors
with low confidence. Therefore, the overall computation
needed for the GPR-based method is faster. The 3D GPR-
based method requires the formation of kernel matrices of
size n2 by n2, resulting in O(n6) in the matrix inversion
and O(n4) for evaluating each velocity component along
with its confidence value. The 2D GPR-based approach is
not only more computationally efficient but also effective
in generating qualitative and quantitative results similar to
those achieved by the 3D GPR-based approach.

4.3. Qualitative Evaluations

Figure 10 demonstrates qualitative results from both
RBF-based and GPR-based approaches in the video from
moving cameras. As shown in the figure, our 2D GPR-
based approach can predict regions of interest similar to
ones implied by the camera movement. On the other hand,
the merging points computed from RBF are usually located
near boundary regions because of the portion of extrapo-
lated motions involved in the detection.

Figure 11 showcases resulting examples from our data
sets (using 2D GPR). The distribution and movement of
detected merging points from each example reasonably de-
scribe the motion of the actual camera. Note that the distri-
bution of merging points correlates the zoom of the camera
because the separate merging points can be interpreted as a
larger field of view of camera for covering both regions. We
can also measure how relatively far the converging points
are from the camera from the homography computed for
each frame. From the measurement, we can also predict
the tilting of the camera view from the location of merg-
ing points. We can also see the merging points move to the
direction where camera moves.

To give additional comparisons with existing methods in
static-view, we also applied our approach to the data sets
captured from multiple-static cameras, which were used
in [6]. Figure 12 shows some qualitative results showing

Figure 9. Computational expense: Red bars indicate the compu-
tational expenses of 2D RBF-based approach. Green bars indicate
those of 2D GPR-based approach. The expenses for 3D GPR-
based approach vary from 8000 ms to 9500 ms. x axis refers the
each data set, and y axis refers the millisecond.

the comparison between our approach and the RBF-based
method. As shown in each sequence in the figure, the results
from both approaches (RBF and GPR) do not look too dif-
ferent unlike the test using moving camera. First, because
the motions on the ground are relatively stable (as they are
extracted from static multi-view), the error handling in GPR
does not play an important role. Second, as the region cov-
ered by multi-view is smaller (covering only a half of the
field with well-defined boundary conditions) than the data
sets from moving cameras, there are fewer extrapolated vec-
tors in the scene. Therefore, a velocity propagation without
filtering the extrapolated velocity may be enough for iden-
tifying the merging locations.

5. Conclusion
We have shown that the prediction of the region of inter-
ests from stochastic field using Gaussian Process Regres-
sion provides robust results even with noisy motions from
moving cameras. We demonstrate that the GPR-based ap-
proach can model the camera motion performed by actual
camera operators more closely. In our future work, we will
work on (1) improving the scalability of the code-base by



Figure 10. Qualitative evaluation between RBF method and GPR method: Top row shows the transition (PTZ) of the original views
adjusted by the camera operator. To give a better understanding of how the original view moves, we added white lines to represent the 50
yard line and the upper boundary of the ground field. The view is being panned to the right direction, and zoomed out. Middle row shows
the registered over-head projection of the stochastic motion field, and merging points computed from the 2D GPR method. Bottom row
represents the result from the RBF based approach. Note that the merging points in RBF method are often concentrated near the boundary
of the field because the computation of the merging points are highly affected by the extrapolated vectors in RBF (see the last example of
the third row).

Figure 11. Additional comparison of our results (with GPR method) and actual camera motion: Sequences in 1st (top) row show the
example of pan (left to right) and zooming out motion. Merging points detected both in top and bottom regions of the field (zooming out),
and move to right. 2nd row shows the sequences of the camera motion with zooming in and tilting up. 3rd and 4th rows demonstrate
panning sequences (right to left). 5th row shows the sequences of zooming out, and detected merging points are shown in top and bottom
regions.



Figure 12. Qualitative comparison between RBF method and 2D GPR method: The sequence of scenes in top row show the result
from RBF method (the images are captured from the demonstration video of [6]; the red contour indicates the location where the motion
field merges. The scenes in bottom row show the result of our approach using GPR. The location of where the motion field merges is
shown with circles in which the colors represents the amount of accumulated transferred certainties. For each row, first scene describes the
merging location lies in front of player A who dribbles the ball. In the second scene, merging location describes the location where the
other offender B will receive the ball. In the last scene, results shows the location for the other pass.

utilizing GPGPU-based acceleration since most computa-
tions consist of matrix-matrix products (an embarrassingly
parallelizable primitive); (2) applying our approach for con-
trolling actual robotic cameras in real-time.
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