
Orientation-Aware Scene Understanding for Mobile
Cameras

Jing Wang
Georgia Inst. of Technology

Atlanta, Georgia, USA
jwang302@gatech.edu

Grant Schindler
Georgia Inst. of Technology

Atlanta, Georgia, USA
schindler@gatech.edu

Irfan Essa
Georgia Inst. of Technology

Atlanta, Georgia, USA
irfan@cc.gatech.edu

ABSTRACT
We present a novel approach that allows anyone to quickly
teach their smartphone how to understand the visual world
around them. We achieve this visual scene understanding
by leveraging a camera-phone’s inertial sensors to lead to
both a faster and more accurate automatic labeling of the
regions of an image into semantic classes (e.g. sky, tree,
building). We focus on letting a user train our system from
scratch while out in the real world by annotating image re-
gions in situ as training images are captured on a mobile de-
vice, making it possible to recognize new environments and
new semantic classes on the fly. We show that our approach
outperforms existing methods, while at the same time per-
forming data collection, annotation, feature extraction, and
image segment classification all on the same mobile device.

Author Keywords
Visual scene understanding, mobile phone cameras, orientation-
aware, active learning.

ACM Classification Keywords
H.5.2 Information interfaces and presentation (e.g., HCI):
Miscellaneous.

General Terms
Algorithms, Design, Experimentation.

INTRODUCTION
Cameras are becoming ubiquitous, especially as they merge
with smartphones. This merger of smartphones and cameras
has led to an exponential increase in image capture, shar-
ing, and all other related applications [9]. With this merger,
cameras now have access to a variety of additional rich in-
formation, as most smartphones are equipped with an array
of specialized sensors. Specifically, smartphones come with
accelerometers, gyros, and magnetometers that enable a con-
tinuously updated estimate of the global rotation of the cam-
era with respect to a world coordinate frame. Furthermore,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UbiComp ’12, Sep 5-Sep 8, 2012, Pittsburgh, USA.
Copyright 2012 ACM 978-1-4503-1224-0/12/09...$10.00.

(a) Original Image & Horizon (b) Ground Truth (via Touch-
screen)

(c) Color & Texture Classification (d) Our Method

Figure 1: To aid scene understanding, (a) inertial sensors es-
timate the horizon in images captured by a smartphone cam-
era. (b) Users provide ground truth annotations via smart-
phone touchscreen. (c) Approaches based on color and tex-
ture show confusion between grass and trees, and between
sky and ground. (d) Using horizon information, our method
solves such problems. The entire system, including data cap-
ture, annotation, training, and testing, runs on a smartphone
out in the real world.

the user can also directly add information by tagging and an-
notation right at capture. We seek to use this information to
help with scene understanding via images captured by these
mobile cameras.

The field of computer vision has sought answers to ques-
tions of understanding scenes for various applications rang-
ing from object and scene categorization to navigation and
planning, purely by image analysis. We propose to com-
bine such image analysis with additional information avail-
able from smart phone sensors and from the user of the cam-
era. Some computer vision techniques are just beginning to
make serious use of the data from these non-visual sensors as
a core part of vision algorithms [6, 7, 10]. However, the task
of scene understanding – attempting to identify and associate
a class label to every pixel in an image – has not yet been

tackled in the light of this additional sensory data. We pro-
pose a scene understanding approach that takes advantage
of this orientation information to improve image annotation
and the related scene and object class labeling accuracy.

As noted above, automated scene understanding has tradi-
tionally been important in computer vision research, as it
is useful for content-based image retrieval and annotation.
Furthermore, it has value in robotics, because a robot must
understand the visual world in order to interact with it and
navigate through it. Both these applications for image anno-
tation and navigation are also of value in mobile and ubiq-
uitous computing, leveraging the popularity and applicabil-
ity of mobile cameraphones. The system and algorithms we
present will have a significant impact in these problem do-
mains, especially as home robots become more common-
place and users need to teach them about their environment.

Many previous approaches to scene understanding have in-
troduced algorithmic complexity to deal with issues of con-
text and relative location of objects [3, 15]. While such
methods are valuable, we show that knowledge of camera
orientation alone is capable of resolving a number of the am-
biguities that such methods are intended to overcome (e.g.
the fact that sky appears above trees while grass appears be-
low on the ground). An added benefit of this sensor-based
approach is that it reduces the need for expensive compu-
tation regarding context and enables us to move scene un-
derstanding onto mobile devices with limited computational
power.

Not only do we exploit the sensors on mobile devices, but
we demonstrate that modern smartphones are now capable of
performing every step in constructing a scene understanding
system: image capture, ground truth annotation, feature ex-
traction, and classification of new images. In contrast, most
approaches to scene understanding treat the task as an of-
fline process to be performed on a desktop computer after
collecting images from the internet. The primary disadvan-
tage to this traditional approach is that any information not
embedded in the EXIF tags of an image is lost. We solve this
problem by capturing all images, both the training and test-
ing sets, on a mobile device which records information from
the device’s sensors. A further advantage of our approach is
that it closes the loop of data collection, training, and test-
ing for a scene understanding system. An individual with
a smartphone can train the system from scratch while out
in the real world, collecting and labeling additional training
data as needed to improve system performance. A similar
approach to recognizing objects on mobile devices [11] has
found success recently.

Following the approaches of [12] and [16], we adopt a non-
parametric scene parsing method that finds matching image
segments in query and database images, transferring the la-
bel of the database segment to the query segment. Further-
more, we account for camera orientation by identifying each
image segment as above, on, or below the horizon in the
image, providing physically grounded context for the scene.
We explore several methods of incorporating this horizon in-

formation into scene parsing and show that our orientation-
aware approach produces marked improvements in labeling
accuracy.

The primary contributions of this work are (1) an orientation-
aware scene understanding method and (2) a fully mobile
scene understanding pipeline which exploits smartphone sen-
sors and which we are releasing for others to use.

RELATED WORK
Recent work on scene understanding has attempted to ad-
dress the issue of context and to model the location of dif-
ferent object classes across images. Approaches have in-
cluded discriminative semantic segmentation methods that
account for context [15] and multi-class image segmenta-
tion approaches with relative location priors [3, 2] to model
the spatial relationships between classes. The earlier work
of [17] introduced contextual priors for object localization
based on semantic scene categorization. In contrast to these
computationally expensive solutions, we introduce a feature,
based on position with respect to the horizon, which solves
many of the same problems with minimal additional compu-
tation.

Similarly, [16] uses the vertical position of an image segment
within the image as a feature. Since images vary in orienta-
tion and field of view, the pixel position within the image
is not really what is important. For this reason, implicit as-
sumptions are usually made about camera orientation which
introduces a bias to the images used in databases for scene
parsing. Since on a mobile device we have access to abso-
lute image orientation, we instead use the position of an im-
age segment with respect to the horizon as a feature. This is
a more meaningful and physically grounded measurement.

The idea that scene understanding can be improved with
knowledge of the camera’s viewpoint has been explored by
Hoeim et al. [4]. Their method performs horizon and cam-
era height estimation to improve pedestrian and car detec-
tion performance on images from the LabelMe dataset [14],
simultaneously refining horizon and height estimates based
on detection results as well. Gould et al. [2, 3] have also pre-
sented a method that incorporates a measure of position with
respect to the horizon into scene understanding. However,
these methods and others [5] make the simplifying assump-
tion that the horizon is horizontal in the image, and that the
image is captured from a mostly upright viewing angle. Our
method places no restrictions on camera orientation, and can
therefore deal with a much broader variety of images as well.

Early examples of the fusion of visual and inertial sensors
exist in the robotics and augmented reality literature [18, 19]
where online visual feature tracking has been used to prevent
drift in pose estimation from inertial measurements. The
structure from motion approach of [8] also incorporates in-
ertial measurements to improve performance.

We use accelerometers, gyros, and magnetometers to obtain
camera orientation for scene understanding, while several re-
cent computer vision approaches have used inertial measure-

	
Image	
Capture	

	

Annota/ons	
and	 Context	

Sensors:	
Orienta/on,	

Horizon,	 Gravity	

User	

	
Training	

	

	
Image	 Capture	

	

Real-‐Time	 User	 Interac/on	 Loop	

	
Apply	 Learned	

Models	
	

Figure 2: System Diagram. We present the first end-to-end system capable of training and running a scene understanding
system on a mobile device, which involves: capturing images and other sensor data, letting a user annotate the image, training
an image segment classifier based on user annotations while still out in the field, and applying the learned models to newly
captured images so that the user is able to see how well the system is performing. This loop then iterates until the user is
satisfied with the system’s scene understanding performance.

ments to perform a variety of other tasks. In [10], detected
SIFT features are aligned with the gravity vector in order to
remain rotation-invariant. The work of [6, 7] improves KLT
feature tracking performance in a moving camera by inte-
grating inertial measurements as well. As in [10], we find
that incorporating camera orientation improves both compu-
tational efficiency and classification accuracy.

SCENE UNDERSTANDING ON A MOBILE DEVICE
An important feature of our mobile scene understanding ap-
proach is the fact that the entire system not only runs on
a smartphone, but can be trained and tested, starting from
scratch, on a smartphone (see Figure 2). The important steps
include:

Data Collection: Images along with their orientation and
horizon information are collected using the smartphone
camera to build up a database.

Image Annotation Database images are annotated with ground
truth class labels via the smartphone’s touchscreen. En-
tirely new classes can be added at any time.

Training Modern smartphone CPUs are capable of perform-
ing all necessary feature extraction onboard. Feature ex-
traction and image annotation are all that is required to
add new training data to the system.

Testing Newly captured images are divided into segments,
each of which is classified via matching to labeled database
image segments. After observing classification perfor-
mance on a newly captured image, a user may choose to
annotate any incorrectly classified areas of the image in
order to improve performance.

This closed loop opens the door to on-the-fly collection and
annotation of new training data in order to improve the sys-
tem’s performance while out in the real world. We are re-
leasing the system to the research community as an Android
app with source code available at the following address:
http://code.google.com/p/gatech-mobile-scene-understanding.

HORIZON-AWARE SCENE UNDERSTANDING
We perform scene understanding on a mobile device with
the aim of providing a class label for every pixel in an image
(see Figure 1). One of our primary contributions is that we
incorporate global camera orientation into a nonparametric
scene parsing method using a new feature based on the po-
sition of the horizon in the image. We first provide a brief
overview of the basic scene understanding approach we have
adopted before explaining the details of our method.

Background: Nonparametric Scene Parsing
Given a database of images annotated with ground truth class
labels at every pixel, we wish to label the pixels in a new
query image. Rather than training a discriminative classifier
[15], recent nonparametric approaches [12, 16] have matched
image segments Squery in a query image to similar image seg-
ments Sdatabase in a training database in order to transfer the
labels from the database to the query image segments. In
the approach of [16], each image is divided into a number
of segments, and a variety of features, including those based
on color, texture and image location, are extracted from each
segment to be used for matching. For the sake of efficiency
and also to improve accuracy in [12] and [16], a global im-
age matching step narrows the database to a small retrieval
set of images that are globally similar to the query image.
Finally, each segment in the query image is compared to all
segments Sretrieval in the retrieval set in order to choose the
segments from which labels will be transferred.

The advantage of this nonparametric approach is that there
is zero training time for the system other than feature extrac-
tion for each image segment in the database. This means the
database can grow over time without any need for retraining
a classifier, which is crucial for our on-the-fly data collection
approach.

The Horizon as Context
We use knowledge of the horizon’s position in an image
to provide a form of context that is grounded in the physi-

Figure 3: Horizon from Camera Orientation: Arbitrary cam-
era rotations are not a problem for our scene understanding
approach. Even if the horizon is not visible in an image, we
know which parts of the image are above the horizon and
which parts are below the horizon.

cal world’s coordinate system rather than in image coordi-
nates. In contrast, modern scene understanding approaches
[3, 15, 16] overwhelmingly model context in image coor-
dinates. While several methods [5, 2] attempt to estimate
the horizon at query time, the requirement that the horizon
be both visible and completely horizontal rules out these
approaches for many real world images. Moreover, there
is computational complexity involved in traditional context
models that rely on conditional random fields (CRFs) and
additional spatial relationship priors.

We observe that some of the complexity of context-based
approaches, grounded in image coordinates, can be removed
when we are able to measure the true position of the horizon
in the image. We are able to learn not only that the sky ap-
pears above the ground, but that sky appears above the hori-
zon while the ground appears below the horizon. Thus, for
example, we shouldn’t expect to see the ground at all when
the camera is pointing up.

Horizon from Camera Orientation
We use the measured orientation of the camera to deter-
mine the location of the horizon in any image (see Figure 3).
Equipped with accelerometers, gyros, and compasses, mod-
ern smartphones are able to report their absolute orientation
in the world coordinate frame as a 3x3 rotation matrix R. As-
suming a known focal length f and camera center (u,v), we
project distant points on the ground plane into the image and
join them to determine the horizon line h. We now explain
this process in more detail.

Knowing the orientation of the camera is what will allow us
to determine the location of the horizon in each image, so
we must first determine a rotation matrix R that describes
how the camera is oriented in the world. Because the three
columns (v1,v2,v3) of all rotation matrices are mutually or-
thogonal vectors, one can construct a rotation matrix given
any two orthogonal vectors (e.g. v2 and v3) that describe
the axes of the rotated coordinate system, with the remain-
ing column computed as the cross product of the two given
vectors (v1 = v2 × v3). In our case, a 3-axis accelerometer
provides a gravity vector as v3 while a 3-axis magnetometer
provides another vector v2 pointing toward magnetic north.
In fact, modern Android devices come equipped with built-
in methods to compute the rotation matrix R from available
sensor data in a similar manner.

Next, we combine the rotation matrix R with additional in-

above	

on	

below	

Figure 4: Horizon-Based Features: Each image segment is
designated as being above, on, or below the horizon, a fea-
ture grounded in the physical world rather than in image co-
ordinates. We combine this horizon feature with color and
texture statistics to transfer class labels between similar im-
age segments.

formation about the camera to determine a 2D line h that
describes the horizon in an image. We do this by project-
ing into the image a number of 3D points which lie on the
ground plane. By the standard equations of perspective pro-
jection, a 3D point P = (X ,Y,Z) in the world projects down
to a 2D point p = (x,y) in the image as:

x = f
X
Z

+u0 y = f
Y
Z

+ v0

with the camera’s focal length f , and center of projection or
principal point (u,v) expressed in pixels. The focal length
f is often stored in the EXIF tags describing the properties
of an image, while it is common to assume the center of
projection resides in the geometric center of the image, with
u0 = w/2 and v0 = h/2 for an image of width w and height
h in pixels. We generate a number n of 3D points in a circle
on the ground plane P1..n = {k cos(2π

i
n), k sin(2π

i
n), 0}n

i=1
for a large value of k to put the 3D points sufficiently far
from the camera to appear on the horizon. We rotate these
points into the camera’s coordinate frame by multiplying
each point by the rotation matrix R, and then project these
rotated 3D points into the 2D image using the standard pro-
jection equations above. Finally, we find the two projected
points with the minimum and maximum x-coordinates that
still lie within the horizontal field of view of the camera
(though they may not actually be visible in the image) and
treat these as the endpoints of the horizon line h.

In addition to the horizon line h itself, we also retain knowl-
edge of the direction of gravity (i.e. which side of the hori-
zon is up and which is down). With this knowledge, an
advantage of our approach over all previous approaches is
that we don’t need to worry about dealing with landscape,
portrait, or arbitrary orientations of images. Such issues are
problematic for any method which takes into account the ab-
solute or relative position of segments in image coordinates.
Our method is able to cope with completely arbitrary camera
rotations, even if the horizon itself is not visible in the image
(e.g. images of ground or sky) as in Figure 3.

Horizon-Based Features
To make use of horizon information, we assign to each im-
age segment si a position label pi ∈{above, on, below}which
identifies each image segment as depicting a part of the world

that is above, on, or below the horizon (see Figure 4). To do
so, we compute a bounding box around every image seg-
ment and then determine the position of each corner of the
bounding box with respect to the horizon. If all four cor-
ners of the bounding box lie above or below the horizon, the
entire segment is classified as above or below the horizon,
respectively. Otherwise, the segment is classified as on the
horizon.

Color and Texture Features
We also compute color and texture features for each image
segment. This gives us a baseline feature set for classifica-
tion of new images, to which we will add horizon informa-
tion in order to improve performance. The color information
is a histogram of RGB colors (60 dimensions, made up of
20 bins per color channel) and the texture information is a
histogram of 100 visual words, which are quantized dense
SURF features [1] detected every 3 pixels within an image
segment. When matching query image segments to database
image segments, we maximize histogram intersection across
these color and texture features.

Combining Horizon with Color and Texture
Given the known horizon in an image, we explore multiple
ways to incorporate this knowledge into our scene under-
standing approach, aiming for computationally efficient ap-
proaches.

Horizon-Based Retrieval Sets (HBRS)
Our first method works by dividing our training data into
three sets: a set of image segments Sabove that appear above
the horizon in the training images, a set of image segments
Son that span the horizon in the training images, and a set of
image segments Sbelow that appear below the horizon in the
training images. For every query image segment si, we first
determine its position pi with respect to the horizon and then
use only the corresponding set of training data to classify the
segment.

Several recent approaches [12, 16] make use of a retrieval set
of images, restricting training data to a set of images that are
globally similar to the current query image. This approach
can be understood as using separate retrieval sets for image
segments that appear above, on, and below the horizon.

Horizon Feature Concatenation
The second method for incorporating horizon information
into scene understanding is to combine color, texture, and
horizon information into a single feature vector fi. Because
we have chosen histogram intersection as our metric when
comparing feature vectors, we convert the position pi with
respect to horizon into a 3-bin histogram with a single non-
zero entry indicating either above, on, or below. Then we
simply append this 3-bin histogram to the color and tex-
ture histograms described above to form the feature vector
fi. We individually normalize and weight each of the three
histograms comprising fi to give equal weight to the color,
texture, and horizon information when matching to other im-
age segments.

Horizon-Based Penalty Function
Our final method penalizes otherwise similar image segments
which happen to come from different positions with respect
to the horizon. We first match a query segment against each
labeled image segment in our database via histogram inter-
section histint(fi, f j) based solely on color and texture. We
then incorporate a penalty function φ(pi, p j) such that we
discount the matching score between two image segments si
and s j which do not share the same position with respect to
the horizon (i.e. pi 6= p j). We define the penalty function as
follows:

φ(pi, p j) =

pi\p j above on below
above 0 ksmall klarge

on ksmall 0 ksmall
below klarge ksmall 0

Thus, we seek to maximize the similarity between each query
image segment and all database image segments according
to similarity(si,s j) = histint(fi, f j)−φ(pi, p j). Note that the
HBRS method can be viewed as a special case of this method
with values ksmall = ∞ and klarge = ∞, i.e. infinite penalty be-
tween segments which do not share the same position with
respect to the horizon.

RESULTS
We performed all image capture, ground truth annotation,
feature extraction, and classification on a single mobile de-
vice: an HTC Sensation equipped with a 1.2 GHz dual-core
CPU and 768 MB of memory, running the Android mobile
operating system. Note that we do perform a one-time pre-
computation step offline on a desktop PC: determining the
codebook of SURF features which serve as our texture de-
scriptors as described above. We first extract SURF features
from the SIFT Flow dataset [12] (2,688 images) and a sub-
set of the Indoor Scene Recognition dataset of [13] (289 im-
ages), and then cluster these SURF features into 100 groups
using k-means clustering. This is a one-time process and all
other computation is performed on the smartphone.

Our data set consists of 150 images captured and annotated
on the smartphone, which we divide into 130 training im-
ages and 20 test images. All images were captured outdoors
in an urban college campus setting and reflect a wide va-
riety of locations, camera orientations, weather conditions,
illumination conditions, and times of year. All images are
downsized to 640 by 480 pixels before feature extraction.
The 5 class labels we consider are sky, tree, grass, building,
and pavement. The image segments we deal with are non-
overlapping 32 x 32 pixel square patches. We use values of
ksmall = 0.1 and klarge = 0.2 for the Horizon-Based Penalty
Function method. For all methods, we transfer the label of
the single nearest neighbor database image segment to each
query image segment to arrive at the final labeling result.

Experiments
For each method described above, we label every image seg-
ment in all test images and compute the method’s accuracy
as the mean percentage of pixels correctly labeled. Results
are summarized in Table 1 for both our Full Dataset (150 im-

Accuracy (Small Dataset) Accuracy (Full Dataset)
Color 54.5% 50.5%

Color & Texture 58.5% 53.3%
Horizon-Based Retrieval Sets (HBRS) 79.4% 77.4%

Horizon Feature Concatenation 79.4% -
Horizon-Based Penalty Function 79.1% -

Table 1: Comparison of Baseline & Horizon-Based Methods. For each method, we report accuracy as mean percentage of
pixels correctly labeled across all test images. Horizon-based methods vastly outperform the baseline color and texture methods
and show roughly equal performance, leading us to choose the more efficient HBRS method for subsequent experiments.

(a) Color (b) Color & Texture

(c) Color & Horizon (d) Color, Texture, & Horizon

Figure 5: Confusion Matrices for results based on (a) color alone, (b) color and texture, (c) color and horizon, and (d) color, tex-
ture, and horizon (HBRS). Inclusion of the horizon feature eliminates confusion between pairs of classes like building/pavement
and grass/tree. The confusion that remains is almost entirely between scene elements that occur in the same physical locations
in the world (e.g. grass and pavement are both on the ground).

Accuracy Training Time per Image (seconds)
Gould et al. [2] 67.1% 94.8

Our Approach (Color + Texture + Horizon) 77.4% 89.4
Our Approach (Color + Horizon) 75.5% 1.4

Table 2: Comparison to state of the art methods. The method of Gould et al. [2] is a state of the art scene-labeling method that
runs on a desktop PC. In contrast our method (3rd row) runs on an Android smartphone, achieves greater accuracy (using the
same testing and training sets), and is roughly 67 times faster (per image) at training time. Note that adding texture information
(2nd row) improves our accuracy, but at significant time cost.

ages) and Small Dataset (a smaller subset of 54 images with
43 training and 11 testing images). Horizon-based methods,
with up to 79.4% accuracy, clearly outperform the baseline
color and texture methods which top out at 58.5%. It is
interesting to note that all horizon-based approaches show
roughly equal performance on the Small Dataset. This is ac-
tually welcome news, as the Horizon-Based Retrieval Sets
(HBRS) method has the computational advantage that only
a fraction of the total number of image segments must be
matched against. Furthermore, note that the only difference
between the baseline Color & Texture method and the HBRS
method is that a restricted set of the data is searched. Thus,
we get a roughly 21% to 24% boost in absolute accuracy
while also speeding up the algorithm by searching a strictly
smaller portion of the database. For all subsequent experi-
ments, we therefore use the HBRS method exclusively (as
well as the Full Dataset).

We also examine per-class accuracy, inter-class confusion,
and how both measures improve with the addition of horizon
information. The confusion matrices in Figure 5 show the
effect of different feature combinations on per-class label-
ing accuracy and clearly demonstrate the advantage of our
horizon-aware scene understanding approach. Using color
alone, many instances of grass are labeled as tree and vice
versa. Similarly, building and pavement are often confused.
The addition of texture information helps only a small amount.
However, the inclusion of horizon information via HBRS
clears up the vast majority of this confusion, boosting the
recognition rate of the pavement category from 31% to 81%,
for example.

We show example labeling results for a variety of individ-
ual images in Figure 7. Across the board, when including
horizon information we see marked improvements in label-
ing accuracy in a wide variety of situations: standard upright
camera shots, images taken at highly irregular roll angles,
and images in which the horizon is not even visible (either
pointing up at the sky or down at the ground). It is even ap-
parent from Figures 1a and 3 that the inertial sensors used
to estimate the horizon are noisy, such that our horizon esti-
mates are not always completely aligned with the image. In
practice, this is not a problem, and we still see the benefits of
horizon-based scene understanding even in the presence of
noisy horizon estimates. For every test image, our horizon-
aware method outperforms the baseline approach by a sig-
nificant margin, ranging from 6% improvement up to 46%
improvement (see Figure 7).

Comparison to State of the Art
We evaluate our system with respect to the state of the art
scene labeling method [2] of Gould et al. This method runs
on a Desktop PC and also attempts to estimate horizon in-
formation computationally, though only camera pitch is al-
lowed to vary while roll is assumed to be zero. The method
also requires a time-consuming batch training procedure which
sees all the data at once, making it inappropriate for our us-
age scenario. Nevertheless, the results summarized in Ta-
ble 2 show that our approach is able to achieve higher clas-
sification accuracy on our dataset while requiring roughly

1/67th as much time per training image (where both meth-
ods are trained and tested using our Full Dataset). This min-
imal training time is what allows our method to be interac-
tive. Recall that our method is running on an Android smart-
phone, while the method of Gould et al. is running on a
Desktop PC.

One reason that our method is able to achieve higher accu-
racy than [2] is that our database contains images with no
restrictions on camera orientation, which violates several of
the assumptions of [2]. Thus, more important than the ab-
solute numerical results of this comparison is the fact that
our method is able to deal with a more general set of images
than existing methods, while simultaneously improving ac-
curacy by incorporating horizon information from sensors
on the device. (At the same time, note that [2] has been
demonstrated to perform well on dozens of visual categories
while our method has only been formally tested on the five
categories in this paper. Larger scale evaluation will be an
essential part of our future work.)

In designing our approach, we were forced to make tradeoffs
between speed and accuracy in order to achieve interactive
training and classification speeds. When we include texture
information (the most accurate method in Tables 1 and 2),
the running time of our system is dominated by dense SURF
feature extraction, which takes roughly 88 seconds per im-
age. However, the inclusion of horizon information actu-
ally makes texture less important, and by excluding texture
our performance drops less than 2% (from 77.4% to 75.5%).
For this small price in accuracy, we are able to both learn
from labeled images and classify new images from the cam-
era in roughly 1.4 seconds, making an interactive system
feasible. This speed is due to our HBRS method, the rel-
ative simplicity of computing color histograms, and the use
of a kd-tree for approximate nearest neighbor search among
database image segments. We expect to gain further timing
improvements by employing more efficient data structures
and additional sensory information to guide this search.

User Study
Because our entire system runs on a mobile device, users
of the system are able to measure the labeling performance
while still out in the field collecting and annotating training
images. In early experiments, we observed that the labeling
accuracy over a set of test images improves as more training
data are collected. This opens the door to active learning
approaches in which the collection of new training data is
directed by observation of errors made by the current system.

To understand the importance of this system feedback, we
performed a small user study. Each of six non-expert users
was instructed to capture and label outdoor images in or-
der to train our system to learn five visual classes: sky, tree,
grass, building, and pavement. When capturing a new im-
age, half of the users were first shown the results of the
system’s current best estimated labeling of the classes in
the scene. Only then were they allowed to label the im-
ages themselves. This Active Learning approach allowed
the users to see what mistakes the system was making with

50

52

54

56

58

60

62

500000 1e+06 1.5e+06 2e+06 2.5e+06

A
cc

ur
ac

y
(%

)

Pixels Labeled in Training Images

Active Learning
Passive Learning

Figure 6: User Study: Active vs. Passing Learning. As
users collect and annotate new images on a mobile device,
performance generally improves over time. In our user study
the Active Learning approach enables users to observe this
change in performance while still out in the field collecting
data, while the Passive Learning approach (like all existing
approaches) does not give the user any feedback. As this plot
shows, letting users see how the system is performing while
they are still collecting and labeling data leads to improved
classification accuracy for automated scene understanding.

its current training data. Since not every pixel in every im-
age must be annotated, the user may choose to only annotate
those parts of the image which the system did not already
classify correctly. The other half of the users were never
shown an automated labeling result by the system and got
no feedback of any kind to know how effective their anno-
tations were, an approach we call Passive Learning. Each
user spent roughly 30 minutes collecting and labeling several
dozen images each on an urban college campus. The slowest
user collected and labeled 15 images, while the fastest user
collected and labeled 28 images in this time frame.

The results of this study are shown in Figure 6, which shows
average classification accuracy of the automated scene un-
derstanding system plotted against the number of pixels la-
beled by the user as they train the system. The results clearly
show that the Active Learning approach greatly improves the
rate at which the system’s performance improves. We note
that our system represents the first time that this approach
has been feasible (for the present task) because it is the first
to let the user see how the system is performing while still
collecting training data out in the field. In this experiment,
the same set of 20 testing images was used to evaluate the
performance of the HBRS classification method across all
users. These testing images were collected at a different
time and place from the user study training images in order
to demonstrate that our approach is able to generalize across
data sets.

CONCLUSION AND FUTURE WORK
We have introduced an orientation-aware scene understand-
ing approach that improves labeling accuracy over current
approaches, while simultaneously reducing computation time.
This success is based on efficiently using features that are
grounded in the physical world’s coordinate system rather
than in image coordinates. The entire system runs on a smart-
phone and can be trained from scratch out in the real world.

There are some limitations of our current approach. While
we have removed most of the restrictions on camera orienta-
tion that previous approaches have imposed (upright camera,
horizon visible within the field of view), we still assume, like
most other approaches, that images are taken near the ground
in order for the horizon to be a meaningful boundary. The
additional sensors already embedded in smartphones pro-
vide promise that we can remove this restriction as well in
future work, using either GPS or an altimeter to detect height
above the ground. While our method shows some robust-
ness to the presence of small hills and valleys (see Figure
1a), non-flat terrain is another challenge to all horizon-based
methods which must be tackled in future work.

Another inherent limitation to the current data-driven ap-
proach is that as more training data is collected and labeled
to improve accuracy, the size of the database increases, and
therefore the algorithm has the potential to slow down. Mem-
ory and storage limitations may also become a problem. Nei-
ther of these issues has been a practical problem yet, but they
remain important issues for scaling up the system. While
tree-based data structures and hashing methods have the po-
tential to keep the search for matching image segments fast,
preventing the training data from exploding in size using a
pruning strategy remains a problem for future work.

In future work, we also hope to integrate even more sources
of sensory information about the camera and the environ-
ment into our scene understanding system. At the same
time, we expect the increased speed of future mobile de-
vices, combined with efficient new algorithms, to make our
entire mobile scene understanding system run at video frame
rates such that it becomes even easier to both teach our cam-
eras about the world and to learn about the world from our
cameras.

REFERENCES
1. H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust

features. In ECCV, pages 404–417. Springer, 2006.

2. S. Gould, R. Fulton, and D. Koller. Decomposing a scene into
geometric and semantically consistent regions. In Computer Vision,
2009 IEEE 12th International Conference on, pages 1–8. IEEE, 2009.

3. S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller. Multi-class
segmentation with relative location prior. International Journal of
Computer Vision, 80(3):300–316, 2008.

4. D. Hoiem, A.A. Efros, and M. Hebert. Putting objects in perspective.
In CVPR, volume 2, pages 2137–2144. IEEE, 2006.

5. D. Hoiem, A.A. Efros, and M. Hebert. Recovering surface layout from
an image. International Journal of Computer Vision, 75(1):151–172,
2007.

(a) Original Image (b) Ground Truth (c) Color + Texture (55%) (d) Color + Texture + Horizon
(68%)

(e) Original Image (f) Ground Truth (g) Color + Texture (48%) (h) Color + Texture + Horizon
(94%)

(i) Original Image (j) Ground Truth (k) Color + Texture (48%) (l) Color + Texture + Horizon
(81%)

(m) Original Image (n) Ground Truth (o) Color + Texture (67%) (p) Color + Texture + Horizon
(75%)

(q) Original Image (r) Ground Truth (s) Color + Texture (76%) (t) Color + Texture + Horizon
(83%)

Figure 7: Example Labeling Results: From left to right, the original images and ground truth scene labels, followed by baseline
classification results (using color and texture), and our classification results (using color, texture, and horizon information).
Reported numbers are for pixel-wise labeling accuracy compared to ground truth. In every case, our horizon-aware method
outperforms the baseline approach by a significant margin, ranging from 7% improvement up to 46% improvement.

6. M. Hwangbo, J.S. Kim, and T. Kanade. Inertial-aided klt feature
tracking for a moving camera. In Intelligent Robots and Systems
(IROS), pages 1909–1916, 2009.

7. M. Hwangbo, J.S. Kim, and T. Kanade. Gyro-aided feature tracking
for a moving camera: fusion, auto-calibration and gpu
implementation. The International Journal of Robotics Research,
2011.

8. S.H. Jung and C.J. Taylor. Camera trajectory estimation using inertial
sensor measurements and structure from motion results. In CVPR,
volume 2, pages II–732, 2001.

9. T. Kindberg, M. Spasojevic, R. Fleck, and A. Sellen. The ubiquitous
camera: An in-depth study of camera phone use. Pervasive
Computing, IEEE, 4(2):42–50, 2005.

10. D. Kurz and S. Ben Himane. Inertial sensor-aligned visual feature
descriptors. In CVPR, pages 161–166. IEEE, 2011.

11. T. Lee and S. Soatto. Learning and matching multiscale template
descriptors for real-time detection, localization and tracking. In
CVPR, pages 1457–1464, 2011.

12. C. Liu, J. Yuen, and A. Torralba. Nonparametric scene parsing: Label
transfer via dense scene alignment. In CVPR, pages 1972–1979.
IEEE, 2009.

13. A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR,
2009.

14. B.C. Russell, A. Torralba, K.P. Murphy, and W.T. Freeman. Labelme:
a database and web-based tool for image annotation. International
Journal of Computer Vision, 77(1):157–173, 2008.

15. J. Shotton, J. Winn, C. Rother, and A. Criminisi. Textonboost: Joint
appearance, shape and context modeling for multi-class object
recognition and segmentation. ECCV 2006, pages 1–15, 2006.

16. J. Tighe and S. Lazebnik. Superparsing: scalable nonparametric image
parsing with superpixels. ECCV 2010, pages 352–365, 2010.

17. A. Torralba, K.P. Murphy, W.T. Freeman, and M.A. Rubin.
Context-based vision system for place and object recognition. In
ICCV, pages 273–280. IEEE, 2003.

18. S. You and U. Neumann. Fusion of vision and gyro tracking for robust
augmented reality registration. In Virtual Reality, 2001. Proceedings.
IEEE, pages 71–78. IEEE, 2001.

19. S. You, U. Neumann, and R. Azuma. Hybrid inertial and vision
tracking for augmented reality registration. In Virtual Reality, pages
260–267, 1999.

	Introduction
	Related Work
	Scene Understanding on a Mobile Device
	Horizon-Aware Scene Understanding
	Background: Nonparametric Scene Parsing
	The Horizon as Context
	Horizon from Camera Orientation
	Horizon-Based Features
	Color and Texture Features
	Combining Horizon with Color and Texture
	Horizon-Based Retrieval Sets (HBRS)
	Horizon Feature Concatenation
	Horizon-Based Penalty Function

	Results
	Experiments
	Comparison to State of the Art
	User Study

	
	Conclusion and Future Work
	REFERENCES

