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Abstract

We survey the recent work in AI on multi-agent reinforcement learning
(that is, learning in stochastic games). We then argue that, while exciting,
this work is flawed. The fundamental flaw is unclarity about the problem
or problems being addressed. After tracing a representative sample of the
recent literature, we identify four well-defined problems in multi-agent
reinforcement learning, single out the problem that in our view is most
suitable for AI, and make some remarks about how we believe progress is
to be made on this problem.

1 Introduction

Reinforcement learning (RL) has been an active research area in AI for many
years. Recently there has been growing interest in extending RL to the multi-
agent domain. From the technical point of view, this has taken the community
from the realm of Markov Decision Problems (MDPs) to the realm of game
theory, and in particular stochastic (or Markov) games (SGs).

The body of work in AI on multi-agent RL is still small, with only a couple of
dozen papers on the topic as of the time of writing. This contrasts with the liter-
ature on single-agent learning in AI, as well as the literature on learning in game
theory – in both cases one finds hundreds if not thousands of articles, and several
books. Despite the small number we still cannot discuss each of these papers. In-
stead will trace a representative historical path through this literature. We will
concentrate on what might be called the “Bellman heritage” in multi-agent RL
– work that is based on Q-learning [Watkins and Dayan1992], and through it on
the Bellman equations [Bellman1957]. Specifically, we will discuss [Littman1994,
Claus and Boutilier1998, Hu and Wellman1998, Bowling and Veloso2001, Littman2001,
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Greenwald et al.2002], and in the course of analyzing these papers will mention
several more.

In the next section we trace the “Bellman heritage”, and summarize the
results obtained there. These results are unproblematic for the cases of zero-
sum SGs and common-payoff (aka ‘team’, or pure-coordination) SGs, but the
attempt to extend them to general-sum SGs is problematic. In section 3 we trace
back the technical awkwardness of the results to what we view as a misguided
focus on the Nash equilibrium as an ingredient in both the learning algorithm
and the evaluation criterion. But the problem runs deeper, we believe, and has
to do with a basic unclarity about the problem being addressed. In section
4 we argue that there are (at least) four distinct well-defined problems to be
addressed, and that the tail end of the “Bellman heritage” does not fit in any
of them. We identify one of the four as the most interesting for AI, and that
has barely been addressed in that line of research. Finally, in section 5 we make
some comments on how we think one might go about tackling it.

2 Bellman’s heritage in multi-agent RL

In this section we review a representative sample of the literature. We start
with the algorithms, and then summarize the results reported.

Throughout, we use the following terminology and notation. An (n-agent)
stochastic game (SG) is a tuple (N,S, �A, �R, T ). N is a set of agents indexed
1, . . . , n. S is a set of n-agent stage games (usually thought of as games in normal
form, although see [Jehiel and Samet2001] for an exception). �A = A1, . . . , An,
with Ai the set of actions (or pure strategies) of agent i (note we assume the
agent has the same strategy space in all games; this is a notational convenience,
but not a substantive restriction). �R = R1, . . . , Rn, with Ri : S × �A → R the
immediate reward function of agent i. T : S × �A → Π(S) is a stochastic transi-
tion function, specifying the probability of the next game to be played based on
the game just played and the actions taken in it. A Markov Decision Problem
(MDP) is a 1-agent SG; an MDP thus has the simpler structure (S,A,R, T ).

2.1 From Minimax-Q to Nash-Q and beyond

We start with the (single-agent) Q-learning algorithm [Watkins and Dayan1992]
for computing an optimal policy in an MDP with unknown reward and transition
functions:1

Q(s, a) ← (1 − α)Q(s, a) + α[R(s, a) + γV (s′)]
V (s) ← max

a∈A
Q(s, a)

1This procedure is based directly on the Bellman equations [Bellman1957] and the dy-
namic programming procedures based on them for MDPs with known reward and transition
functions.
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As is well known, with certain assumptions about the way in which actions
are selected at each state over time, Q-learning converges to the optimal value
function V ∗.

The simplest way to extend this to the multi-agent SG setting is just to add
a subscript to the formulation above; that is, to have the learning agent pretend
that the environment is passive:

Qi(s, ai) ← (1 − α)Qi(s, ai) + α[Ri(s,�a) + γVi(s′)]
Vi(s) ← max

ai∈Ai

Qi(s, ai)

Several authors have tested variations of this algorithm (e.g., [Sen et al.1994]).
However, this approach is unmotivated for two reasons. First, the definition
of the Q-values assumes incorrectly that they are independent of the actions
selected by the other agents. Second, it is no longer sensible to use the maximum
of the Q-values to update V .

The cure to the first problem is to simply define the Q-values as a function
of all agents’ actions:

Qi(s,�a) ← (1 − α)Qi(s,�a) + α[Ri(s,�a) + γVi(s′)]

We are left with the question of how to update V , given the more complex
nature of the Q-values.

For (by definition, two-player) zero-sum SGs, Littman suggests the minimax-
Q learning algorithm, in which V is updated with the minimax of the Q val-
ues [Littman1994]:

V1(s) ← max
P1∈Π(A1)

min
a2∈A2

∑

a1∈A1

P1(a1)Q1(s, (a1, a2)).

Although it can be extended to general-sum SGs, minimax-Q is no longer
well motivated in those settings. One alternative is to try to explicitly maintain
a belief regarding the likelihood of the other agents’ policies, and update V
based the induced expectation of the Q values:

Vi(s) ← max
ai

∑

a−i∈A−i

Pi(s, a−i)Qi(s, (ai, a−i)).

This approach, which is in the spirit of the belief-based procedures in game the-
ory such as fictitious play [Brown1951] and rational learning [Kalai and Lehrer1993],
is pursued by Claus and Boutilier [Claus and Boutilier1998]. In their work they
specifically adopt the belief-maintenance procedures of fictitious play, in which
the probability of a given action in the next stage game is assumed to be its past
empirical frequency. Although this procedure is well defined for any general-sum
game, Claus and Boutilier only consider it in the context of common-payoff (or
‘team’) games. A stage game is common-payoff if at each outcome all agents
receive the same payoff. The payoff is in general different in different outcomes,
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and thus the agents’ problem is that of coordination; indeed these are also called
games of pure coordination.

Zero-sum and common-payoff SGs have very special properties, and, as we
discuss in the next section, it is relatively straightforward to understand the
problem of learning in them. The situation is different in general-sum games,
which is where the picture becomes less pretty. The pivotal contribution here is
Nash-Q learning [Hu and Wellman1998], another generalization of Q-learning
to general-sum games . Nash-Q updates the V -values based on some Nash
equilibrium in the game defined by the Q-values:

Vi(s) ← Nashi(Q1(s,�a), . . . , Qn(s,�a)).

There is some abuse in the above notation; the expression represents a game in
which Qi(s,�a) denotes the payoff matrix to player i, and Nashi denotes “the”
Nash payoff to that player.

Of course in general there are many Nash equilibria, and therefore the Nash
payoff may not be unique. If Nash-Q is taken to apply to all general-sum
SGs, it must be interpreted as a nondeterministic procedure. However, the
focus of Hu and Wellman has been again on a special class of SGs. Littman
articulated it most explicitly, by reinterpreting Nash-Q as the Friend-or-Foe
(FoF) algorithm[Littman2001]. Actually, it is more informative to view FoF as
two algorithms, each applying in a different special class of SGs. The Friend
class consists of SGs in which, throughout the execution of the algorithm, the
Q-values of the players define a game in which there is a globally optimal action
profile (meaning that the payoff to any agent under that joint action is no less
than his payoff under any other joint action). The Foe class is the one in which
(again, throughout the execution of the algorithm), the Q-values define a game
with a saddle point. Although defined for any number of players, for simplicity
we show how the V s are updated in a two-player game:

Friend: V1(s) ← maxa1∈A1,a2∈A2 Q1(s, (a1, a2))
Foe: V1(s) ← maxP1∈Π(A1) mina2∈A2∑

a1∈A1
P1(a1)Q1(s, (a1, a2))

Thus Friend-Q updates V similarly to regular Q-learning, and Foe-Q updates
as does minimax-Q.

Finally, Greenwald et al.’s CE-Q learning is similar to Nash-Q, but instead
uses the value of a correlated equilibrium to update V [Greenwald et al.2002]:

Vi(s) ← CEi(Q1(s,�a), . . . , Qn(s,�a)).

Like Nash-Q, it requires agents to select a unique equilibrium, an issue that the
authors address explicitly by suggesting several possible selection mechanisms.

2.2 Convergence results

The main criteria used to measure the performance of the above algorithms was
its ability to converge to an equilibrium in self-play. In [Littman and Szepesvari1996]
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minimax-Q learning is proven to converge in the limit to the correct Q-values
for any zero-sum game, guaranteeing convergence to a Nash equilibrium in self-
play. These results make the standard assumptions of infinite exploration and
the conditions on learning rates used in proofs of convergence for single-agent
Q-learning. Claus and Boutilier [Claus and Boutilier1998] conjecture that both
independent Q-learners and the belief-based joint action learners mentioned
above will converge to an equilibrium in common payoff games under the con-
ditions of self-play and decreasing exploration, but do not offer a formal proof.
Nash-Q learning was shown to converge to the correct Q-values for the classes of
games defined earlier as Friend games and Foe games.2 Finally, CE-Q learning
is shown to converge to uncorrelated Nash equilibria in a number of empirical
experiments, although there are no formal results presented.

3 Why focus on equilibria?

In the previous section we summarized the developments in multi-agent RL
without editorial comments. Here we begin to discuss that work more critically.

The results concerning convergence of Nash-Q are quite awkward. Nash-Q
attempted to treat general-sum SGs, but the convergence results are constrained
to the cases that bear strong similarity to the already known cases of zero-
sum games and common-payoff games.3 Furthermore, note that the conditions
are in fact quite restrictive, since they must hold for the games defined by
the intermediate Q-values throughout the execution of the protocol. So it is
extremely unlikely that a game will satisfy this condition, and in any case hard
to verify at the outset whether it does.

Note that like the original work on single agent Q-learning, Nash-Q concen-
trates on learning the correct Q-values, in this case for a Nash equilibria of the
game. However, it is not obvious how to turn this into a procedure for guid-
ing play beyond zero-sum games. If multiple optimal equilibria exist the players
need an oracle to coordinate their choices in order for play to converge to a Nash
equilibrium, which begs the question of why to use learning for coordination at
all.

In our view, these unsatisfying aspects of the Bellman heritage from Nash-Q
onwards – the weak/awkward convergence assurances, the limited applicability,
the assumption of an oracle – manifest a deeper set of issues. Many of these
can be summarized by the following question: What justifies the focus on (e.g.,
Nash) equilibrium?

2A certain local debate ensued regarding the initial formulation of these results, which
was resolved in the papers by Bowling [Bowling2000], Littman [Littman2001], and by Hu and
Wellman themselves in the journal version of their article [Hu and Wellman2002].

3The analysis is interesting in that it generalizes both conditions: The existence of a
saddle point is guaranteed in but not limited to zero-sum games, and the existence of a
globally optimal Nash equilibrium is guaranteed in but not limited to common-payoff games.
However, it is hard to find natural cases in which the conditions hold other than in the special
cases.

5



Nash-Q appeals to the Nash equilibrium in two ways. First, it uses it in the
execution of the algorithm. Second, it uses convergence to it as the yardstick
for evaluating the algorithm. The former is troubling in several ways:

1. Unlike the max-min strategy, employed in minimax-Q, a Nash-equilibrium
strategy has no prescriptive force. At best the equilibrium identifies con-
ditions under which learning can or should stop (more on this below), but
it does not purport to say anything prior to that.

2. One manifestation of the lack of prescriptive force is the existence of mul-
tiple equilibria; this is a thorny problem in game theory, and limiting the
focus to games with a uniquely identified equilibrium – or assuming an
oracle – merely sweeps the problem under the rug.4

3. Even if by magic one could pick out a unique equilibrium at each stage
game, why is that relevant in light of the fact that one is playing an
extended SG?

Beside being concerned with the specific details of Nash-Q and its descen-
dants, we are also concerned with the use of convergence to Nash equilibrium
as the evaluation criterion. Bowling and Veloso articulate this yardstick most
clearly [Bowling and Veloso2001]. They put forward two criteria for any learn-
ing algorithm in a multi-agent setting: (1) The learning should always converge
to a stationary policy, and (2) it should only terminate with a best response to
the play by the other agent(s) (a property called Hannan-consistency in game
theory [Hannan1959]). In particular, their conditions require that during self-
play, learning only terminate in a stationary Nash equilibrium. This is a useful
criterion, but it is weak in that it ignores the fact that one is playing an ex-
tended SG.5 We again confront the centrality of the Nash equilibrium to game
theory, and the question of whether it should play the same central role in AI.
We return to this in the next section, but briefly, in our view the answer is no.

4One can view the CE-Q learning as throwing in the towel, and admitting upfront that one
must assume a correlating device for the agents. We don’t have a quarrel with this stance, but
we don’t see the motivation for focusing on a sample correlated equilibrium. In particular,
we are not swayed by the argument that a sample correlated equilibrium is easier to compute
than a sample Nash equilibrium; there is no reason to think that the signal inherent in the
sample equilibrium that is computed will be available to the agents in a given situation. In
any event, we have already noted that Greenwald et al. report that, in simulations, CE-Q
seems to converge to uncorrelated Nash equilibria in self-play.

5It should be said that the literature on learning in game theory (mostly in repeated games,
a special case of SGs) revolves almost entirely around the question of whether this or that
learning procedure leads to a Nash equilibrium. In our opinion GT too is unclear on its
motivation in doing so. We comment on this in the next section, but this is not our focus in
this article.
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4 Four well defined problems in multi-agent learn-
ing

In our view the root of the difficulties with the recent work is that the field has
lacked a clearly defined problem statement. If (e.g.,) Nash-Q is the answer, what
is the question? In this section we identify what we think is a coherent research
agenda on multi-agent RL. In fact, we generously offer four such agendas. We
also identify one of them as being, in our view, the most appropriate for AI,
and the most heretical from the game theoretic point of view.

The first agenda is descriptive – it asks how humans learn in the context of
other learners (see, e.g., [Erev and Roth1998, Camerer et al.2002]). The name
of the game here is to show experimentally that a certain formal model of
learning agrees with people’s behavior (typically, in laboratory experiments).
This line of work is as legitimate and coherent as any other experimental work in
psychology, and we have no further comment on it. Much of the work on learning
in game theory has adopted this stance, if often implicitly. Researchers propose
various dynamics that are a perceived as plausible in one sense or another, and
proceed to investigate whether those converge to equilibria. This is a key concern
for game theory, since a successful theory would support the notion of Nash (and
other kinds of) equilibrium, which play a central role in non-cooperative game
theory.6 The main limitation of that line of research is that, as of now, there is
no agreed-upon objective criterion by which to judge the reasonableness of any
given dynamics.

The other three agendas are prescriptive. They ask how agents – people
or programs - should learn. The first of these might be called the ‘distributed
AI (DAI) agenda’. This is a problem of distributed control; a central designer
controls multiple agents, but cannot or will not design an optimal policy for
them. Instead it assigns them each an adaptive procedure that converges to an
optimal policy. In this case there is no role for equilibrium analysis; the agents
have no freedom to deviate from the prescribed algorithm.

The two remaining prescriptive agendas both assume that the learning takes
place by self-interested agents. To understand the relationship between these
two agendas, it is worthwhile to explicitly note the following obvious fact: re-
inforcement learning – whether in a single- or multi-agent setting – is nothing
but a specific form of acting in which the actions are conditioned on runtime
observations about the world. Thus the question of “how best to learn” is a
specialized version of the general question “how best to act”.

The two remaining prescriptive agendas diverge on how they interpret ‘best’.
We call the first the ‘equilibrium agenda’. Although one could have expected
a game theory purist to adopt this perspective, it is not one studied in game the-
ory, and in fact is explicitly rejected in at least one place [Fudenberg and Kreps1993];
we have only seen it pursued recently, outside game theory [Tennenholtz2002].
The agenda can be described as follows. Since, in the traditional view of non-

6It has been noted that game theory is somewhat unusual, if not unique, in having the
notion of an equilibrium without associated dynamics that give rise to the equilibrium.
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cooperative game theory, the notion of optimal strategy is meaningless and is
replaced by the notions of best response and (predominantly, Nash) equilib-
rium, and since a learning strategy is after all just a strategy in an extended
game, one should ask when a vector of learning strategies (one for each agent)
forms an equilibrium. Of course, for this to be meaningful, one has to be precise
about the game being played – including the payoff function and the information
structure. In particular, in the context of SGs, one has to specify whether the
aggregate payoff to an agent is the limit average, the sum of future discounted
rewards, or something else.

The final prescriptive agenda is one we call ‘the AI agenda’. Again the name
could be viewed as a bit ironic since for the most part it is not the approach
taken in AI, but we do believe it is the one that makes the most sense for the
field. This agenda might seem somewhat unglamorous. It asks what the best
learning strategy is for a given agent for a fixed class of the other agents in the
game. It thus retains the design stance of AI, asking how to design an optimal
(or at least effective) agent for a given environment. It just so happens this
environment is characterized by the types of agents inhabiting it. This does
raise the question of how to parameterize the space of environments, and we
return to that in the next section.

We should say that the ‘AI agenda’ is in fact not as alien to past work in
multi-agent RL in AI as our discussion implies. While most of the work cited
earlier concentrates on comparing convergence rates between algorithms in self-
play, we can see some preliminary analysis comparing the performance of algo-
rithms in environments consisting of other learning agents (e.g. [Hu and Wellman2001,
Hu and Wellman2002, Stone and Littman2001]) However, these experimental
strands were not tied to a formal research agenda, and in particular not to
the convergence analyses. One striking exception is the work by Chang and
Kaelbling [Chang and Kaelbling2001], to which we return in the next section.

The ‘AI agenda’, however, is quite antithetical to the prevailing spirit of
game theory. This is precisely because it adopts the ‘optimal agent design’ per-
spective and does not consider the equilibrium concept to be central or even
necessarily relevant at all. The essential divergence between the two approaches
lies in their attitude towards ‘bounded rationality’. Traditional game theory
assumed it away at the outset, positing perfect reasoning and infinite mutual
modeling of agents. It has been struggling ever since with ways to gracefully
back off from these assumptions when appropriate. It’s fair to say that despite
notable exceptions (cf., [Rubinstein1998]), bounded rationality is a largely un-
solved problem for game theory. In contrast, the AI approach embraces bounded
rationality as the starting point, and only adds elements of mutual modelling
when appropriate. The result is fewer elegant theorems in general, but perhaps
a greater degree of applicability in certain cases. This applies in general to sit-
uations with complex strategy spaces, and in particular to multi-agent learning
settings.

It should be said that although the “equilibrium agenda” and the “AI
agenda” are quite different, there are still some areas of overlap once one looks
more closely. First, as we discuss in the next section, in order to parameter-
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ize the space of environments one must start to grapple with traditional game
theoretic notions such as type spaces. Furthermore, when one imagines how
learning algorithms might evolve over time, one can well imagine that the al-
gorithms evolve towards an equilibrium, validating the ‘game theory agenda’
after all. However, while in principle one could fold in this evolutionary element
into a meta-learning algorithm that includes both the short-term learning and
long-term evolution, this theoretical construct will in general not provide any
useful insight.

The case of the Trading Agent Competition (TAC) serves to illustrate the
point.7 You would think that the TAC setting would allow for application of
game theoretic ideas. In fact, while the teams certainly gave thought to how
other teams might behave – that is, to their class of opponents – the programs
engaged in no computation of Nash equilibria, no modelling of the beliefs of
other agents, nor for the most part any sophisticated attempts to send specific
signals to the other agents. The situation was sufficiently complex that programs
concentrated on simpler tasks such as predicting future prices in the different
markets, treating them as external events as opposed to something influenced
by the program itself. One could reasonably argue that after each competition
each team will continue to improve its TAC agent, and eventually the agents
will settle on an equilibrium of learning strategies. Although we believe this to
be true in principle, this argument is compelling when the game is fairly simple
and/or is played over a long time horizon. For TAC the strategy space is so
rich that this convergence is unlikely to happen in our lifetime. In any case, it
provides no guidance on how to win the next competition.

Before we say a few words about the ‘AI agenda’, let us reconsider the
“Bellman heritage” discussed earlier; how does it fit into this categorization?
Minimax-Q fits nicely in the ‘AI agenda’, in the highly specialized case of zero-
sum games. The work on self-play in common-payoff SGs, although superficially
reminiscent of the ‘AI agenda’, probably fits better with the ‘DAI agenda’, with
the payoff function interpreted as the payoff of the agents’ designer. Near as we
can tell, however, Nash-Q and its descendants do not fit any of the agendas we
discussed.

5 Pursuing the ‘AI agenda’

The ‘AI agenda’ calls for categorizing strategic environments, that is, popula-
tions of agent types with which the agent being designed might interact. These
agent types may come with a distribution over them, in which case one can hope
to design an agent with maximal expected payoff, or without such a distribu-
tion, in which case a different objective is called for (for example, an agent with
maximal minimum payoff). In either case we need a way to speak about agent
types. The question is how to best represent meaningful classes of agents, and
then use this representation to calculate a best response.

7TAC [Wellman and Wurman1999] is a series of competitions in which computerized agents
trade in a non-trivial set of interacting markets.
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We won’t have much to say about the best-response calculation, except to
note that it is computationally a hard problem. For example, it is known that in
general the best response in even a two-player SG is non-computable [Nachbar and Zame1996].
We however will concentrate on the question of how to parameterize the space
of agents, which itself is a challenge. Our objective is not to propose a specific
taxonomy of agent types, but instead to provide guidance for the construction
of useful taxonomies for different settings.

Agents are categorized by their strategy space. Since the space of all strate-
gies is complex, this categorization is not trivial. One coarse way of limiting
a strategy space is to simply restrict it to a family. For example, we might
assume that the agent belongs to the class of JAL learners in the sense of
[Claus and Boutilier1998]. Another, in principle orthogonal, way of restricting
the strategy space is to place computational limitations on the agents. For
example, we might constrain them to be finite automata with a bounded num-
ber of states.8 Even after these kinds of limitations we might still be left
with too large a space to reason about, but there are further disciplined ap-
proaches to winnowing down the space. In particular, when the strategies of
the opponent are a function of its beliefs, we can make restricting assump-
tions about those beliefs. This is the approach taken by Chang and Kaelbling
[Chang and Kaelbling2001], and to some extent [Stone and Littman2001], al-
though they both look at a rather limited set of possible strategies and beliefs.
A more general example would be to assume that the opponent is a ‘ratio-
nal learner’ in the sense of [Kalai and Lehrer1993], and to place restrictions
on its prior about our strategies. Note though that this is a slippery slope,
since it asks not only about the second agent’s computational limitations and
strategy space, but also recursively about his beliefs about the first agent’s
computational powers, strategy space, and beliefs. This brings us into the
realm of type spaces (e.g., [Mertens and Zamir1985]), but the interaction be-
tween type spaces and bounded rationality is unchartered territory (though see
[Gmytrasiewicz et al.1991]).

There is much more research to be done on weaving these different consid-
erations into a coherent and comprehensive agent taxonomy. We will not settle
this open problem, but let us make a final note regarding the temptation to
label some agent types learning as ‘weak’ and others as ‘strong’ with respect to
any taxonomy. In a multi-agent setting, learning and teaching are inseparable.
Any choice i makes is both informed by j’s past behavior and impacts j′s future
behavior. For this reason, the neutral term ‘multi-agent adaptation’ might have
been more apt. It doesn’t have quite the ring of ‘multi-agent learning’ so we
will not wage that linguistic battle, but it is useful to keep the symmetric view
in mind when thinking about how to pursue the ‘AI agenda’. In particular, it
helps explain why greater sophistication is not always an asset. For example,
consider an infinitely repeated game of ‘chicken’:

8This is the model pursued in the work on ‘bounded rationality’ (e.g., [Neyman1985,
Papadimitriou and Yannakakis1994, Rubinstein1998]. Most of that work however is concerned
with how equilibrium analysis is impacted by these limitations, so it’s not clear whether the
technical results obtained there will directly contribute to the ‘AI agenda.’

10



yield dare
yield 2,2 1,3
dare 3,1 0,0

In the presence of any opponent who attempts to learn the other agent’s strat-
egy and play a best response (for example, using fictitious play or the sys-
tem in [Claus and Boutilier1998]), the best strategy for an agent is to play the
stationary policy of always daring; the other agent will learn to always yield.
This is the “watch out I’m crazy” policy, Stone and Littman’s “bully strategy”
[Stone and Littman2001], or Oscar Wilde’s “tyranny of the weak”.

6 Concluding remarks

We have reviewed previous work in multi-agent RL and have argued for what
we believe is a clear and fruitful research agenda in AI on multi-agent learning.
Since we have made some critical remarks of previous work, this might give the
impression that we don’t appreciate it or the researchers behind it. Nothing
could be further from the truth. Some of our best friends and colleagues belong
to this group, and we have been greatly educated and inspired by their ideas.
Granted, when you stand on the shoulders of giants, sometimes it can be un-
comfortable for the giants. Our own request is that should our colleagues ever
decide to stand on our shoulders, they refrain from wearing spiked heels.
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