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Abstract
With increasing amounts of data being generated by businesses and researchers there is a need
for fast, accurate and robust algorithms for data analysis.  Improvements in databases
technology, computing performance and artificial intelligence have contributed to the
development of intelligent data analysis.  The primary aim of data mining is to discover
patterns in the data that lead to better understanding of the data generating process and to
useful predictions.  Examples of applications of data mining include detecting fraudulent
credit card transactions, character recognition in automated zip code reading, and predicting
compound activity in drug discovery.  Real-world data sets are often characterized by having
large numbers of examples, e.g. billions of credit card transactions and potential ‘drug-like’
compounds; being highly unbalanced, e.g. most transactions are not fraudulent, most
compounds are not active against a given biological target; and, being corrupted by noise.
The relationship between predictive variables, e.g. physical descriptors, and the target concept,
e.g. compound activity, is often highly non-linear.  One recent technique that has been
developed to address these issues is the support vector machine.  The support vector machine
has been developed as robust tool for classification and regression in noisy, complex domains.
The two key features of support vector machines are generalization theory, which leads to a
principled way to choose an hypothesis; and, kernel functions, which introduce non-linearity
in the hypothesis space without explicitly requiring a non-linear algorithm.  In this tutorial I
introduce support vector machines and highlight the advantages thereof over existing data
analysis techniques, also are noted some important points for the data mining practitioner who
wishes to use support vector machines.

Motivation

As John Denker has remarked ‘neural networks are the second best way of doing just
about anything’.  The meaning behind this statement is that the best way of solving a
particular problem is to apply all available domain knowledge and spend a
considerable amount of time, money and effort in building a rule system that will give
the right answer.  The second best way of doing anything is to learn from experience.
Given the increasing quantity of data for analysis and the variety and complexity of
data analysis problems being encountered in business, industry and research, it is
impractical to demand the best solution every time.  The ultimate dream, of course is
to have available some intelligent agent that can pre-process your data, apply the
appropriate mathematical, statistical and artificial intelligence techniques, and then
provide a solution and an explanation.  In the meantime we must be content with the
pieces of this automatic problem solver.  It is the purpose of the data miner to use the
available tools to analyze data and provide a partial solution to a business problem.
The data mining process can be roughly separated into three activities: pre-processing,
modeling and prediction, and explaining.  There is much overlap between these stages
and the process is far from linear.  Here we concentrate on the central of these tasks,



in particular prediction.  Machine learning in the general sense is described and the
problem of hypothesis selection detailed.  The support vector machine (SVM) is then
introduced as a robust and principled way to choose an hypothesis.  The SVM for
two-class classification is dealt with in detail and some practical issues discussed.
Finally, related algorithms for regression, novelty detection and other data mining
tasks are discussed.

Machine Learning

The general problem of machine learning is to search a, usually very large, space of
potential hypotheses to determine the one that will best fit the data and any prior
knowledge1. The data may be labelled or unlabelled.  If labels are given then the
problem is one of supervised learning in that the true answer is known for a given set
of data.  If the labels are categorical then the problem is one of classification, e.g.
predicting the species of a flower given petal and sepal measurements2.  If the labels
are real-valued the problem is one of regression, e.g. predicting property values from
crime, pollution, etc. statistics3.  If labels are not given then the problem is one of
unsupervised learning and the aim is characterize the structure of the data, e.g. by
identifying groups of examples in the data that are collectively similar to each other
and distinct from the other data.

Supervised Learning
Given some examples we wish to predict certain properties, in the case where there
are available a set of examples whose properties have already been characterized the
task is to learn the relationship between the two.  One common early approach4 was to
present the examples in turn to a learner.  The learner makes a prediction of the
property of interest, the correct answer is presented, and the learner adjusts its
hypothesis accordingly.  This is known as learning with a teacher, or supervised
learning.
In supervised learning there is necessarily the assumption that the descriptors
available are in some related to a quantity of interest.  For instance, suppose that a
bank wishes to detect fraudulent credit card transactions.  In order to do this some
domain knowledge is required to identify factors that are likely to be indicative of
fraudulent use.  These may include frequency of usage, amount of transaction,
spending patterns, type of business engaging in the transaction and so forth.  These
variables are the predictive, or independent, variables x .  It would be hoped that these
were in some way related to the target, or dependent, variable y .  Deciding which
variables to use in a model is a very difficult problem in general; this is known as the
problem of feature selection and is NP-complete.  Many methods exist for choosing
the predictive variables, if domain knowledge is available then this can be very useful
in this context.  Here we assume that at least some of the predictive variables at least
are in fact predictive.
Assume, then, that the relationship between x  and y  is given by the joint probability
density )|()(),( xxx yPPyP = .  This formulation allows for y  to be either a



deterministic or stochastic function of x , in reality the available data are generated in
the presence of noise so the observed values will be stochastic even if the underlying
mechanism is deterministic.  The problem of supervised learning then is to minimize
some risk functional
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such that the risk is minimized.  In statistical pattern recognition5 one first estimates
the conditional density )|( xyp  and the prior probability )(xp  and then formulates a

decision function Sf .  The advantage of this approach is that it provides confidence

values for the predictions, which is of obvious importance in such areas as medical
decision making.  The disadvantage is that estimating the distributions can be very
difficult and a full probabilistic model may not be required.  The predictive approach
is to learn a decision function directly.  The most notable methodology in this area
being statistical learning theory.

Choosing An Hypothesis

As stated above we wish to find a function, or hypothesis, Sf , based on the available

training data { }),(,),( 11 ll yyS xx �= , such that the risk R  is minimized.  In practice

we do not know what the true distribution ),( yP x  is and so cannot evaluate (1).
Instead, we can calculate the empirical risk
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based on the training set S .  The minimizer of (2) is not necessarily the minimizer of
(1).  Trivially, the function that takes the values ii yf =)(x  on the training set and is

random elsewhere has zero empirical risk but clearly doesn’t generalize.  Less
trivially, it is a well-documented phenomenon that minimizing empirical error does
not necessarily lead to a good hypothesis.  This is the phenomenon of overfitting1,8,13.
The learned hypothesis has fitted both the underlying data generating process and the
idiosyncrasies of the noise in the training set.
In order to avoid this one needs to perform some kind of capacity control.  The
capacity of an hypothesis space is a measure of the number of different labellings
implementable by functions in the hypothesis space.   Intuitively, if one achieves a



low empirical risk by choosing an hypothesis from a low capacity hypothesis space
then the true risk is also likely to be low.  Conversely, given a consistent data set and
a sufficiently rich hypothesis space there will be a function that gives zero empirical
risk and large true risk.

Statistical Learning Theory
In the following we consider two-class classification and take the cost function to be
the 0/1-loss function, i.e.
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so that the risk is the error rate.  A principled way to minimize true error is to upper
bound in probability the true error and minimize the upper bound.   This is the
approach of statistical learning theory9 that lead to the formulation of the SVM.  The
key concept is that of VC dimension, the VC dimension of an hypothesis space is a
measure of the number of different classifications implementable by functions from
that hypothesis space.  One example of an upper bound is the following.

Theorem (Vapnik and Chervonenkis): Let H be an hypothesis space having VC
dimension d .  For any probability distribution ),( yP x  on }1,1{ +−×X , with
probability δ−1  over random training sets S , any hypothesis Hf ∈ that makes k
errors on S  has error no more than
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That is the true error is less than the empirical error plus a measure of the capacity of
the hypothesis space.  This leads to the idea of structural risk minimization.  That is
the empirical risk is minimized for a sequence of hypothesis spaces and the final
hypothesis is chosen as that which minimizes the bound (3).

Support Vector Machines

The support vector machine (SVM)6,7,9,10 is a training algorithm for learning
classification and regression rules from data, for example the SVM can be used to
learn polynomial, radial basis function (RBF) and multi-layer perceptron (MLP)
classifiers7.   SVMs were first suggested by Vapnik in the 1960s for classification and
have recently become an area of intense research owing to developments in the
techniques and theory coupled with extensions to regression and density estimation.
SVMs arose from statistical learning theory; the aim being to solve only the problem
of interest without solving a more difficult problem as an intermediate step.  SVMs
are based on the structural risk minimisation principle, closely related to
regularisation theory.  This principle incorporates capacity control to prevent over-
fitting and thus is a partial solution to the bias-variance trade-off dilemma8.



Two key elements in the implementation of SVM are the techniques of mathematical
programming and kernel functions. The parameters are found by solving a quadratic
programming problem with linear equality and inequality constraints; rather than by
solving a non-convex, unconstrained optimisation problem.  The flexibility of kernel
functions allows the SVM to search a wide variety of hypothesis spaces.
Here we focus on SVMs for two-class classification, the classes being NP,  for

1,1 −+=iy  respectively.  This can easily be extended to −k class classification by

constructing k  two-class classifiers9.  The geometrical interpretation of support
vector classification (SVC) is that the algorithm searches for the optimal separating
surface, i.e. the hyperplane that is, in a sense, equidistant from the two classes10.  This
optimal separating hyperplane has many nice statistical properties9.  SVC is outlined
first for the linearly separable case.  Kernel functions are then introduced in order to
construct non-linear decision surfaces.  Finally, for noisy data, when complete
separation of the two classes may not be desirable, slack variables are introduced to
allow for training errors.

Maximal Margin Hyperplanes
If the training data are linearly separable then there exists a pair ),( bw  such that
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with the decision rule given by
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w is termed the weight vector and b  the bias (or b−  is termed the threshold). The
inequality constraints (4) can be combined to give
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this constraint defines the set of canonical hyperplanes on Nℜ .
In order to restrict the expressiveness of the hypothesis space, the SVM searches for
the simplest solution that classifies the data correctly.  The learning problem is hence

reformulated as: minimize www T=2
 subject to the constraints of linear separability

(6).  This is equivalent to maximising the distance, normal to the hyperplane, between
the convex hulls of the two classes; this distance is called the margin.  The
optimisation is now a convex quadratic programming (QP) problem
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This problem has a global optimum; thus the problem of many local optima in the
case of training e.g. a neural network is avoided.  This has the advantage that
parameters in a QP solver will affect only the training time, and not the quality of the
solution.  This problem is tractable but in order to proceed to the non-separable and
non-linear cases it is useful to consider the dual problem as outlined below.  The
Lagrangian for this problem is
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where T
l ),,( 1 λλ �=Λ  are the Lagrange multipliers, one for each data point.  The

solution to this quadratic programming problem is given by maximising L with
respect to 0≥Λ  and minimising with respect to b,w .  Differentiating with respect to
w and b and setting the derivatives equal to 0 yields
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So that the optimal solution is given by (5) with weight vector
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Substituting  (9) and  (10) into (8) we can write
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which, written in matrix notation, leads to the following dual problem

0,0 subject to
2

1
)( Maximize

=≥

−=

y

DIF

T

TT

ΛΛ

ΛΛΛΛ
(12)

where T
lyyy ),,( 1

�= and D is a symmetric ll ×  matrix with elements

j
T

ijiij yyD xx= .   Note that the Lagrange multipliers are only non-zero when

1)( =+ by i
T

i xw , vectors for which this is the case are called support vectors since

they lie closest to the separating hyperplane.  The optimal weights are given by (10)
and the bias is given by
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for any support vector ix (although in practice it is safer to average over all support

vectors10).  The decision function is then given by
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The solution obtained is often sparse since only those ix  with non-zero Lagrange

multipliers appear in the solution. This is important when the data to be classified are
very large, as is often the case in practical data mining situations.  However, it is
possible that the expansion includes a large proportion of the training data, which
leads to a model that is expensive both to store and to evaluate.  Alleviating this
problem is one area of ongoing research in SVMs.

Kernel-Induced Feature Spaces
A linear classifier may not be the most suitable hypothesis for the two classes.  The
SVM can be used to learn non-linear decision functions by first mapping the data to
some higher dimensional feature space and constructing a separating hyperplane in
this space. Denoting the mapping to feature space by
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Note that the input data appear in the training (12) and decision functions (14) only in
the form of inner products zxT , and in the decision function (15) only in the form of
inner products )()( zx φφ T .  Mapping the data to H  is time consuming and storing it
may be impossible, e.g. if H  is infinite dimensional.  Since the data only appear in
inner products we require a computable function that gives the value of the inner
product in H  without explicitly performing the mapping.  Hence, introduce a kernel
function,

)()(),( T zxzx φφ≡K . (16)
The kernel function allows us to construct an optimal separating hyperplane in the
space H  without explicitly performing calculations in this space.  Training is the
same as (12) with the matrix D  having entries ),( jijiij KyyD xx= , i.e. instead of

calculating inner products we compute the value of K .  This requires that K  be an
easily computable function.  For instance the polynomial kernel dTK )1(),( += zxzx
which corresponds to a map φ  into the space spanned by products of up to d

dimensions of Nℜ .  The decision function (15) becomes
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for any support vector ix .



The only remaining problem is specification of the kernel function, the kernel should
be easy to compute, well-defined and span a sufficiently rich hypothesis space7.  A
common approach is to define a positive definite kernel that corresponds to a known
classifier such as a Gaussian RBF, two-layer MLP or polynomial classifier.  This is
possible since Mercer’s theorem states that any positive definite kernel corresponds to
an inner product in some feature space. Kernels can also be constructed to incorporate
domain knowledge11.
This so-called ‘kernel trick’ gives the SVM great flexibility.  With a suitable choice of
parameters an SVM can separate any consistent data set (that is, one where points of
distinct classes are not coincident).  Usually this flexibility would cause a learner to
overfit the data; i.e. the learner would be able to model the noise in the data as well as
the data-generating process.  Overfitting is one of the main problems of data mining
in general and many heuristics have been developed to prevent it, including pruning
decision trees12, weight linkage and weight decay in neural networks8, and statistical
methods of estimating future error13.  The SVM mostly side-steps the issue by using
regularisation, that is the data are separated with a large margin.  The space of
classifiers that separate the data with a large margin has much lower capacity than the
space of all classifiers searched over6.  Intuitively, if the data can be classified with
low error by a simple decision surface then we expect it to generalize well to unseen
examples.

Non-Separable Data
So far we have restricted ourselves to the case where the two classes are noise-free.
In the case of noisy data, forcing zero training error will lead to poor generalisation.
This is because the learned classifier is fitting the idiosyncrasies of the noise in the
training data.  To take account of the fact that some data points may be misclassified
we introduce a vector of slack variables T
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violation of the constraints (6).  The problem can then be written
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where C  and k  are specified beforehand. C  is a regularisation parameter that
controls the trade-off between maximising the margin and minimising the training
error term.  If C  is too small then insufficient stress will be placed on fitting the
training data.  If C  is too large then the algorithm will overfit the training data.  Due
to the statistical properties of the optimal separating hyperplane, C can be chosen
without the need for a holdout validation set9.  If 0=k  then the second term counts
the number of training errors.  In this case the optimisation problem is NP-complete9.
The lowest value for which (19) is tractable is 1=k .  The value 2=k  is also used
although this is more sensitive to outliers in the data.  If we choose 2=k  then we are
performing regularized least squares, i.e. the assumption is that the noise in x  is



normally distributed6.  In noisy domains we look for a robust classifier14 and hence
choose 1=k .  The Lagrangian for this problem is
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where T
l ),,( 1 λλ �=Λ , as before, and T
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corresponding to the positivity of the slack variables.  The solution of this problem is
the saddle point of the Lagrangian given by minimising L with respect to Ξ,w and b ,
and maximising with respect to 0≥Λ  and 0≥Γ .  Differentiating with respect to w ,
b and Ξ  and setting the results equal to zero we obtain
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So that the optimal weights are given by
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Substituting (21), (22) and (23) into (20) gives the following dual problem
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�=  and D  is a symmetric ll ×  matrix with elements

),( jijiij KyyD xx= .  The decision function implemented is exactly as before in (17).

The bias term *b  is given by (18) where ix  is a support vector for which Ci << λ0 .

There is no proof that such a vector exists but empirically this is usually the case.  If
all support vectors have C=λ  then the solution is said to be unstable, as the global
optimum is not unique.  In this case the optimal bias can be calculated by an appeal to
the geometry of the hyperplane15.
Thus the SVM learns the optimal separating hyperplane in some feature space, subject
to ignoring certain points which become training misclassifications.  The learnt
hyperplane is an expansion on a subset of the training data known as the support
vectors.  By use of an appropriate kernel function the SVM can learn a wide range of
classifiers including a large set of RBF networks and neural networks.  The flexibility
of the kernels does not lead to overfitting since the space of hyperplanes separating



the data with large margin has much lower capacity than the space of all
implementable hyperplanes.

Practical Considerations
Much of the present research activity in SVMs is concerned with reducing training
time16,17, parameter selection18,19 and reducing the size of the model20.  Most existing
algorithms for SVMs scale as )()( 3lOlO −  in the number of training examples.  Most
empirical evaluations of algorithmic scaling tend to focus of linearly separable data
sets with sparse feature representations that are not characteristic of data mining
problems in general.  The majority of research in SVMs is focussed on attaining the
global minimum of the QP (24).  From a data mining perspective this may not be
necessary.  There are a variety of other stopping criteria that could be used and should
be available in a general purpose SVM package for data mining.  These include
limiting training time and tracking predicted error.  If the predicted error falls below a
pre-specified target, or if it does not appear to be decreasing then one may wish to
terminate the algorithm, as progressing to the global optimum will be unnecessary and
time-consuming.  In order to track predicted error one can appeal to statistical
learning theory to provide an upper bound on the expected leave-one-out error21.

Theorem (Joachims, 2000) The leave-one-out error rate of a stable SVM on a
training set S is bounded by
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the true error.  It is generally expensive to calculate but due the statistical properties of
the SVM it can be bounded by an easily computable quantity.
Another important point when using SVMs is data reduction.  When the data are
noisy the number of non-zero iλ  can be a significant fraction of the data set.  This

leads to a large model that is expensive to store and evaluate on future examples.  One
way to avoid this is to cluster the data and use the cluster centres as a reduced
representation of the data set.  This leads to a more compact model with performance
close to the optimal22.
The primal formulations (7), (19) lead to the need to enforce the equality constraint
(9), (21) when solving the dual.    A simple amendment to the algorithm is to include

the term 2

2

1
b  in the primal formulations.  This removes the need to enforce the

equality constraint as the requirement that the derivative of the Lagrangian with
respect to b  is zero now leads to yb Tα= , and the matrix D  in (12), (24) has entries



given by )1),(( += jijiij KyyD xx .  The solution to this QP leads to performance

almost identical to the standard formulation on a wide range of real world data sets23.

Discussion

Related Algorithms
For want of space this section is a brief summary of other applications of the SVM to
data mining problems, further details can be found in the references.
The SVM can be extended to regression estimation6,7,9,10 by introducing an
ε -insensitive loss function

pp
fyfyfyL ))(,0max()(),,( ε

ε
ε −−=−= xxx ,

where }2,1{∈p .  This loss function only counts as errors those predictions that are
more that ε  away from the training data.  This loss function allows the concepts of
margin to be carried over to the regression case keeping all of the nice statistical
properties.  Support vector regression also results in a QP.
An interesting application of the SVM methodology is to novelty detection24.  The
objective is to find the smallest sphere that contains a given percentage of the data.
This also leads to a QP.  The ‘support vectors’ are points lying on the sphere and the
‘training errors’ are outliers, or novelties (depending on your point of view).  The
technique can also be generalized to kernel spaces to provide a graded, or
hierarchical, clustering of the data.
SVMs fall into the intersection of two research areas: kernel methods25, and large
margin classifiers26.  These methods have been applied to feature selection, time
series analysis, reconstruction of a chaotic system, and non-linear principal
components.  Further advances in these areas are to be expected in the near future.
SVMs and related methods are also being increasingly applied to real world data
mining, an up-to-date list of such applications can be found at
http://www.clopinet.com/isabelle/Projects/SVM/applist.html.

Summary and Conclusions
The support vector machine has been introduced as a robust tool for many aspects of
data mining including classification, regression and outlier detection.  The SVM for
classification has been detailed and some practical considerations mentioned.  The
SVM uses statistical learning theory to search for a regularized hypothesis that fits the
available data well without over-fitting.  The SVM has very few free parameters, and
these can be optimized using generalisation theory without the need for a separate
validation set during training.  The SVM does not fall into the class of ‘just another
algorithm’ as it is based on firm statistical and mathematical foundations concerning
generalisation and optimisation theory.  Moreover, it has been shown to outperform
existing techniques on a wide variety of real world problems.   SVMs will not solve
all of your problems, but as kernel methods and maximum margin methods are further
improved and taken up by the data mining community they will become an essential
tool in any data miner’s toolkit.
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