
Abstracting Reusable Cases from Reinforcement

Learning

Andreas von Hessling and Ashok K. Goel

College of Computing
Georgia Institute of Technology

Atlanta, GA 30318
{avh, goel}@cc.gatech.edu

Abstract. Reinforcement Learning is a popular technique for game-
playing because it can learn an optimal policy for sequential decision
problems in which the outcome (or reward) is delayed. However, Rein-
forcement Learning does not readily enable transfer of acquired knowl-
edge to other instances. Case-Based Reasoning, in contrast, addresses
exactly the issue of transferring solutions to slightly different instances
of a problem. We describe a technique for abstracting reusable cases from
Reinforcement Learning. We also report on preliminary experiments with
case abstraction in a microworld.

1 Introduction

A game-playing agent may use Case-Based Reasoning (CBR) in several different
ways. Firstly, an agent may use CBR for deciding on a specific plan in a given
game situation by retrieving and adapting a plan in a similiar game situation,
or an agent may use CBR for deciding on a specific action in a given game state
by retrieving and adapting an action in a similar game state. For example, Aha,
Molineaux and Ponsen[1] (2005) describe a game-playing agent that uses CBR
for action selection in the real-time strategy game called Stratagus. Secondly,
an agent may use a past case to initialize another method for plan or action
selection. Although we are unaware of any work that actually uses CBR in
this way, Gabel and Riedmiller[2] (2005) describe how cases can be used for
approximating the state value function in Reinforcement Learning, and similarly
West[3] (2005) reports on the potential use of cases for initializing the policy
for action selection in Reinforcement Learning. Thirdly, cases may be used as
abstractions of the results of playing a game by another method. For example,
an agent may use Reinforcement Learning to learn about the right action in
a given state, and then abstract and encapsulate action selection as a case for
transfer to other, similar states. In this paper, we investigate this, the third, use
of CBR in game playing.

Reinforcement Learning (RL) is a popular technique for game-playing be-
cause it can, without supervision, learn an optimal policy for sequential decision
problems in which the outcome (or reward) is delayed. RL has been successfully

used in learning to play games as complex as Backgammon[4]. A limitation of
current RL techniques however is that they do not readily enable transfer of
the acquired knowledge to other instances of game playing (even if the other
instances are only slightly different), but instead require learning of an optimal
policy for each instance. CBR, in contrast, addresses exactly the issue of trans-
ferring solutions to slightly different instances of a problem. The motivation for
the work described in this paper, then, is to use cases for enabling transfer of
RL; the goal is to develop a technique (i.e., a representation and an algorithm)
for abstracting reusable cases from RL.

Abstracting reusable cases from RL raises several technical issues: (a) what
might be the content of a case, (b) how might this case be represented, and (c)
how might a case be abstracted from RL. In our present work, a case contains a
problem-solution 2-tuple, where the problem is represented as a feature vector
describing a world and the solution is represented as a decision tree (DT), which
is a concise classification of the optimal action based on the values of the feature
vector. The technique for abstracting cases from RL has the follwing steps: first,
in a pre-processing phase, an abstraction of the world is modeled as a Markov
Decision Process (MDP) and the optimal policy for a certain task in the world
is generated by Q-learning, a specific version of RL. Then, in a training phase,
for some selected states, the feature values in the world and the action in the
states are recorded. Finally, in a post-processing phase, a decision tree (DT)
is learned from the training instances. The abstracted case contains the feature
vector describing the world and the learned DT representing the optimal actions.

The rest of this paper is organized as follows: first, we provide some back-
ground on Q-learning, DT-learning, and the microworld used in our experiments.
Then, we explain the technique for abstracting cases in the form of DTs from
RL. Finally, we present some preliminary conclusions.

2 Background

This section describes the microworld used in our experiments, and provides a
brief overview of Q-learning and DT learning.

2.1 Domain Specification

Jones and Goel[5] (2004) and Ulam, Jones and Goel[6] (2004) describe our ear-
lier work on game playing in the Freeciv domain. Freeciv is an interactive, turn-
based, multi-player strategy game. The world in Freeciv is non-deterministic,
partially observable, and has a huge state space. Because of the enormous com-
plexity of Freeciv, we found that running meaningful experiments on case ab-
straction in this domain is very complicated and intricate. For this reason, in
the present work we ran experiments in a much smaller and simpler microworld.

The microworld in the present work represents an office room: the room
consists of map tiles arranged in a grid, each of which may have a certain color,
decoration type, or exit sign associated with it. While the exit signs show the

direction to the exit and are placed with purpose, the assignment of decoration
and colors to tiles is random. Walls may be present in map tiles that restrict the
ways in which a certain grid position may be reached from another one. Exits
may be present in any non-wall tile.

The goal of the agent in the office room is to reach an exit. The agent must
make deterministic movements in each time step. On any tile, the agent can
access any other tile that is adjacent to the left, right or straight, relative to its
current position and bearing. Figure 1 demonstrates one possible office world.

Fig. 1. An instance of the microworld. Map tiles may have different decoration such
as colored carpets, chairs or walls. Walls are denoted by dark tiles. An exit sign points
in the direction of the goal. Tiles are indexed by (row, column)

To see the relationship between the Freeciv and the above microworld, con-
sider the task of capturing an enemy city in Freeciv. Again, the world consists
of map tiles arranged in a grid, each of which may contain an enemy city, enemy
soldiers or friendly soldiers. Again, the agent must make deterministic move-
ments in each time step, and again the agent has a small number of actions to
select from. Notice that the task of capturing an enemy city occurs repeatedly
during the course of playing Freeciv, with only small differences in each instance.

2.2 Q-Learning

Q-learning[7] is a temporal difference machine learning method that addresses
the temporal credit assignment problem: how can an agent trying to maximize
its cumulative discounted reward in a sequential decision process determine the
utility values of alternative actions in a particular state, if this reward is delayed?
In other words, Q-learning can generate advice about which of the alternative

actions should be performed in a certain state in order to maximize the reward
over time. For this, Q-learning requires the following input: (a) a set of states, (b)
available actions in the states, (c) transitions between these states, (d) a reward
function, and (e) a discount factor. Given these definitions in a specific MDP
representation of a world, Q-learning can generate an assignment of an action for
every state (”policy”) that is ”optimal”, meaning that it provides the greatest
possible discounted reward over time. This assignment is created by selecting
each state’s action with the highest utility estimates, which are determined by
executing the following update rule until a certain termination criterion is met:

Q (a, s) ← Q (a, s) + α
(

R (s) + γ max
a
′

Q (a′, s′) − Q (a, s)
)

.

Here, Q (a, s) denotes the utility estimate for action a in state s, R (s) refers
to the immediately perceived reward, γ is the discount factor for each time step
and s′ is the state that the agent is in after executing action a. The parameter γ

signifies the learning rate and may be changed to adjust the speed of the learning
process.

One of Q-learning’s great advantages is that it does not require any prior
domain knowledge to perform the task of finding the optimal policy. However,
at the same time, it does not provide any generalization capability between
instances of a problem class. For example, if the reward for just one transition is
changed, the optimal policy may have changed and thus has to be re-computed
for the modified state space. Thus, transfer of learned knowledge is not feasible.

2.3 DT Learning

DT learning[9] is a function approximation technique that provides classification
capability after supervised training on offline data sets. DTs aim at providing
generalization capability by finding patterns in the data that explain the goal
variable. For this task, attribute tests are used to partition a set of instances into
subsets. Information Gain is a measure describing the inverse of the decrease in
entropy (randomness) for an attribute and can be used to rank the attribute
tests in the tree according to their performance. The principle of picking the
attribute that performs best when classifying the instances in the data set is a
heuristic that is the basis of the inductive bias inherent in DT learning, which
amounts to preferring shorter trees over longer trees.

As opposed to many other function approximation techniques such as Neural
Networks, the advantage of DTs is that their restrictive bias (in particular, their
output) is the class of sentences in propositional logic and thus amenable to
human understanding.

3 Abstracting Cases from RL

We now describe our approach to transforming knowledge about an optimal
policy into a classification of the optimal action in a state by this state’s feature

values. Figure 2 shows the task structure of the task of case abstraction. The
following sections describe the tasks of pre-processing by Q-learning, training,
and post-processing (the three left-most leaf nodes in the tree in the figure).
Section 3.1 shows how standard Q-learning is applied to our example domain in
order to determine an optimal policy. Then, in section 3.2, we explain how the
optimal action and the state’s feature values are recorded. Section 3.3 presents
a description of how these records are used to generate concise classifications in
DT learning. G e n e r a t e a n e w c a s e

L e a r n h o w t o s o l v e ac l a s s o f s e q u e n t i a ld e c i s i o n p r o b l e m s S t o r e c a s e
T r a i n i n g :S t o r e r e c o r d sP r e � p r o c e s s i n g :Q � l e a r n i n g P o s t � p r o c e s s i n g :D T l e a r n i n gS e l e c t r e l e v a n t f e a t u r e st h a t a l l o w c l a s s i f y i n g t h eo p t i m a l a c t i o n g i v e n t h ef e a t u r e v a l u e sR e c o r d f e a t u r e s a n d t h eo p t i m a l a c t i o n f o r a s e to f s t a t e sG e n e r a t e a n o p t i m a l p o l i c yg i v e n a M a r k o v D e c i s i o nP r o c e s s

S o l u t i o nd e s c r i b e s h o w t o m a pp e r c e p t s (i . e . f e a t u r ev a l u e s) i n t o a n a c t i o nP r o b l e m
P r o b l e m

P r o b l e m
M D P F e a t u r e sO p t i m a l p o l i c yd e s c r i b e s t h e o p t i m a la c t i o n f o r e a c h s t a t e D a t a p o i n t se a c h d a t a p o i n tr e p r e s e n t s t h e f e a t u r ev a l u e s a n d t h e o p t i m a la c t i o n f o r o n e s t a t e D T

Fig. 2. The structure of the task of abstracting cases from RL.

3.1 Determining an Optimal Policy

In the initial pre-processing step, Q-learning is used in the office microworld
in order to determine an optimal policy which contains the knowledge that is
being transformed in subsequent steps. We define an agent’s state to be a map
tile and its potential successor states to be the map tiles adjacent to the North,
East, South and West, excluding walls. Furthermore, a positive reward is set
for transitions to the terminal exit tile, and 0 for any other transition. Notice
that features existing on map tiles such as colors, decoration types or exit signs
do not influence the operation of the Q-learning algorithm. Instead, Q-learning
determines each state’s action that yields the highest reward based solely on the
states, actions, transitions, and rewards given by the problem instance.

3.2 Storing Records

Whereas Q-learning offers recommendations for choosing an action in a state that
maximize the expected utility, it only views this optimal action in the context of

the current state and the successor states. It does not explicitly take into account
the world’s feature values that may have caused this particular action to be
preferred over other available actions. That is, it does not extract environmental
patterns that may align with a particular action. In our approach, we assume
the accessibility of feature values of the world in a given state. This enables
transforming the knowledge represented in the temporal context to empirical
knowledge about the association between values of the optimal action and world
features. In this knowledge transformation step, a state’s feature values and
its optimal action are stored as a data point. As opposed to Q-learning, this
recording step does not require information about rewards or possible transitions
etc. The training process generates a data point in an (n+1)-dimensional space,
where n is the number of features and where the goal variable is the optimal
action. This data point can be viewed as a Production Rule: in a particular state,
the reactive agent perceives certain world features which make it perform the
given action. This terminology emphasizes the desire to extract decision-making
knowledge as opposed to mere empirical knowledge. However, this requirement
is not necessarily met in cases of irrelevant features, and thus we refer to the
stored records as data points. The purpose of these data points is that they allow
for the application of supervised learning techniques, as we will describe in the
next section.

In the office microworld, converting the knowledge is done by placing the
agent in a random location in the office space and allowing it to continuously
repeat its perception-action loop, which makes it store the data point in this
particular state and then executing the recommended action, until it has reached
the goal. Figure 3 shows an example run in a hand-crafted instance of the office
scenario. The red line shows the path the agent takes following the optimal policy
from its starting position to the exit, perceiving any of its current position’s color,
decorations and exit signs. An exemplary data point that was recorded in state
(2,2) of the map in Figure 3 is given by the following pseudo-code:

((color = "green"),

(decoration = "chair"),

(exitSign = "points left"),

(optimalAction = "turn left and go ahead"))

3.3 Applying DT Learning: Selecting Relevant Features for the

Solution

The process of generating data points does not perform any abstraction function-
ality by itself. That is, the pure memorizing of features with the corresponding
taken action does not necessarily generate knowledge that allows for generaliza-
tion. A post-processing step is needed to determine the relevance of features for
the actions. This step is performed by DT learning, using the optimal action as
the goal variable. The DT learner generalizes the learned knowledge exploiting
its function approximation functionality. The purpose of this is not only to find

Fig. 3. An example path an agent takes when placed in tile (6,1). The agent finds its
way indicated by the red line to the goal at (0,9), according to the arrows in each tile
that represent the optimal action in that state

”meaningful” patterns in the environmental features in conjunction with certain
actions, but also to separate these patterns from irrelevant noise in the data.
In particular, the hope here is to find causal relations between the features and
the action - relations that are functions of features and produce an action that
”makes sense”. The Information Gain measure fits the needs for this separation,
as it measures the decrease in randomness when a certain feature is applied to
the data set. That is, features with high Information Gain are more likely to be
important than others, and fewer of them are needed to describe the situation
than less informing features.

For illustrating this DT learning step in our office scenario, we use the data
points that were recorded during the agent’s execution along the path shown in
figure 3. Applying an ID3[9] implementation on this data set and using the opti-
mal action as the target variable, we obtained the following output (graphically
depicted by figure 4):

if (exitSign == "N/A" (Information Gain = 0.818))

optimalAction = "go straight ahead";

else if (exitSign == "points right" (Information Gain = 0.818))

optimalAction = "turn right and go ahead";

else if (exitSign == "points left" (Information Gain = 0.818))

optimalAction = "turn left and go ahead";

e x i t S i g n(0 . 8 1 8)t u r n l e f ta n d g o a h e a d g o s t r a i g h t a h e a d t u r n r i g h ta n d g o a h e a dp o i n t s l e f t N / A p o i n t s r i g h t
Fig. 4. A prototypical DT that classifies the optimal action only on the basis of the
exitSign feature

This result indicates that DT learning abstracted from irrelevant features
such as chairs or colors - it can completely describe the knowledge-based rules
used to exit the building with the direction the exit sign is pointing to. Notice
that the rules are not only very short and human-readable, but are also based
on empirical correlation (or, in the prototypical case, the rules are based on
knowledge describing how to make good decisions) as opposed to the knowledge
generated by the Q-learner. The generated DT represents the solution generated
for the given problem of exiting a building. Obviously the scenario used here was
hand-crafted to yield this prototypical finding. If the world was less perfect, such
as when the exit sign at position (2,2) would be missing, the answers also get
less clear (figure 5 depicts the following output in a graphical manner):

if (exitSign == "N/A" (Information Gain = 0.818))

if (decoration == "N/A" (Information Gain = 0.244))

optimalAction = "go straight ahead";

else if (decoration == "desk" (Information Gain = 0.244))

optimalAction = "go straight ahead";

else if (decoration == "plant" (Information Gain = 0.244))

optimalAction = "go straight ahead";

else if (decoration == "chair" (Information Gain = 0.244))

optimalAction = "turn left and go ahead";

else if (exitSign == "points right" (Information Gain = 0.818))

optimalAction = "turn right and go ahead";

else if (exitSign == "points left" (Information Gain = 0.818))

optimalAction = "turn left and go ahead";

Here, the algorithm must include decoration as a feature because the envi-
ronmental patterns do not align as clearly with the optimal action as they did
in the previous example. In this case, the agent would go left only when the
current state happens to contain a chair, given it does not perceive an exit sign.
However, the inclusion of many features in the DT may mean overfitting to the
training data and can be addressed by pruning. Similarly, noise can occur due to
(a) incorrect data, such as an exit sign pointing to the wrong direction, (b) an
insufficient amount of data, (c) a non-deterministic behavior of the world gen-
erating the data, or (d) if the features are not capable of describing the concept

e x i t S i g n(0 . 8 1 8)t u r n l e f ta n d g o a h e a d g o s t r a i g h t a h e a d
t u r n r i g h ta n d g o a h e a dp o i n t s l e f t N / A p o i n t s r i g h t

g o s t r a i g h t a h e a d
d e c o r a t i o n(0 . 2 4 4) t u r n l e f ta n d g o a h e a dd e s k c h a i rp l a n t

Fig. 5. In order to describe the decision knowledge, this DT that has to take into
account the relatively irrelevant feature decoration (Information Gain: 0.244) because
this world is less perfect than the previous one in that one exit sign was removed

of an ”optimal action”[8]. It is the subject of future research to address these
issues and and their impact on the scalability of this approach to agents that
play computer games involving highly complex state spaces.

4 Conclusions

Reinforcement Learning is a popular technique for game-playing because it can
learn an optimal policy for sequential decision problems in which the outcome (or
reward) is delayed. However, Reinforcement Learning does not enable transfer of
acquired knowledge to other instances. CBR, in contrast, addresses exactly the
issue of transferring solutions to slightly different instances of a problem. In this
paper we have presented a method for abstracting cases from Q-learning. This
abstraction is achieved by combining the world’s feature values and the optimal
action in each state into one data point for DT learning.

References

1. Aha, D.W., Molineaux, M., & Ponsen, M. (2005). Learning to win: Case-based
plan selection in a real-time strategy game. To appear in Proceedings of the Sixth
International Conference on Case-Based Reasoning. Chicago, IL: Springer.

2. Gabel, T., & Riedmiller, R. (2005) CBR for State Function Approximation in Rein-
forcement Learning. To appear in Proceedings of the Sixth International Conference
on Case-Based Reasoning. Chicago, IL: Springer.

3. West, G. Representations and Approaches for Continent Exploration in the Freeciv
Domain. Internal Project Report, Design Intelligence Group, College of Computing,
Georgia Institute of Technology.

4. Tesauro, G. Temporal Difference Learning and TD-Gammon Communications of
the ACM, March 1995 / Vol. 38, No. 3.

5. Jones, J., & Goel, A.K. Revisiting the Credit Assignment Problem. In Fu, D. &
Orkin, J. (Eds.) Challenges of Game AI: Proceedings of the AAAI’04 Workshop
(Technical Report WS-04-04). San Jose, CA: AAAI Press.

6. Ulam, P., Jones, J., & Goel, A. K. Model-Based Reflection in Game Playing. In
Fu, D. & Orkin, J. (Eds.) Challenges of Game AI: Proceedings of the AAAI’04
Workshop (Technical Report WS-04-04). San Jose, CA: AAAI Press.

7. Watkins, C., & Dayan, P. Technical note: Q-learning. PhD thesis, 1992.
8. Russell, S. and Norvig, P. (2003). Artifical Intelligence: A Modern Approach, Second

Edition, Prentice Hall.
9. Quinlan, J.R. (1979). Discovering rules by induction from large collections of exam-

ples, D. Michie (ed.), Expert Systems in the Microelectronic age.

