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a b s t r a c t

We describe a fast, data-driven bandwidth selection procedure for kernel conditional den-
sity estimation (KCDE). Specifically, we give aMonte Carlo dual-tree algorithm for efficient,
error-controlled approximation of a cross-validated likelihood objective. While exact eval-
uation of this objective has an unscalableO(n2) computational cost, ourmethod is practical
and shows speedup factors as high as 286,000 when applied to real multivariate datasets
containing up to onemillion points. In absolute terms, computation times are reduced from
months to minutes. This enables applications at much greater scale than previously pos-
sible. The core idea in our method is to first derive a standard deterministic dual-tree ap-
proximation, whose loose deterministic bounds we then replace with tight, probabilistic
Monte Carlo bounds. The resulting Monte Carlo dual-tree algorithm exhibits strong error
control and high speedup across a broad range of datasets several orders of magnitude
greater in size than those reported in previous work. The cost of this high acceleration is
the loss of the formal error guarantee of the deterministic dual-tree framework; however,
our experiments show that error is still amply controlled by our Monte Carlo algorithm,
and themany-order-of-magnitude speedups are worth this sacrifice in the large-data case,
where cross-validated bandwidth selection for KCDE would otherwise be impractical.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Conditional density estimation models the probability density f (y|x) of a random variable y given a random vector x.
For example, in Fig. 1 each contour line perpendicular to the x axis represents a conditional density. This can be viewed
as a generalization of regression: in regression we estimate the expectation E[y|x], while in conditional density estimation
we model the full distribution. Fig. 1 illustrates a conditional bimodality such that E[y|x] is insufficiently descriptive for
many tasks. Estimating conditional densities is much harder than regression, but having the full distribution is powerful
because it allows one to extract almost any quantities of interest, including expectations, modes, prediction intervals, outlier
boundaries, samples, expectations of non-linear functions of y, etc. Conditional densities also facilitate data visualization and
exploration. Conditional density estimates are of fundamental utility, applicable to such problems as time series prediction,
static regression with prediction intervals, learning in Bayes nets and other graphical models, and so on. The estimation
problem is challenging, however, because the data from which f (y|x)must be learned generally do not include any exact x
for which f (y|x)will be queried.
Nonparametric kernel techniques address this issue by interpolating between the points that have been seen, with-

out strong assumptions on distributional forms. In nonparametric conditional density estimation, we make only minimal
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Fig. 1. Distribution f (y, x) for which f (y|x) can be either bimodal or unimodal, depending on x. The bold curve represents f (y|x = 80).

assumptions about the smoothness of f (y|x) without assuming any parametric form. Freedom from parametric assump-
tions is very often desirable when dealing with complex data, as we rarely have knowledge of true distributional struc-
ture. Nonparametric conditional density estimation has received some attention from statisticians and econometrics
researchers (Gooijer and Zerom, 2003; Fan and Yim, 2004; Hansen, 2004; Bashtannyk and Hyndman, 2001; Hyndman et al.,
1996; Rosenblatt, 1969), though relatively little when compared to nonparametric regression. Perhaps the main obstacle
to wider adoption has been its computational cost, which is the problem addressed in this paper. Note that what we mean
by nonparametric conditional density estimation is different from other techniques with similar names, such as conditional
probability estimation (which refers to outputting class probabilities in the classification setting, also referred to as class-
conditional probabilities).
In the present work, we consider the standard kernel conditional density estimator that first received serious attention

in the work of Fan et al. (1996) and Hyndman et al. (1996), though it was originally proposed by Rosenblatt (1969). This is a
direct kernel estimator of conditional densities, as opposed to approaches that separately estimate f (y, x) and f (x), which are
combined to estimate f (y|x) = f (y, x)/f (x) (see Stender, 2006). Direct estimation of conditional densities allows parameter
estimation to be formulated as the optimization of a single, unified objective function,whereas separate estimation of f (y, x)
and f (x) optimizes two different objective functions that may not produce the highest-quality conditional densities.
Although the direct estimator we use is consistent given mild conditions on its bandwidths, practical use has been

hampered by the lack of an efficient data-driven bandwidth selection procedure, upon which any kernel estimator depends
critically. We propose a new method for efficiently selecting bandwidths to maximize cross-validated likelihood, an
objective with some advantages over the squared-error criteria used in prior work. The speedup of this method is obtained
by combining Monte Carlo techniques with a dual-tree-based approximation (see Gray and Moore, 2000) of the likelihood
function. This approximation approach belongs to a new class of multi-tree Monte Carlo methods (Holmes, 2009). We
present two versions of fast likelihood approximation, one analogous to previous dual-tree algorithms with deterministic
error control, which gives speedups on the order of 1.5–10-fold in our experiments, and the other with a new, probabilistic
Monte Carlo error control mechanism, which gives much larger speedups—as high as 286,000-fold on one million points.
With this fast learning procedure we can address datasets that are both higher in dimension and several orders of

magnitude larger in size than those reported in previous work, which has been confined to bivariate datasets of size
no greater than 1000 (Fan and Yim, 2004). We present results that validate the accuracy and speedup of our likelihood
approximation on real datasets possessing a variety of sizes and dimensionalities. Most of these datasets were previously
impractical to address with naively computed data-driven techniques. Thus, our fast bandwidth optimization method
enables applications at scales that were previously unreachable. We conclude that kernel conditional density estimation
is a powerful technique that is made substantially more efficient by our fast approximate optimization procedure, with
many opportunities for application in a variety of statistical fields.
In the remainder of the paper we first describe the standard kernel conditional density estimator; this is followed by

a discussion of the bandwidth selection problem and our choice of likelihood cross-validation as a bandwidth selection
objective, at which point we derive our dual-tree approximation algorithms (both deterministic and Monte Carlo), show
experimental performance, and conclude with a summary of results and implications.
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2. Kernel conditional density estimation

We begin by drawing an analogy between the unconditional case of kernel density estimation (KDE), and the conditional
case of KCDE. In the case of KDE with a single scalar bandwidth,1 we estimate a density f (x) from a dataset {xi} by
f̂ (x) = 1

n

∑
i Kh(‖x− xi‖), where:

• Kh(t) = 1
hd
K
( t
h

)
,

• K is a kernel function, i.e., a compact, symmetric probability distribution such as the Gaussian or Epanechnikov kernels,
• d is the dimension of x,
• n is the number of data points,
• h is the bandwidth controlling the kernel widths (see Silverman, 1986).

Kernels allow us to interpolate between the data we have seen in order to predict the density at points we have not seen.
In kernel conditional density estimation, we estimate from a dataset {xi, yi} the set of all conditional distributions f (y|x),

rather than just f (x). This means we have essentially a separate unconditional KDE problem for each possible vector x.
However, given a particular query point x∗ for which we wish to know f (y|x∗), our dataset will most likely not contain
any points with that precise value of x∗. Thus, we have no direct training data for the individual KDE problem of that
particular f (y|x∗). A solution to this problem is to borrow the yi training values that are paired with values xi other than the
queried x∗, and weight them according to how close their xi are to x∗. This is illustrated in Fig. 2. The borrowed yi form a
weighted training set on which something similar to KDE can be performed, finally yielding an estimate of f (y|x∗). Because
interpolation occurs in both x and y, this leads to a double-kernel estimator:

f̂ (y|x) =

∑
i
Kh1(y− yi)Kh2(‖x− xi‖)∑

i
Kh2(‖x− xi‖)

. (1)

Because of its similarity to the Nadaraya–Watson kernel regression estimator, this form is known as the
Nadaraya–Watson (NW) conditional density estimator (Gooijer and Zerom, 2003). For a queried x, it constructs a density by
weighting each yi proportionally to the proximity of the corresponding xi. Note that there are now two bandwidths, h1 for
the y kernel and h2 for the x kernel.
The NW estimator is consistent provided h1 → 0, h2 → 0, and nh1h2 → ∞ as n → ∞ (Hyndman et al., 1996).

Some work in the statistics and econometrics literature has produced extensions to the NW estimator, most notably by
the addition of local polynomial smoothing (Fan et al., 1996; Fan and Yim, 2004; Gooijer and Zerom, 2003). For bandwidth
selection, both reference rules and data-driven procedures have been proposed, but all applications appear to have been
confined to the bivariate case, as has most of the theoretical analysis. This is understandable in light of the difficulty of
selecting good bandwidths for large, high-dimensional datasets: theoretical analysis is difficult, reference rules and other
closed-form methods tend to rely on unrealistic assumptions, and exact computation of data-driven objective functions is
prohibitively expensive.

3. Bandwidth selection

As with all kernel estimators, the performance of the NW estimator depends critically on a suitable choice for the
bandwidths h1 and h2. The aforementioned consistency conditions provide little guidance in the finite-sample setting.
Bandwidth selection has always been a dilemma: on the one hand, asymptotic arguments and reference distributions lead to
plug-in and reference ruleswhereby bandwidths can be efficiently calculated, but these performpoorly on finite samples and
when reference distributions do not match reality; on the other hand, data-driven selection criteria give good bandwidths
but are naively intractable on datasets of appreciable size. We propose a middle road that captures some of the advantage
of each approach by being both efficient and data-driven.
The only data-driven bandwidth score to previously appear in the KCDE literature is the mean integrated squared error

in the following form:

MISE(h1, h2) =
∫
(f (y|x)− f̂ (y|x))2dyf (x)dx. (2)

As shown by Fan and Yim (2004), minimizing MISE is equivalent to minimizing∫
(f̂ (y|x))2dyf (x)dx− 2

∫
f̂ (y|x)f (y, x)dydx . (3)

1 More generally, we can optimize a d× dmatrix of bandwidths.
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Fig. 2. KCDE requires interpolation in both x and y. To estimate f̂ (y|x∗), we place a kernel on each data point (xi, yi), and each of these kernels is weighted
by a second kernel centered on x∗ . This gives a weighted set of kernels on the yi , which we use to construct the conditional estimate f̂ (y|x∗).

A consistent, cross-validated estimate of the MISE is obtained from

M̂ISE =
1
n

∑
i

∫
(f̂ −i(y|xi))2dy−

2
n

∑
i

f̂ −i(yi|xi), (4)

where f̂ −i denotes f̂ evaluated with (xi, yi) left out.
Though conceptually and theoretically appealing, M̂ISE expands to include a triply-nested summation, giving a base

computational cost of O(n3). While this could still be used as the starting point for an efficient approximation, we choose to
start with another criterion that has lower base complexity: likelihood cross-validation.
Likelihood cross-validation is well known in standard kernel density estimation (see Silverman, 1986; Gray and Moore,

2003b), but has yet to be used for KCDE. In kernel density estimation, likelihood cross-validation has the important property
of minimizing the Kullback–Leibler divergence between the estimated and true densities, which in many scenarios can be
as good or better than minimizing a squared-error criterion, e.g., when smoother distributions are desired. A drawback to
the likelihood function is its potential non-robustness to outliers, particularly in the presence of heavy-tailed distributions
(Silverman, 1986); however, our empirical observation is that it generally performs quite well. Since the likelihood is also
computationally cheaper thanMISE,we therefore choose the likelihood as a less expensive (though, atO(n2), still unscalable)
starting point, and focus the rest of the paper on developing a fast likelihood algorithm.
We define the cross-validated log-likelihood for KCDE as

L(h1, h2) =
1
n

∑
i

log(f̂ −i(yi|xi)f̂ −i(xi)), (5)

where f̂ (x) is the standard kernel density estimate over x using the bandwidth h2 from f̂ (y|x). As with the MISE, this
criterion attempts to optimize the conditional density f̂ (y|x), with each contribution being weighted by f̂ (x) so that the
more frequent conditional distributions have more influence on the choice of bandwidth. Although not formulated as such,
f̂ (y|x)f̂ (x) can also be interpreted as an estimate of f (x, y). Maximizing the KCDE likelihoodwill therefore alsominimize the
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Fig. 3. In a dual-tree algorithm, we successively refine a tree-based partitioning of the data. At each point in the refinement, we test whether each pair of
nodes can be approximated without further recursion. If the answer is yes, we use the approximation; otherwise we continue the refinement.

Kullback–Leibler divergence between this implicit f̂ (x, y) and the true f (x, y) (see Silverman, 1986). Since each leave-one-
out term is O(n), the likelihood score is naively computable in O(n2) time. Though less costly than the MISE, this remains
unscalable in large-data settings. We take a dual-tree approach to make it fast.

3.1. Dual-tree approximation

Dual-tree recursion is a spatial-partitioning approach for error-controlled acceleration of computations that require the
calculation of all pairwise distances. It has previously been used to accelerate a variety of computations such as finding
all nearest neighbors, kernel density estimation, and two-point correlations. We present here a brief overview of the
methodology, and refer the reader to the rich vein of work on dual-tree and multi-tree methods for greater detail (Gray
and Moore, 2000; Moore et al., 2000; Gray and Moore, 2003a,b,c; Gray et al., 2004; Gray and Moore, 2004; Gray, 2004; de
Freitas et al., 2005; Klaas et al., 2005a,b; Shen et al., 2006; Gray and Riegel, 2006; Klaas et al., 2006; March and Gray, 2007;
Boyer et al., 2007; Riegel et al., 2008).
For the simple case of a double summation

∑
i
∑
j g(xi, xj) over the data, the essential idea is that we can partition the

set of pairs (xi, xj) into subsets within which the values g(xi, xj) are approximately constant. For each subset r , rather than
explicitly computing g(xi, xj) for every pair, we can simply approximate it by some estimate ĝr . Speedup is gained by the
fact that we do a single estimate per subset, rather than evaluating all pairs; e.g., if there are s subsets, our computation
becomes O(s) rather than O(n2). Error is controlled for the global computation by asking locally, for each subset r , whether
the error induced by approximating all of the g(xi, xj) by ĝr is sufficiently low. If the answer is no, the subset is divided and
the error test is repeated recursively.
Suppose the data {xi} are partitioned into subsets r ∈ R. We can write∑

i

∑
j

g(xi, xj) =
∑
ri∈R

∑
rj∈R

g(ri, rj), (6)

where g(ri, rj) =
∑
i∈ri

∑
j∈rj
g(xi, xj). If, for a given pair (ri, rj), we can determine that g(xi, xj) lies within sufficiently

narrow bounds for all xi ∈ ri and xj ∈ rj, then we can approximate by assuming all pairs in (ri, rj) have a value within those
bounds, without calculating each term explicitly. The bounds on g(xi, xj) can be used to bound the error induced by this
approximation.

Algorithm 1 Generic dual-tree recursion.
DualTree
Input: nodes ri and rj; error tolerance ε
Output: approximate contribution from ri and rj to overall computation

1. if CanApproximate(ri, rj, ε)
(a) return Approximate(ri, rj, ε)
2. if IsLeaf(ri) and IsLeaf(rj)
(a) return DualTreeBase(ri, rj)
3. else
(a) return DualTree(ri.lc, rj.lc, ε)⊕ DualTree(ri.lc, rj.rc, ε)
⊕ DualTree(ri.rc, rj.lc, ε)⊕ Dualtree(ri.rc, rj.rc, ε)

In a dual-tree recursion (see Algorithm 1) we produce partitions Ri and Rj over {xi} and {xj} by traversing two separate
kd-trees over the data.2 See Fig. 3 for an illustration. Ri and Rj contain the set of leaf nodes from each tree, initially consisting
of only the two root nodes. Note that every kd-tree node provides a tight bounding box for the points it contains. Starting
with the roots, the algorithm considers each node pair (ri, rj) to determine whether its contribution to the overall sum can

2 A kd-tree is a type of binary space-partitioning tree used to speed up various kinds of computations. Trees of other types can also be used; see Moore
et al. (2000) for details.
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be approximated (step 1). If so, we make the approximation and prune that branch of the recursion (step 1a). If not, the two
nodes are each replaced by their children, resulting in four recursive node–node comparisons (step 3a), unless both nodes
are leaves (step 2), in which case further refinement is impossible and we are forced to do the brute-force computation
for that pair (step 2a). Note that the mechanism for merging the results of recursive subdivisions, as represented by the⊕
operator in the algorithm (step 3a), depends on the form of the function being approximated.
In order to apply the dual-tree methodology to a new problem, we must:

1. specify a node–node approximation function (Approximate in Algorithm 1),
2. specify the merge operator (⊕ in Algorithm 1),
3. derive a ‘‘pruning rule’’ for deciding whether to approximate or recurse (CanApproximate in Algorithm 1).

In the dual-tree framework, approximation error should be guaranteed to fall within a threshold ε set by the user. The
approximation and pruning scheme must therefore be derived in such a way that local pruning decisions will lead to the
desired global error guarantee.

3.2. The dual-tree approach for fast cross-validated likelihood

We now derive a dual-tree-based approximation to the cross-validated likelihood L. Note that we use ∆ to denote the
absolute error in the estimate of a quantity, e.g.,1L ≡ |L− L̂|. The goal will be to guarantee the following error bound:

1L ≤ ε, (7)

where the error tolerance ε is specified by the user. The main steps in deriving our algorithm are to specify the
CanApproximate and Approximate functions of Algorithm 1, along with an appropriate way of merging approximations
from recursive subdivisions (step 3a of Algorithm 1). We begin by noting that, upon expansion of the f̂ −i terms, we can
write

L =
1
n

∑
i

log(f̂ −i(yi|xi)f̂ −i(xi))

=
1
n

∑
i

log



∑
j6=i
Kh1(yi − yj)Kh2(‖xi − xj‖)∑
j6=i
Kh2(‖xi − xj‖)

(∑
j6=i

Kh2(‖xi − xj‖)
n− 1

)
=
1
n

∑
i

log


∑
j6=i
Kh1(yi − yj)Kh2(‖xi − xj‖)

n− 1


=
1
n

∑
i

log(Ai)− log(n− 1) , (8)

where Ai =
∑
j6=i Kh1(yi − yj)Kh2(‖xi − xj‖). The log(n − 1) term is constant and can be ignored. We will construct our

approximation to L by first constructing a list of approximate Ai terms, whose logs we then sum to get an approximation
L̂. In order to see how the various approximation errors propagate through to the total error in L̂, we will make use of the
following error propagation bounds, which we state as a lemma.

Lemma 1. Let f be any function f (x1, . . . , xm) of m scalar arguments. If for a given argument list (x1, . . . , xm) we substitute
a list of approximate arguments (x̂1, . . . , x̂m) such that the absolute error |xi − x̂i| in each xi is bounded by 1xi, the following
bounds hold for 1f = |f (x1, . . . , xm)− f (x̂1, . . . , x̂m)|:
1. If f =

∑
i cixi, then1f ≤

∑
i ci1xi.

2. If f = log(x), then1f ≤ log(1+ 1x
|x| ).

We proceed by constructing a series of conditions, each of which implies1L ≤ ε, and the last of which will be satisfied
by our algorithm. Combining Rule 1 from Lemma 1 with Eq. (8), we have1L ≤ 1

n

∑
i1 log(Ai), so we can guarantee1L ≤ ε

by enforcing 1n
∑
i1 log(Ai) ≤ ε, which is implied by ∀i,1 log(Ai) ≤ ε. Invoking Rule 2 and a bit of rearrangement, this

becomes equivalent to

∀i,
1Ai
Ai

< eε − 1. (9)

Note thatwe drop the absolute value signs on Ai because, being a sumof kernel products, it is non-negative. Now consider
a partitioning R of the data. We can write

Ai =
∑
r∈R

∑
j∈r
j6=i

v(i, j) =
∑
r∈R

Sir , (10)
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where

v(i, j) , Kh1(yi − yj)Kh2(‖xi − xj‖) (11)

Sir ,
∑
j∈r
j6=i

v(i, j). (12)

We therefore have1Ai ≤
∑
r 1Sir , and our enforcement condition holds if

∀i,

∑
r
1Sir∑
r
Sir
≤ eε − 1. (13)

This condition is in turn implied by

∀i, r,
1Sir
Sir
≤ eε − 1. (14)

Note that this is a stronger condition than necessary to imply Eq. (13), but it is at least sufficient. We summarize this
intermediate result as a lemma.

Lemma 2. Let L̂ = 1
n

∑
i log(̂Ai)− log(n− 1) and let Âi =

∑
r∈R Ŝir for some partitioning R of the data and some approximator

Ŝir of Sir . If the approximations Ŝir satisfy ∀i, r,
1Sir
Sir
≤ eε − 1, then1L ≤ ε.

3.3. Deterministic approximation

Now consider two partitionings Router and Rinner induced by dual kd-trees on the dataset. Router represents a partitioning
of the outer summation index i, while Rinner corresponds to the inner index j (see Eq. (8)). Recall that in the dual-tree
framework (Algorithm 1), each partitioning comes from the leaves of a tree in its current state of expansion. At any point
in the expansion, we examine a pair of nodes ri and rj, each of which contains some subset of the indices. For each Ai with
i ∈ ri, the total contribution from all indices in rj is Sirj =

∑
j∈rj,j6=i

v(i, j). We can bound the terms v(i, j) for all i ∈ ri and
j ∈ rj using the kd-tree bounding boxes of ri and rj. If the bounds on v(i, j) are tight enough to permit an approximation
satisfying Lemma 2, then we can trigger Can-approximate for these contributions while staying consistent with the global
error bound; otherwise we must invoke the recursive comparison of the children of ri and rj.
We now introduce the specific approximator Ŝir that we will use in our algorithm. Given a node pair ri and rj whose

contribution is to be approximated, let vminij and v
max
ij be bounds on v(i, j) (see Eq. (11)) given that i ∈ ri and j ∈ rj. Specifically,

using distance bounds derived from the kd-tree bounding boxes, we have

vminij = Kh1(dy
max
ij )Kh2(dx

max
ij ) (15)

vmaxij = Kh1(dy
min
ij )Kh2(dx

min
ij ). (16)

Define v̂ij =
vmaxij +v

min
ij

2 to be the midpoint estimator for v(i, j) over ri and rj. Let nrj be the number of points in rj. We estimate
Sirj as follows:

Ŝirj = (nrj − 1)v̂ij. (17)

This estimator corresponds to the Approximate function from Algorithm 1. We now give an intermediate lemma
bounding the error of this approximation.

Lemma 3. Let Ŝirj , v
max
ij , and v

max
ij be defined as in Eqs. (15)–(17). The absolute error 1Sirj = |Sirj − Ŝirj | satisfies 1Sirj ≤

(nrj − 1)
vmaxij −v

min
ij

2 + vmaxij .

Proof. First note that setting v̂ij to the midpoint of vmaxij and vminij means that no term v(i, j) in Sirj can differ from v̂ij bymore

than
vmaxij −v

min
ij

2 . With Ŝirj = (nrj − 1)v̂ij, we have

1Sirj =

∣∣∣∣∣∣∣∣(nrj − 1)v̂ij −
∑
j∈rj
j6=i

v(i, j)

∣∣∣∣∣∣∣∣
≤ max

{
(nr − 1)

vmaxr − vminr

2
+ vmaxr , (nr − 1)

vmaxr − vminr

2

}
.
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The first term in the max handles the case where i 6∈ rj, in which case Ŝirj contains a v̂ij for all but one of the v(i, j) terms in

Sirj . We can therefore consider each matched term to be estimated with error no greater than
vmaxij −v

min
ij

2 , and the unmatched
term to be estimated as 0 with error no greater than vmaxr . The second term in the max handles i ∈ r , in which case all terms
in Sirj are matched by terms in Ŝirj . The first term in the max is at least as large as the second, and the lemma follows. �

Lastly, we need to specify how to combine the answers from recursive subdivisions into a unified global approximation
(i.e., the⊕ operator from Algorithm 1). Here we diverge somewhat from the typical dual-tree form in that we will keep our
approximations Âi separate until the end, where the merge will happen by simply summing the log Âi terms. Nonetheless,
we use the dual-tree form to share work across the Âi in such a way as to guarantee the global error bound 1L ≤ ε. The
resulting procedure DetLL is listed in Algorithm 2, and we now prove its correctness.

Algorithm 2 Deterministic dual-tree approximation of the cross-validated log-likelihood objective. Comments are denoted
by //.
DetLL
Input: dataset D of points (xi, yi); bandwidths h1 and h2; error tolerance ε
Output: L̂ s.t.1L ≤ ε

1. Let Â = (0, 0, . . . , 0) contain initial estimates for all Âi
2. Let rooti = rootj = ConstructKDRoot(D)
3. DetDualTreeApprox(̂A, rooti, rootj, ε)
4. Let L̂ = − log(n− 1)
5. for i = 1 to n
(a) L̂ = L̂+ 1

n log Âi
6. return L̂

DetDualTreeApprox
Input: list Â of partial Âi values; nodes ri and rj; error tolerance ε
Output: estimated contributions to Âi from ∀i ∈ ri, ∀j ∈ rj (added to entries of Â)

1. if
(nrj+1)v

max
ij

(nrj−1)v
min
ij
≤ 2eε − 1

(a) Ŝirj = (nrj − 1)v̂ij
(b) for i ∈ ri: Âi = Âi + Ŝirj // approximation of Sirj
2. else if NotSplittable(ri) and NotSplittable(rj)
(a) for i ∈ ri: Âi = Âi + Sirj // exact evaluation of Sirj
3. else
(a) for (p, q) ∈ {{ri.lc, ri.rc} × {rj.lc, rj.rc}}

i. DetDualTreeApprox(̂A, p, q, ε) // all pairs of child nodes

Theorem 1. Given a dataset D, the bandwidths h1 and h2, and an error tolerance ε, theDetLL algorithm returns an approximation
L̂ of the cross-validated log-likelihood L with respect to h1 and h2 over D such that the absolute error 1L satisfies1L ≤ ε.

Proof. DetLL performs exact evaluation of the contributions to each Ai term in all cases except those where
(nrj+1)v

max
ij

(nrj−1)v
min
ij
≤

2eε − 1, in which case the contributions are approximated as Ŝirj = (nrj − 1)v̂ij. The key to the proof is therefore to show
that such approximation leads to1L ≤ ε.

By Lemma 2, if all approximations Ŝirj satisfy
1Sirj
Sirj
≤ eε − 1, then 1L ≤ ε. Since Sirj ≥ (nrj − 1)v

min
ij , we have

1Sirj
Sirj
≤

1Sirj
(nrj−1)v

min
ij
, so we can enforce the condition of Lemma 2 by ensuring that

1Sirj
(nrj−1)v

min
ij
≤ eε − 1. By Lemma 3,

approximatingwith Ŝirj = (nrj−1)v̂ij gives1Sirj ≤ (nrj−1)
vmaxij −v

min
ij

2 +vmaxij . Substituting this bound and rearranging shows

that the Lemma 2 condition is implied by enforcing
(nrj+1)v

max
ij

(nrj−1)v
min
ij
≤ 2eε − 1. This exactly matches the way and conditions in

which DetLL performs approximation. Thus, the approximation scheme of DetLL satisfies the conditions of Lemma 2, and
the algorithm therefore guarantees1L ≤ ε. �
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3.4. Monte Carlo approximation

While the deterministic pruning rule of DetLL guarantees the desired error bound, in practice it operates with a high
degree of overconservatism due to the looseness of the deterministic bounds used in its derivation. In particular, some of the
overconservatism stems from the fact that vminij and v

max
ij are extreme values based on the corners of kd-tree bounding boxes.

These boundsmay be very far from themajority of the v(i, j) terms being summed. In order to reduce this overconservatism
we therefore introduce a new Monte Carlo scheme that uses sampled v(i, j) values to get tighter, probabilistic estimates of
the bounds within which they lie. This scheme allows us to focus on the typical rather than the extreme case; it is also more
robust to the presence of outliers. As a result, we end up with tighter bounds, higher prunes, and therefore larger speedups;
however, this increase in speed comes at the cost of losing the formal, deterministic error guarantees ofDetLL. Nevertheless,
our experiments demonstrate that overall accuracy remains within tolerance, which indicates that the overconservatism of
the rest of the error bounding framework compensates for the added error from the Monte Carlo estimates.
To derive the Monte Carlo scheme we go back to Lemma 2, which guarantees the 1L ≤ ε error bound provided that

1Sirj
Sirj
≤ eε−1. Rather than estimate Sirj and

1Sirj
Sirj
in terms of vminij and v

max
ij , we instead take aMonte Carlo sample fromwhich

Sirj and
1Sirj
Sirj
can be estimated. The Monte Carlo procedure comprises steps 1–4 of Algorithm 3, and it works as follows. For

a given pair of nodes ri and rj whose contribution Sirj we wish to estimate, we sample m pairs (i ∈ ri, j ∈ rj) of data
indices, discarding any for which i = j. We then compute µv as the mean of v(i, j) over the samples, fskip as the fraction of
samples discarded, and σµ, a standard error for µv , from B bootstrap resamplings of our sampled v(i, j). We then construct
a normal confidence interval for µv of width 2z standard errors. We estimate Ŝirj = (1 − fskip)nrjµv , which implies that if

our confidence interval is correct, the required bound
1Sirj
Sirj
≤ eε − 1 from Lemma 2 is satisfied if zσµ/µv ≤ eε − 1. This last

condition therefore becomes our Monte Carlo pruning rule.

Algorithm 3 Monte Carlo dual-tree approximation of the cross-validated log-likelihood objective. Comments are denoted
by //.
MCLL
Input: dataset D of points (xi, yi); bandwidths h1 and h2; error tolerance ε; sample size m; number of sample replications
B; number of std. errors z
Output: L̂, targeting approximation error1L ≤ ε
⇒ identical to DetLL (Algorithm 2), with the exception of line 3:

3. MCDualTreeApprox(̂A, rooti, rootj, ε,m, B, z)

MCDualTreeApprox
Input: list Â of partial Âi values; nodes ri and rj; error tolerance ε; sample sizem; number of sample replications B; number
of std. errors z
Output: estimated contributions to Âi from ∀i ∈ ri, ∀j ∈ rj (added to entries of Â)

1. Samplem pairs (i, j) uniformly from ri and rj, rejecting if i = j
2. µv = mean of v(i, j) over sample, fskip = fraction of pairs rejected due to i = j
3. σµ = standard error of µv from B bootstrap resamplings
4. if zσµ/µv ≤ eε − 1
(a) Ŝirj = (1− fskip)nrjµv
(b) for i ∈ ri: Âi = Âi + Ŝirj // approximation of Sirj
5. else if NotSplittable(ri) and NotSplittable(rj)
(a) for i ∈ ri: Âi = Âi + Sirj // exact evaluation of Sirj
6. else
(a) for (p, q) ∈

(
{ri.lc, ri.rc} × {rj.lc, rj.rc}

)
i. MCDualTreeApprox(̂A, p, q, ε) // all pairs of child nodes

The full Monte Carlo dual-tree procedure, MCLL, is specified in Algorithm 3. Note that the sample size m, number of
bootstrap resamplings B, and confidence interval half-width z are parameters of the algorithm.We have found the algorithm
performance to not be highly sensitive to these values, and for all of our experiments we usedm = 25, B = 10, and z = 1.5
as a good compromise between accuracy and speed. While one might be concerned that this number of samples is small
relative to large dataset sizes, it is important to note that the number of data points in each node decreases exponentially
as we move down the tree. The Monte Carlo estimates at higher nodes need only be good enough to indicate that the
variance is large, leading to further node splits such that the final estimates (whose accuracy controls the final algorithm
accuracy) aremade in lower-level nodes. These final nodes are not only smaller, but alsomore tightly clustered,making good
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small-sample estimation possible. One could also envision a scheme for sizing the samples adaptively; this may be a fruitful
avenue for future work.

3.5. Optimization

Due to the noisiness of L over the bandwidth space, its gradient is of little utility. Thus, we adopt a similar scheme
to that of Gray and Moore (2003b): evaluate the likelihood at all combinations of h1 ∈ {10−4, 10−3, . . . , 102} and
h2 ∈ {10−4, 10−3, . . . , 102}. Given standardized data, this allows us to cover all orders of magnitude within a range that,
in practice, is more than wide enough to cover the optimal bandwidth pair. Evaluating over this grid allows us to gauge
the composite performance of our likelihood approximations over the full range of bandwidths, from near-optimal to far-
from-optimal. For applications, one might wish to evaluate on a grid with somewhat finer resolution, e.g., at intervals
{0.25, 0.5, 0.75, 1}within each order of magnitude.

4. Experiments

We present results from two sets of experiments. The first set is designed to test the efficiency and accuracy of our
likelihood approximation algorithms across a broad array of datasets. In order to gauge the exact speedup and error
performance of our methods, we restrict ourselves to medium-sized datasets (17,000–60,000 points) so that the baseline
exact evaluations can be done in reasonable time. In the second set of experiments, we test the scalability of our Monte
Carlo procedure by applying it to datasets on the order of hundreds of thousands to millions of points. Datasets of this size
represent the largest reported applications of KCDE to date, by several orders of magnitude.
We note several details about the experimental methodology. First, while our method works with any kernel function,

we used the Epanechnikov kernel in all cases (see Silverman, 1986). Second, all data were standardized (mean subtracted,
divided by standard deviation) on a per-dimension basis. This allows us to search the same bandwidth range for all datasets.
While not the same as individually optimizing per-dimension bandwidths, standardization means that the bandwidth h2
effectively provides a scaled bandwidth h2σd for each dimension d of x.
The nature of the cross-validated likelihood score L over a kernel with finite support (such as the Epanechnikov) is such

that it can be pushed in value to −∞. This happens in cases where one or more points are far enough from the others
that they receive no leave-one-out probability density. The MCLL approximation occasionally returns a finite value for
bandwidth pairs whose true score is −∞. This is not problematic in practice, and, in fact, one could argue that this is a
‘‘feature’’ that makesMCLLmore robust than exact cross-validated likelihood. In order not to skew the picture of accuracy,
however, such instances were left out of the error averages. Both speedup and error measurements for the Monte Carlo
approximation are averaged first across five invocations per evaluated bandwidth pair, then across all bandwidth pair
averages. For deterministic approximation, we average only across all bandwidth pairs.
In order to compensate for the overconservatism of our approximation framework and to put the two approximation

methods on equal grounds in terms of error performance, the error tolerances for the deterministic and Monte Carlo
approximations were set to ε = 700 and ε = 1, respectively. These were chosen to consistently give actual errors of
no more than 0.1. The additional parameter settings for the Monte Carlo algorithm were: m = 25 (sample size); B = 10
(resampling replications); z = 1.5 (number of standard errors for confidence interval).
All experiments were run sequentially on a two-processor Intel Xeon 3.8 GHz hyperthreading machine with 8 GB

memory.

4.1. Error control and speedup on medium-scale datasets

In the first set of experiments, we ran the full optimization procedure described in Section 3.5 on seven medium-
sized datasets ranging from 17,605 to 61,634 points in 3–16 dimensions. For each bandwidth pair evaluated during the
optimization, we recorded the evaluation time and score for (1) exact evaluation, (2) deterministic dual-tree approximation
(Algorithm 2), and (3) Monte Carlo dual-tree approximation (Algorithm 3). For both deterministic and Monte Carlo
approximation, we compare the approximate likelihood scores to the exact scores and report the average error across
all evaluated bandwidths. We also report the speedup in terms of total evaluation time over all bandwidths, with
speedupapprox = timeexact/timeapprox. Tables 1 and 2 give the numerical results (datasets names appear in the first column).
Several patterns are apparent in these results. First, both the deterministic and Monte Carlo dual-tree methods give

speedup over the exact method while keeping error small. Speedups for the deterministic algorithm, however, are less than
10 in all cases, while the addition of Monte Carlo yields speedups from themid-thousands to just over ten thousand. Adding
Monte Carlo to the dual-treemethodology is therefore seen to give a boost of 2–3 orders ofmagnitude over the deterministic
approach. Again, the reason for this is that Monte Carlo bounds are much tighter than the worst-case deterministic bounds,
leading to higher prunes and far less overall work being performed.
The cost of increasing speedup via Monte Carlo is the loss of the formal error guarantee provided by the deterministic

approximation. As we can see, however, error is still well controlled by theMonte Carlo algorithm, so this is a small sacrifice.
Average absolute errors are below 0.1 in all cases, which generally corresponds to a relative error of less than 5%.
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Table 1
Results for deterministic dual-tree likelihood approximation over a range of medium-sized datasets.

Dataset n d Exact time (min) Det. time (min) Speedup Error

sp500 17,605 6 296.2 30.9 9.6 0.03
census 20,640 9 203.9 136.4 1.5 0.02
spectral 46,420 5 818.8 374.8 2.2 0.02
sdss50k 50,000 3 621.5 110.0 5.7 0.04
galaxy50k 50,000 3 424.7 99.2 4.3 0.02
quasar50k 50,000 4 1337.2 384.7 3.5 0.009
corel 61,634 16 2533.0 1380.6 1.8 0.032

Table 2
Results for Monte Carlo dual-tree likelihood approximation over a range of medium-sized datasets.

Dataset n d Exact time (min) MC time (s) Speedup Error

sp500 17,605 6 296.2 2.2 8,265 0.05
census 20,640 9 203.9 2.6 4,745 0.01
spectral 46,420 5 818.8 5.7 8,606 0.01
sdss50k 50,000 3 621.5 6.5 5,746 0.05
galaxy50k 50,000 3 424.7 4.1 6,165 0.05
quasar50k 50,000 4 1337.2 4.9 16,233 0.0006
corel 61,634 16 2533.0 13.1 11,598 0.009

Table 3
Results for Monte Carlo dual-tree likelihood approximation over a set of large-scale datasets.

Dataset n d Exact time MC time Speedup

sdss 389,353 3 26.4 days 33.7 s 67,611
galaxy1M 1000,000 3 197.4 days 1.7 min 169,572
quasar1M 1000,000 4 1.2 years 2.1 min 286,564

Another important pattern is the behavior of speedup as datasets increase in size. In the Monte Carlo case, speedup
appears to trend upward with dataset size, and this is further validated by the larger-scale datasets addressed in the next
section. In the deterministic case, the pattern is less clear, but may show a slight increasing trend. This is another strong
reason for preferring the Monte Carlo algorithm in the large-data case, as its speedup level is more likely to be able to keep
up with the O(n2) growth in computational cost of the exact algorithm.
All together, these medium-scale results indicate that both the deterministic and Monte Carlo dual-tree algorithms

provide high-quality approximations, but the Monte Carlo approach is much faster. We therefore use the Monte Carlo
algorithm exclusively as we examine the scalability of our likelihood approximation scheme.

4.2. Scalability on large datasets

We now address the large-data regime for which fast approximation is most important. In particular, we give results
for our three largest datasets, each of which contains on the order of 105–106 points. Because the exact likelihood is too
expensive to compute on datasets of this size, we instead extrapolated exact runtimes by fitting a quadratic curve to the
runtimes on smaller subsamples of sizes {10, 25, 50, 75}×104. We then approximated likelihoods on the full-sized datasets
using Monte Carlo dual-tree approximation. Table 3 summarizes the runtime performance.
We see in these results a continuation of the pattern of substantially increasing speedup as dataset size increases.

Speedups range from around 67,000 to over 286,000. In absolute terms, the runtime reductions are quite significant, e.g.,
from 1.2 years to 2.1 min in the largest case. Relative to the medium-sized datasets, the Monte Carlo runtimes went from
several seconds to several minutes, while the exact runtimes went from hundreds of minutes to tens and hundreds of
days. This demonstrates excellent scalability. Our application of KCDE to datasets of size 106 is larger than any previously
published application of KCDE by three orders of magnitude (Holmes et al., 2007). Combined with the good error control
demonstrated in the previous section, these results would seem to makeMCLL the algorithm of choice for KCDE likelihood
optimization on large datasets.

5. Conclusion

We have presented a fast, scalable, approximate method for cross-validated, data-driven bandwidth selection in kernel
conditional density estimation. This method injects Monte Carlo sampling into the dual-tree framework that has previously
been used to produce state-of-the-art scalable bandwidth selection for other kernel estimators. Our Monte Carlo method is
powerful because it enables KCDE to be used for datasets and applications that previously would have been computationally
impractical. It optimizes a cross-validated likelihood objective that presents advantages over the squared-error losses used



Author's personal copy

1718 M.P. Holmes et al. / Computational Statistics and Data Analysis 54 (2010) 1707–1718

in prior work. Because KCDE is such a fundamental and versatile method, having a fast, scalable version opens the door
to being able to ask new questions, produce new forms of visualization and analysis, develop new methods that would
previously have been too costly, and so on.
Experimentally, we have shown that our Monte Carlo dual-tree method controls error, produces speedups on the order

of 103–105, and scales to datasets on the order of at least one million points. Absolute computation time reductions were as
large as from 1.2 years to 2.1 min. These are very significant speedups, and represent an advance of at least several orders
of magnitude in both speed and addressable dataset size over the prior state of the art.
The major drawback to this Monte Carlo dual-tree algorithm is the loss of formal error guarantees relative to the

deterministic dual-tree method. Current and future work is focused on addressing this shortcoming by moving from the
‘‘Monte Carlo in trees’’ approach used here to a ‘‘trees in Monte Carlo’’ approach that puts the approximation on a fully
Monte Carlo footing while still leveraging the power of tree-based spatial partitioning. The hope is that this will yield formal
relative error control while also broadening the scope of applicability beyond likelihood-based KCDE to include fast Monte
Carlo learning procedures for other kernel estimators, such as kernel density estimation and kernel regression, and other
objective functions, such as MSE and MISE.
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