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Abstract— We address the problems of measuring geometric
similarity between 3D scenes, represented through point clouds
or range data frames, and associating them. Our approach
leverages macro-scale 3D structural geometry - the relative
configuration of arbitrary surfaces and relationships among
structures that are potentially far apart. We express such dis-
criminative information in a viewpoint-invariant feature space.
These are subsequently encoded in a frame-level signature
that can be utilized to measure geometric similarity. Such a
characterization is robust to noise, incomplete and partially
overlapping data besides viewpoint changes. We show how
it can be employed to select a diverse set of data frames
which have structurally similar content, and how to validate
whether views with similar geometric content are from the same
scene. The problem is formulated as one of general purpose
retrieval from an unannotated, spatio-temporally unordered
database. Empirical analysis indicates that the presented ap-
proach thoroughly outperforms baselines on depth / range data.
Its depth-only performance is competitive with state-of-the-art
approaches with RGB or RGB-D inputs, including ones based
on deep learning. Experiments show retrieval performance to
hold up well with much sparser databases, which is indicative
of the approach’s robustness. The approach generalized well -
it did not require dataset specific training, and scaled up in our
experiments. Finally, we also demonstrate how geometrically di-
verse selection of views can result in richer 3D reconstructions.

I. INTRODUCTION

The problems of computing similarity and establishing
association between range images and/or 3D point clouds of
scenes (observed from a viewpoint, henceforth referred to as
scene-views) is fundamental to robotics and computational
perception in general. It plays an important role in a multitude
of applications. Loop closure (identifying a place visited
earlier in the trajectory) is intrinsic to metric SLAM ([9]).
Localizing with respect to a previously reconstructed map
or scene model, and relocalizing after a tracking failure
(determining sensor pose without pose priors from trajectory)
- both are essential for mapping in practice as well. Different
forms of the problem are also key to many navigation
scenarios, and in perception tasks such as scene-guided search
/ foraging or location-based context and activity recognition.

In a minimally restrictive setting, the aforementioned
problems (and several others) can be formulated as a retrieval
problem - to recognize / identify a scene-view by linking it
to stored ones in an assorted, unorganized database. Such a
setting would not require any pose priors, spatio-temporal
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contiguity of collected data1 or other additional information
such as annotations or reconstructed models, and would
remove the need to learn a specific pose estimator / regressor
for each workspace.

While a lot of progress has been made over the years,
including in the retrieval domain, competitive scene asso-
ciation approaches in literature have mostly been reliant
on (discriminative) appearance information. Relatively few
methodologies work well on noisy, imperfect 3D point clouds
or depth images from the real world. Often they critically
rely on additional pieces of information available in their
target scenario - to prune the association hypothesis space,
or obtain strong indirect priors on scene similarity, or enable
construction of aggregated spatial information structures to
allow its estimation (for instance, [25, 11, 7, 32, 6, 3]) 2.
Approaches also often operate under limited changes in
viewpoint and / or on specific types of scene geometry (such
as [42, 11, 29]) or they solve a simplified 2D problem (such
as [19]). Understandably, methodologies like above are either
use case limited or restrictive. Note that approaches like [10]
do not ascertain association at all - these directly solve for
3D poses between pre-associated set of data frames.

The dearth of purely 3D geometric scene association
approaches in the real world can be primarily attributed to the
considerably more ambiguous and challenging depth / range
sensing modality. In general, the modality has high local
ambiguity and may not be lavish with information on the
whole (in contrast to rgb). Data acquired from commodity 3D
range / depth sensing hardware tends to be particularly noisy
as well, has several imperfections. Locally smooth, isomorphic
and self-similar nature of typical 3D data from indoor or
structural environments makes the problem more difficult.
Changes in viewpoint, occlusions and partially overlapping
views / content significantly exacerbate the problem further.

We present a minimally restrictive retrieval methodology.
Our approach affords means to evaluate geometric content
similarity between 3D point sets and associate them. We show
how it can be utilized to affect geometric diversity as well.

We generate descriptive frame-level signatures directly
from range images / point clouds (any additional information
or assumptions touched upon earlier are not utilized). We
make use of macro scale geometry — 3D geometrical
interactions (derived from relative angles and distances) over

1 Spatio-temporally unordered databases can store data acquired from
multiple sensors, at multiple times and from disparate locations; could just
constitute of snapshots covering scenes of interest.

2 Quite commonly, approaches rely on spatio-temporal contiguity of frames
to to obtain priors or accumulate data structures to ascertain the association.



Fig. 1: Retrieval pipeline overview. The query view is indicated in the top-left. Input is a range image or a 3D point cloud. The database (bottom
left) constitutes of unordered signatures from arbitrary scene-views, with no labels or ground truth pose annotations. The set of nearest-neighbor
retrieved views undergo diversification and subsequent validation. The point clouds are color mapped according to the surface normals - the RGB
color of a 3D point is proportional to the component values of its normal.

an arbitrarily large span, between arbitrary surfaces, primitives
and structures, and their spatial arrangement (for example
between walls, floor and furniture, between fixtures and
equipment, or just between various parts of a given structural
entity). Such interactions when considered collectively are
highly discriminative. They are expressed in a learnt viewpoint
invariant feature space (III-A). To characterize a scene-view,
high order gradient statistics from a dense set of projected
interactions are utilized (Fisher Vector, III-B). To identify
a geometrically diverse subset from set of similar retrieved
views (III-C), we model a Determinantal Point Process (DPP,
III-D). And to establish association with some of the retrieved
views, we employ a fine-grained spatial validation scheme
which ascertains consistency of rigid geometry overlap (III-E).

The proposed approach not only outperformed the range /
depth data baseline, but was also comparable or better than
state-of-art RGB and RGB-D approaches (including ones
based on CNN 3) - and without relying on any additional
pose annotations, apriori reconstructed 3D world models, or
assumptions such as spatio-temporal contiguity of training
data used by other approaches.

Experiments also indicated the learning to be general -
unlike most other approaches, it did not require dataset
specific training; a single learnt model performed well
across the board. Experiments also indicated the performance
holding up under significantly sparser databases, and under
significantly increased database scale and diversity. Our empir-
ical evaluations quantifying geometric diversity of retrievals
were quite encouraging as well. They not only indicated a
significant increase in viewpoint diversity of the retrieved
set, but also suggested the efficacy of the proposed approach
for richer reconstruction and increased workspace coverage -
promising hitherto unexplored application scenarios, such as
assistive structural search.

II. RELATED WORK

We refer to only more recent 3D literature among the vast
and varied landscape. State-of-the-art loop closure, camera

3 Note that our approach considers surface patches as far as half a frame
apart from the outset – a distinct difference from popular convolutional
network based learning approaches that start by building local features.

relocalization and place recognition approaches have been
primarily based on visual information ([28] presents a recent
survey). Many rely on landmark-based features, such as SIFT
or ORB, for instance [34, 1, 31, 26]. Approaches such as
[38] have focused on the classification problem - one of
categorizing similar scenes. [38] utilizes user annotated 3D
data to categorize scenes with viewpoint invariance.

Recent state-of-the-art sensor relocalization approaches
in real world structural settings [46, 4, 26, 47, 22] are
appearance-reliant as well. They also have other critical
requirements like scene-specific learning, and / or workspace
models or apriori constructed feature clouds (Section IV).

As discussed earlier, high-performing scene association
approaches operating solely on 3D range/depth data have been
relatively scarce. A significant amount of efforts have been
put on local 3D point features, such as [44, 37, 42]. There
have also been work based on complete point clouds include
variants of Iterative Closest Point, Normal Distributions
Transform and aggregated 3D features (often position based,
such as height above ground, [13]) over densely sampled
keypoints. While they work well under some conditions, their
performance deteriorates quickly with increasing change in
viewpoint and sensor rotations - [15, 14, 39] amongst others,
have noted this as well.

[39] matches surface patches between views operating on
range / depth data. Our geometric property extraction is along
similar lines, and our validation scheme builds upon it. In
contrast to [39], which presents a localized surface patch
matching algorithm based on aligning geometric sequences
defined over neighborhood patches, this work focuses on cap-
turing holistic scene level content for ascertaining geometric
content similarity and retrieval.

A number of successful methods exist for shape-based
retrieval. [27] presents a recent survey. Shape retrieval
approaches are designed to work with CAD object models or
clutter free, object-centric data, often with 3D figure-ground
information (in contrast to raw, egocentric scene data from
noisy sensors) 4. There have been some successful approaches

4 These also involve specific assumptions - for example, watertight
manifolds, surfaces with geometric texture, or disparate / distinctive topology.



Fig. 2: For a given patch µ, relative and invariant 3D prop-
erties are extracted with respect to patches in a non-local
neighborhood. To facilitate that, an orthonormal, viewpoint
agnostic frame is derived using the Gram-Schmidt process.

Fig. 3: Geometric properties are extracted over a hierarchy of patch segmentations. At
each segmentation level, the aggregate sets of properties is first mapped to a viewpoint
invariant geometric feature space. These are then jointly encoded as a view level
signature using fisher vector embedding.

for 3D object instance detection in clutter, by employing pre-
ascertained 3D object templates, for example [21, 2]. More
recently, approaches such as [36] have learnt object point
clouds to identify 3D shapes with distinct topology.

III. METHODOLOGY

Given a queried scene-view, VQ, and an extant database, D,
of various views from various scenes, {Vs}D - our algorithm
a) Retrieves a set of views which have structurally similar
content as VQ, b) Identifies a geometrically diverse subset of
views from this retrieved set, and c) Ascertains whether some
of these views pertain to the same scene as VQ (Figure 1).

We denote {xi}cXi=1, xi ∈ X to indicate VX ’s segmentation
into smooth surface patches. {Xh}Hh=1 denotes the segmen-
tation hierarchy then. Hierarchy generation is outlined in
Section III-F. To simplify notation, we only indicate the
hierarchy level h when it improves clarity.

A. Geometric feature space description

Geometric property set extraction : For a given view VX ,
at a particular segmentation level - we first express each patch
xi through a 13-D vector set, F ′xi of robust, viewpoint agnostic
and macro scale 3D geometric properties. These are derived
by utilizing 3D relationships relative to other patches in xi’s
neighborhood, Nxi (along similar lines as [39]). Note that
Nxi is large, non-local - it could span the entire segmentation,
X − xi. Neighboring patch count, |Nxi |, is indicated as cxi .

For a patch xi ≡ µ ∈ X, we denote its mean surface normal
as n̂µ and its 3D mean as lµ. Denoting α to indicate a patch
in µ’s neighborhood, with n̂α, lα denoting its normal and
mean respectively - an orthonormal basis can be derived from
the spanning vectors n̂µ and rαµ = lα − lµ through the Gram-
Schmidt process. Figure 2 illustrates this. It also formulates
the resultant orthonormal basis, <ûαµ , v̂αµ , ŵαµ>, where ûαµ is the
unit vector in the direction of rαµ . Note that coordinate frame
spanned by this orthonormal basis is agnostic (invariant) of
the sensing viewpoint, since it is a reference frame local to
µ & α. Also note that this basis is seldom degenerate, as
n̂µ and rαµ are rarely colinear, especially when data frames
are captured from a projective sensing process.

For each neighboring surface patch α in µ’s neighborhood,
Nµ, we are able to thus extract the following vector of
viewpoint invariant properties, {f ′αµ }∀α∈Nµ :

f
′α
µ = [ θn̂α,n̂µ , θûαµ ,n̂µ

, θûαµ ,n̂α
, rαµ ·n̂µ, n̂α·ûαµ , n̂α·v̂αµ , n̂α·ŵαµ , . . .

rαµ ·(n̂α×n̂µ), ||rαµ ||, ||rαµ ||·sgnεθ (n̂µ ·ûαµ), ||rαµ ||·sgnεθ (n̂α ·ûαµ), . . .

||rαµ || · sgnεθ (n̂α · v̂αµ ), ||rαµ || · sgnεθ (n̂α · ŵαµ ), ]T (1)

The θ above refers to the angle between the indicated
vectors and × represents an outer product. sgne(..) is a robust
signum function that clamps to zero when its parameter
6∈ [cos−1(PI−eθ), cos−1(eθ)], with eθ accounting for allowable
tolerance to angular noise.

The feature vector f ′αµ basically represents an overcomplete
characterization of relative properties between the two patches
- formulated in a viewpoint agnostic fashion. The first part
(first 9 features) captures angular relationships between r

µ
α,

n̂α & n̂µ, characterizes n̂α in the invariant frame derived from
rαµ and n̂µ, and characterizes rµα. The second part (remaining
4) consists of robustified features - as a measure against noises
arising due to estimation from real world, noisy data. Signs of
projected normals’ components are captured through robust
signum functions and are augmented with the magnitude of
relative displacement vector.

Feature space projection : A patch’s property set F
′
xi

=

{f
′α
xi
}α∈Nxi is then projected onto a subspace learnt through

nonlinear independent component analysis ([23]). The pro-
jection reduces redundancy in f

′α
xi , denoising and making the

components more independent. Importantly, this fits with the
component independence assumption made in Section III-B
to train Gaussian mixtures with diagonal covariances.

The feature space projection results in a 12-D feature
vector set Fxi={f

α
xi
}α∈Nxi . By considering the patches in

xi’s macro scale neighborhood, Nxi , the feature set Fxi can
thus robustly express the 3D geometry in xi’s non-local
neighborhood. An aggregation of such feature sets arising
from all the patches, FX= {Fxi}

cX
i=1≡ {f

α
xi
|xi∈X,α∈Nxi}, can

thus invariantly and richly express the geometry of the entire
scene as captured by VX . Finally, the above procedure is
repeated for each level in the segmentation hierarchy, to
capture fine as well as coarse details. This results in a
hierarchy of aggregate feature vector sets,

{
FXh

}H
h=1

.



B. Encoding feature space statistics

To obtain a descriptive signature for a given view, VX ,
we encode the aggregated feature sets using Fisher vector
embedding (FV, [20, 35]) - this captures the normalized
gradient of the log-likelihood of the feature sets. The
Fisher kernel theory, first presented in [20], introduces a
similarity kernel, arising as a consequence of maximizing the
log-likelihood of generatively modeled data. In this paper,
Gaussian Mixture Models (GMM) were used to model the
feature space distribution.

Given a learnt GMM, PΘ, parameterized as Θ= {pg, νg,Λg}G1 ,
the FV embedding of the aggregate feature set FX , indicated
as φ(FX ), is obtained as φ(FX)=LΘ∇Θlog(PΘ(FX)). Here, LΘ

is the Cholesky decomposition factor of the inverse Fisher
Information Matrix, and ∇Θlog(PΘ(FX)) is the score function
(log-likelihood gradient). Following similar analysis as [35],
under assumptions of diagonal covariance matrices, Λg , and
independence of the samples, fαxi , the embedding evalu-
ates as φ(FX)=

[
m0

1,m
1T

1 ,m2T

1 ...m0
g,m

1T

g ,m2T

g ...m0
G,m

1T

G ,m2T

G

]T
- where m0

g , m
1
g , m

2
g respectively capture the normalized

zeroth, first and second order statistics of the sample set
that falls in the g-th mixture component of the GMM. φ(FX )

has a dimensionality of dφ = (2dF + 1) ·G, where G is number
of mixture components, and dF = 12 is the dimensionality
of our geometric feature space. Below, 1 denotes an all-one

vector and πij,g=
exp

[
− 1

2
(f
xj
xi
−νg)T Λ−1

g (f
xj
xi
−νg)

]
∑G
g=1 exp

[
− 1

2
(f
xj
xi
−νg)T Λ

−1
g (f

xj
xi
−νg)

] .

m0
g =

1

cXcxi
√
pg

cX∑
i=1

cxi∑
j=1

(πij,g − pg) (2a)

m1
g =

1

cXcxi
√
pg

cX∑
i=1

cxi∑
j=1

πij,gΛ−1/2(f
xj
xi − νg) (2b)

m2
g =

1

cXcxi
√

2pg

cX∑
i=1

cxi∑
j=1

πij,g

[
Λ−1(f

xj
xi − νg)(f

xj
xi − νg)T − I

]
1

(2c)

φ(FX ) is then component-wise square root normalized
(by replacing each component, 'a' of φ(FX) by '|a|1/2sign(a)'),
and `2 normalized. The square root normalization serves
to alleviate the dominant effect of relatively indiscriminate
samples occurring with high frequency (for example, arising
from patches on a wall or ceiling) and the `2 normalization
helps generalization across different scenes by normalizing
the energy content. The desired view signature vector for VX ,
denoted as ψ(X), is obtained by evaluating the embedding
at each level in hierarchy, and concatenating them — ψ(X)=[
φ(FX1 )T ,... φ(FXh )T , ..., φ(FXH )T

]T
C. Similarity and Retrieval

The thus obtained view signature, ψ(X), captures discrimi-
native 3D geometrical properties, and is robust to viewpoint
changes, sensor noise, occlusions and other data imperfections
by design. As experiments indicate, a metric based on
such view signatures is a reliable measure of 3D geometric
similarity. We tried `1 & `2 distance metrics, and used `1 for
all experiments in the paper as it performed better. Thus the

similarity between two given views VX & VY can be denoted
as, s(X,Y ) = −(

∑25GH
1 |ψ(X)− ψ(Y )|1).

Given a a queried view, VQ, and a database D of view
signatures, one can thus retrieve a set of putative view
associations in the geometric sense through nearest neighbor
queries. We indicate this retrieved set of putatively associated
views as R = {VX}

cR
X=1.

D. Diversity Sampling with Determinantal Point Processes

Depending on the distribution of scenes’ views in the
database, R = {VX}

cR
X=1 could be overwhelmed with views

which are near duplicates (all being very similar to each other,
hence almost equally similar to the queried view). This may
not be desirable since the subset of top retrievals could just
be flooded with near duplicates of false putative associations,
resulting in complete failure. By filtering out near duplicates,
a diversity based subset selection procedure may still be able
to salvage correct, albeit lower ranked, putative associations
present in R with further post-processing validation.

A diverse set of retrievals is generally desirable. It would
provide assorted and possibly complementary information,
which could be made use of thereon. For instance, it could
be potentially beneficial in reconstruction or coverage tasks,
where diverse viewpoints observing the environment with
only partially overlapping content are more desirable than
having redundant views from nearly the same perspective. A
querying human user could also be better assisted by being
provided with a diverse set of the retrievals to choose from.

Determinantal point processes ([24]) are employed to
select a diverse subset of candidate views, C, from R. A
point process PL is called an L - ensemble k-determinantal
point process if for every random subset, C, of R, such
that |C| = k, drawn according to PL, we have PL (C;R) =

det(LC)
Σ∀A∈R, |A|=k det(LA)

. L here is a symmetric positive semi-
definite similarity matrix indexed by the elements of R. LC is
the principal minor (submatrix) with rows and columns from
L indexed by the elements in subset C. Thus the probability
of selecting a subset C, (|C| = k = cC) elements is directly
proportional to the determinant of the submatrix indexed by
it. Note that higher diagonal values would proportionately
encourage their inclusion in a selected subset C as they lead
to higher determinants. Similarly, the off-diagonal values
determine correlation between different elements, and a high
value decreases the determinant overall. Thus two elements
with a high similarity value tend not to co-occur in C. DPP
sample sets are therefore able to balance the net significance
of their constituent elements with their diversity. We modeled
L accordingly as follows

{L}X,Y = ρXρY κe
s(X,Y )
σ , 1 ≤ X,Y ≤ cR (3)

where ρX = e
1
2

s(X,Q)
ω , ∃X ∈ R models the similarity of a

retrieved view VX to the queried view VQ. The similarity
between two given views VX and VY is captured by the
rightmost term. Positive valued parameters σ, ω and κ can be
tuned to balance the need for both diversity and similarity
to VQ. A lower sigma would induce a higher resolution in



Fig. 4: Consistency in GMM learning. Similar retrieval accuracies
were achieved with GMMs learnt from each of the 7 training sets.

similarity scores between retrieved views, and hence would
result in a more diverse subset selection.

While the MAP inference on PL to determine the most
probable subset is NP-hard, efficient sampling algorithms
exist which provide good approximate solutions in practice.
For our purposes, a greedy procedure based on [24] which
results in O(k log k)-approximation worked well.

E. Validating candidate views for association

We employ a finer grained spatial validation step before
finally associating the queried view with some of the views
in the candidate set, C = {VX}

cC
X=1 . This is done by directly

leveraging the rigid 3D spatial arrangement of surface patches
to ascertain surface alignment. We make use of the patch
matching scheme presented in our prior work [39]. It utilizes
a sequence alignment scheme over similarly motivated patch
properties to find standalone correspondences based on 3D
neighborhood similarity. A semi-dense set of correspondences
can be ascertained. Rigid transform between two views of
a given scene can then be robustly, accurately computed
through consensus of patch associations.

When views from scenes with different geometrical content
are matched through [39], the matches would likely be
inconsistent with respect to the computed transform. We
exploit this understanding to validate associations with
candidate views. For each candidate view, VX ∈ C, and the
queried view, VQ, we utilize randomly sampled patches to
estimate rigid transformations both ways, that is, TXQ ≡(RXQ , t

X
Q )

and TQX≡(RQX , t
Q
X) and check whether they are consistent with

each other. We ascertain a candidate VX ∈ C as associated
with VQ when

∥∥∥log
(
RXQR

Q
X

)∥∥∥
2
≤εθval &

∥∥∥tXQ+tQX

∥∥∥
2
≤εεval - we are

basically ensuring that the magnitude of the rotation and
translation components in the residual transform, TXQ TQX , are
below certain thresholds {εθval, ε

ε
val}.

F. Further details and discussion

The approach is amenable to any boundary-preserving
patch segmentation scheme, as long as it results in superpixels
/ patches that are geometrically regularized for smoothness
and compactness. For example [33], which segments volu-
metrically, could be used while working with point clouds;
and surface segmentation schemes such as one presented
in [39] could be employed when working with depth /
range images. Both [39] and [33] performed well in our
experiments. Starting with the base level segmentation, a
segmentation hierarchy can be built in either fine to coarse
(agglomerative), or coarse to fine (divisive) fashion. Each
successive level has patches reduced (increased, in case of
divisive) by a constant factor - this can be approximately

ensured by employing K-Means in 3D with near uniform
surface component seeding (any resultant patches below a
certain size / surface area are merged back). We used four
levels of segmentation hierarchy (H = 4). The number of
mixture components were also kept fixed, G = 1250. The
GMMs were learnt through an expectation maximization
scheme, and the mixture components were initialized from
the result an iteration of K-Means++ procedure. Our empirical
analysis indicated the learnt feature space distribution to be
general for similar sensor types 5. Figure 4 suggests that as
well. In fact, a single set of Gaussian mixture (and ICA)
models were utilized for all the experiments shown in the
article (except Figure 4).

In practice, for efficiency, while encoding feature space
statistics (Section III-B), it suffices to approximately ascertain
FXh by sampling patches from Xh, and subsequently sampling
the neighborhoods of the sampled patches. This also partly
corroborates our assertion that the methodology is robust
to occlusions. Databases were indexed as KD-trees. Our
current straight up implementation is not optimized for
efficiency (on a 4.2 GHz, 4 core setup, III-A - III-D takes
∼ .3 ms, 1000 superpixels), though the methodology is GPU
parallelizable. Most of the procedures outlined in Sections
III-A, III-B, III-C, III-D and III-E can be GPU paralellized
in a straightforward fashion. The computational bottleneck
arises during validation, which is quadratic in number of
superpixels (∼ 1s for segmentation with 1000 superpixels
at finest level, but again naturally parallelizable). Note that
it suffices to validate at a coarse hierarchical level (∼ 250

superpixels) — the result, TXQ , can then be used as reliable
initialization and be quickly refined iteratively as per task.

IV. EXPERIMENTS

In all experiments, the method indicated 'R' refers to our
retrieval approach (till Section III-B), without the diverse
subset selection and validation steps. 'DR' refers to our
approach till Section III-D, with diversification but without
the validation step. 'VDR' would then refer to the complete
approach, resulting in the set Cvld - diverse retrievals which
have been validated through rigid overlap consistency. The
retrievals in both the sets C and Cvld follow the same order
(by s(X,Y )) as they appear in the initial retrieval set R. All
analysis is done on the top few results from these sets.

The retrieval and association problems can be subjective -
two views with only partially overlapping geometric content
can be evaluated differently by users. We employed an
objective measure - evaluating our retrieval approach on a
sensor relocalization task. We utilized the 7-scenes datasets
from [12, 40], the standard benchmark for indoor RGB/RGB-
D relocalization. The objective is to localize the sensor
(ascertain pose) with respect to the workspace within the
maximal allowable translation and orientation errors (5 cm and
5 deg respectively). The datasets are collected from different
workspaces (although some scenes in Redkitchen and Pumpkin

5 Sufficient number of GMM components should be utilized to span the
extent of the geometric feature space. This is a function of maximum scene
scale captured, and thus sensor range.



Data Appearance Reliant (RGB or RGB-D) Depth−Only

Approach Reconstruction Truth Needed for Relocalization Retrieval

Method Spr[40] [5]C DSc[4] [40] [16] [46] [5] D[40] R VDR

Chess 70.7 94.9 97.4 92.6 96 99.4 99.6 82.7 97.3 99.5
Fire 49.9 73.5 74.3 82.9 90 94.6 94.0 44.7 92.3 97.8
Heads 67.6 48.1 71.7 49.4 56 95.9 89.3 27.0 93.5 98.9
Office 36.6 53.2 71.2 74.9 92 97.0 93.4 65.5 89.7 98.4
Pumpkin 21.3 54.5 53.6 73.7 80 85.1 77.6 15.1 78.3 82.8
Kitchen 29.8 42.2 51.2 71.8 86 89.3 91.1 61.3 87.9 93.7
Stairs 9.2 20.1 4.5 27.8 55 63.4 71.7 13.6 54.8 61.0

Average 40.7 55.2 60.1 67.6 79.3 89.2 88.1 44.3 84.8 90.3

Combine 38.6 55.2 62.5 - - - - - 84.8 90.4

TABLE I: The presented approaches (R , VDR) are compared with baselines through localization
accuracies on the standard 7-scenes datasets from [12, 40]. All methods utilize RGB-D data during
training, except [40] D, and our R and VDR, which are based on range / depth data. During test
time, the three leftmost approaches only take RGB images as input, while the three rightmost
approaches only take range / depth images - the rest operate on RGB-D. Average indicates the
average among the 7 datasets. Combine indicates performance when jointly considering all 7
scenes as a single database. VDR outperforms all the RGB-D approaches while using depth
information only. R performs very well as well, outperforming all but two RGB-D approaches.

Fig. 5: Accuracies with significantly
sparser acquisition. Database sizes were
reduced to 1/15 and 1/20.

are quite similar). Standard train - test splits are provided,
with the viewpoints in the test set differing significantly from
the training set. This makes it most appropriate for use in
the evaluation 6. 7-scenes also provide additional training
information - global sensor pose annotations, as well as
reconstructed volumetric workspace models.

In our approach, R, DR and VDR, depth images for training
were simply encoded as an unordered view-signature database.
A given query image from the test split was localized
by computing the relative transform with respect to the
top retrieval (in the sets R, C and Cvld respectively), and
the localization accuracy was computed by evaluating the
disparity between the estimated and ground truth relative
poses. Same as in the baselines, 5 cm and 5 deg are the
allowable error. Our approach did not require additional
information accompanying the datasets to operate (pose truth
annotations and workspace reconstructs). Importantly, it also
did not require specific training for each dataset. This differs
from most of our baselines which required some additional
information or dataset-specific training.

Baselines: We compare our approach against many base-
lines. Approaches like [41, 45, 16, 22, 4, 47, 30] require
additional information and dataset specific training. They rely
on annotations, workspace models, and involve regression
against absolute sensor poses or 3D coordinates of pixels.
Deep-CNN based regressors have been proposed as well, such
as [22, 4, 47, 30]. Such approaches can overfit on the training
data, and are difficult to generalize to scenes that are not
similar to the training. Some baseline results were not shown
in Table I — [12], which presents a random ferns based
retrieval method over RGB-D, report accuracies differently;
but they indicate the achieved results to be weaker than
some of the baselines considered in Table I. Methods like
[22, 47, 30] report localization accuracies as median errors -
since the lowest reported median errors, that we are aware
of, are greater than 10 cm (translation, implicitly includes

6 As opposed to mapping, visual odometry or semantic scene datasets such
as [43, 17, 48, 8, 18]. These either do not have enough loop closures and/or
are synthetic, or lack ground truth for quantitative evaluation or standard
train-test splits for loop closure.

orientation errors as well), these methods are also not as
accurate as some of the baselines in Table I. Approaches
[26] and Sparse [40] employ frame to model matching for
relocalization. They match local features from the query frame
to a global feature cloud accumulated and reconstructed
a priori from the training data and the pose ground-truth
annotations. [26] shows nice results, though we were unable
to obtain exact numbers from the authors. However, VDR
in Table I does seem to perform better than [26] in 4 out
of 7 datasets in comparison. VDR also seems to outperform
[26] in at least 6 out of 7 datasets when only 1/15 of the
training data is used (Figure 5). All the aforementioned
approaches are appearance-reliant as well (except [40] which
additionaly present a depth only variant). We also tried a
retrieval methodology similar to ours with local 3D geometric
point-features (such as [44]), but their performance was worse
than those shown in Table I.

As Table I shows, VDR achieved state-of-the-art results
through pure geometry alone - without needing any additional
annotations, assumptions or appearance features. Equally
promising were the results from R which were obtained
by simply using the first retrieval in R (no diversification or
validation), which were better than all baselines but two. DR
gives the same results as R in the relocalization experiments
and is hence not shown. This is because the accuracies were
evaluated with respect to only the top retrieval - this is the
same for R and DR since the greedy algorithm we used for k-
DPP automatically selects the top-scoring retrieval as the first
one. These results support our hypothesis that macro-level
3D geometry holds immense discriminative information.

In the last row of Table I, we combined all training data
from the 7 datasets into one single database, and evaluated
accuracies of the combined test splits. As can be seen, the
results held up quite well in the combined experiment, when
the database size and complexity (variety, aliasing) was
drastically increased.

We also tabulated the affect of significantly reducing
the database sizes - by re-evaluating results with databases
built from only 1/15th and 1/20th of the available train-



Fig. 6: Quantifying diversity. Left, Middle: The average relative translation of the retrieved views with respect to the queried view. One can see
DR improves diversity over R, and VDR improves over VR. Right: Efficacy of diverse viewpoints for reconstruction task. The average number
of voxels (in a 8 cm3 occupancy grid) occupied by ground truth reconstructs from the first five validated retrievals from VR and VDR are plotted.
From the same number of initial views, VDR results in richer reconstructs that capture significantly more voxels in the scene.

splits for each dataset. With a much sparser coverage of
the environment, both retrieval and subsequent validation and
localization becomes much more difficult. The frames were
sampled at uniform intervals, thus may have steep viewpoint
changes, much reduced content overlap and significantly
increased occlusions. As Figure 5 indicates, the accuracies
of both R and VDR held up quite well. This is indicative of
the approach’s robustness to these practical challenges.

The approach generalizes well. Our experiments do not
suggest a need for scene specific training - a single set of
learnt gaussian mixtures and ICA projection matrices were
utilized in all our experiments (except Figure 4). The training
data was taken from the train split of Redkitchen in [40],
and from datasets in [48, 43], a reasonably rich and diverse
set of samples. Figure 4 shows the robustness of the GMM
parameters with respect to the dataset used to train it. As can
be seen the results stay consistent.

Finally, we conducted experiments to quantify the effect
of our diversification approach, and its role in generating
significantly richer reconstructions. As Figure 6(left, middle)
show, the diversity of retrieved viewpoints is greatly improved
due to our DPP-based diversification. Note that DR and VDR
select views which are not only further off than the queries
(higher relative mean), but result in view sets which have
significantly more viewpoint variance amongst themselves
as well (significantly higher standard deviations). And as
Figure 6(right) shows, the reconstruction volume improves
significantly when a diversified set of views is utilized.
Figure 7 shows a qualitative example. One can see that
the diversified retrievals are significantly more diverse, from
varied viewpoints, and are resulting in an appreciably richer
reconstruction. In general, retrieval as well as geometric
diversity is often desirable - apart from reconstruction, it
would prove useful in other tasks such as structure and
semantic analysis, and 'human in loop' selection tasks.

V. CONCLUSION

We presented a robust solution to the problems of mea-
suring 3D geometric similarity between 3D range images
or point clouds, and determining whether they come from
the same scene. A general-purpose retrieval approach was
proposed, based on encoding (FV) of viewpoint-invariant
features that are hand-crafted to capture 3D geometry at macro
scales. The approach performed well in real world settings
- including ones that involved sharp viewpoint changes,
partially overlapping and occluded content. It scaled well,

and did not require scene-specific training - making it useful
in a variety of scenarios. As experiments established, the
approach is powerful and did better than specifically fitted
solutions such as CNNs trained on RGB or RGB-D data.
Furthermore, we introduced a way to obtain geometrically
diverse retrievals (DPP), and showed how such retrievals can
help generate richer reconstructions. Interestingly, in contrast
to CNN approaches which begin with a local neighborhood,
our approach utilized macro scale features from start. The
combination of both paradigms would be explored in future
work, for this and other tasks involving 3D recognition.
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