
44 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 1, MARCH 2017

Learning From Explanations Using
Sentiment and Advice in RL

Samantha Krening, Brent Harrison, Karen M. Feigh, Senior Member, IEEE, Charles Lee Isbell, Jr.,
Mark Riedl, and Andrea Thomaz, Member, IEEE

Abstract—In order for robots to learn from people with no
machine learning expertise, robots should learn from natu-
ral human instruction. Most machine learning techniques that
incorporate explanations require people to use a limited vocab-
ulary and provide state information, even if it is not intuitive.
This paper discusses a software agent that learned to play the
Mario Bros. game using explanations. Our goals to improve
learning from explanations were twofold: 1) to filter explana-
tions into advice and warnings and 2) to learn policies from
sentences without state information. We used sentiment analysis
to filter explanations into advice of what to do and warnings of
what to avoid. We developed object-focused advice to represent
what actions the agent should take when dealing with objects. A
reinforcement learning agent used object-focused advice to learn
policies that maximized its reward. After mitigating false nega-
tives, using sentiment as a filter was approximately 85% accurate.
object-focused advice performed better than when no advice was
given, the agent learned where to apply the advice, and the agent
could recover from adversarial advice. We also found the method
of interaction should be designed to ease the cognitive load of
the human teacher or the advice may be of poor quality.

Index Terms—Advice, reinforcement learning (RL), sentiment.

I. INTRODUCTION

AGOAL of interactive machine learning is to enable people
to naturally and intuitively teach robots how to perform

tasks. We cannot expect every person to become an expert in
machine learning. If robots and intelligent agents could learn
from natural human instruction, robotic behavior could be
customized by end-users with no machine learning expertise.

While there are many ways people teach, including demon-
strations and critique, this paper focuses on learning from
explanations. Learning from natural language explanations can
decrease the amount of time and effort required by a human
teacher. Giving a few simple sentences is less work than
demonstrating all possible situations or monitoring an agent to
provide critique. Because people are naturally skilled at harsh

Manuscript received January 31, 2016; revised July 17, 2016 and
September 29, 2016; accepted October 17, 2016. Date of publication
November 14, 2016; date of current version March 9, 2017. This work was
supported by ONR under Grant N000141410003.

S. Krening, B. Harrison, K. M. Feigh, C. L. Isbell, and M. Riedl are
with the Institute for Robotics and Intelligent Machines, Georgia Institute
of Technology, Atlanta, GA 30332 USA (e-mail: skrening@gatech.edu).

A. Thomaz is with the Department of College of Computing, Georgia
Institute of Technology, Atlanta, GA 30332 USA.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCDS.2016.2628365

dimensionality reduction, learning from language automati-
cally builds human-agent interaction that plays to the strengths
of both the human teacher and robotic student. Ideally, the
person concisely tells the robot what is most important to pay
attention to, and the robot uses its computational power to
develop policies that maximize performance. Learning from
explanations is helpful because people may not be able to
provide demonstrations if they are elderly, injured, or the
task is not safe for people to physically attempt. Additionally,
a person does not have to be present to teach the robot—
telecommunication or written instructions work just as well.
Another attractive quality of learning from natural language
explanations is it is generalizable across domains. Even if the
domain changes, people will use the same language with the
same meanings and structure to describe new tasks.

There are many challenges when learning from natural
language explanations. People do not limit themselves to a
domain-specific vocabulary—people make their own labels
for objects and actions. Different people use different words
for the same concept. In addition to describing things to do
or avoid, explanations also tend to include information that
is not actionable, like background knowledge. Many natural
language explanations also do not include state information,
which makes it very difficult to determine where and when to
use the advice.

A primary problem addressed in this paper focuses on an
area of learning from explanations that has been discussed
little in previous research—how to learn from human expla-
nations that lack state information. This paper contributes
to this through the development of object-focused advice, a
method in which human advice is tied to objects instead of
specific states and is generalized over the object’s state space.
Consider this explanation from Mario: “Mario should jump
on enemies.” While this advice would easily be understood
by a human student, it proves problematic for reinforcement
learning (RL) agents. The teacher did not specify state infor-
mation like, where the enemy needs to be with respect to
Mario and what Mario’s velocity should be. Knowing that
Mario should jump on an enemy is valuable information, but
how can an agent make use of it if no state information is
provided?

Solving this challenge is worthwhile since people often
describe tasks by talking about objects. The following is an
explanation a person might give to describe how to play
Mario that links an object, like an enemy, to an action that
should be used around that object, like jumping on an enemy.

2379-8920 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KRENING et al.: LEARNING FROM EXPLANATIONS USING SENTIMENT AND ADVICE IN RL 45

We define this to be advice because it tells the agent what
actions to take.

The goal is to reach the end of the level to the right
quickly. Mario should jump right on enemies. Mario
should jump to collect coins, and jump over chasms.

The human teacher does not need to provide state informa-
tion, like where the enemy is with respect to Mario. A person
might also provide warnings in an explanation to teach the
agent what actions to avoid.

Do not fall into chasms.

Another problem addressed in this paper is enabling an
agent to categorize each sentence in an explanation as advice
of what to do or a warning of what not to do. Afterward,
the advice and warnings are used to shape the agent’s initial
behavior. Autonomously categorizing sentences into advice
and warnings allows us to use natural language explanations
that are not formatted or restricted to a limited vocabulary.
Most agents that attempt to learn from explanations require
the input to be in a specific format, mainly advice of what
actions to take in specific states. We aim to learn from nat-
ural language explanations that do not necessarily include
state-specific information or follow a rigid format.

A contribution of this paper is to use sentiment analysis to
filter natural language explanations into advice and warnings.
Sentiment analysis, or opinion mining, is a way to computa-
tionally classify text into positive or negative opinions. This is
a novel application since sentiment analysis has not tradition-
ally been used to inform action selection. This paper provides
a new understanding to how sentiment analysis can be utilized.

Using sentiment analysis as a filter allows people to explain
tasks to agents without restricting the human teacher to a
specific vocabulary or sentence structure. Consider the fol-
lowing explanations of how to deal with enemies in the
Mario Brothers domain.

It would be bad to walk right into an enemy. Jump
on enemies.

Sentiment analysis classifies the first sentence as negative,
so the agent is warned not to walk right when dealing with
an enemy. The second sentence is classified as positive, so
the agent treats jumping on enemies as advice of what to do.
Sentiment classifications of “positive” and “negative” are used
in a semantic sense, not syntactic.

We tested our sentiment filter and object-focused advice in
a human-subject experiment conducted in the popular game
domain Mario Brothers. After creating a method to mitigate
false negatives, the sentiment filter was approximately 85%
accurate. Three types of explanations were tested with an
increasing level of structure and information provided to each
participant. We found that the cognitive load of the explana-
tion format adversely affected the quality of the advice. The
results show that object-focused advice performs better than
when no advice is given, the agent can learn where to apply
the advice in the state space, and the agent can recover from
adversarial advice. Also, providing warnings in addition to
advice improved the agent’s performance.

Section II contains related work about learning from human
teachers, sentiment analysis, and RL. Section III develops

object-focused advice. Section IV describes the human-subject
experiment conducted in the Mario Brothers game, a popular
domain for machine learning research. Readers unfamiliar with
Mario are encouraged to read a description in Section IV-A.
Section V includes the results and discussion. This paper
concludes with Section VI.

II. BACKGROUND AND RELATED WORK

Much of this paper is inspired by human development. RL is
a form of machine learning influenced by behavioral psychol-
ogy in which an agent learns what actions to take by receiving
rewards or punishments from its environment [18], [21].
Skinner [19] wrote about “selection by consequences,” com-
paring the evolution of living things through natural selection
with the shaping of individual behavior through reinforcement.
The probability people will repeat an action in a given cir-
cumstance is increased or decreased if they receive positive
or negative reinforcement. Since one way people learn is by
interacting with their environment, we chose to mirror this
method when choosing a machine learning algorithm to teach
our agent.

Deep learning is biologically inspired by the human brain.
Deep learning models learn how to represent the input in
increasing levels of abstraction. Using deep learning for senti-
ment analysis allows an agent to grasp the sentiment of words
and sentences by looking at a large corpus of how people
have used language. Classifying sentiment using deep learn-
ing is much closer to how the human brain interprets sentiment
because it uses the structure and context within a sentence, not
just words in isolation.

A. Sentiment Analysis

Sentiment analysis has been used to determine whether peo-
ple think movies, books, music, consumer products, political
campaigns, etc., are good or bad [16]. Much of the work in
sentiment analysis has used a bag-of-words method in which
each word in a document is scored. The accumulated score
of the text determines if the document is classified as positive
or negative. Since each word is scored separately, word order
and context are ignored, which leads to less-accurate results.
This paper uses Stanford’s deep learning sentiment analysis
software, which builds a representation of an entire sentence
instead of looking at words independently [13].

Stanford’s sentiment tool uses recursive neural tensor net-
works and the Stanford Sentiment Treebank [20]. The Stanford
Sentiment Treebank is a corpus of fully-labeled parse trees
based on the dataset of movie reviews from rottentoma-
toes.com [15].

B. Reinforcement Learning

RL is a form of machine learning in which agents learn
what actions to take in situations by interacting with their
environment—specifically, by receiving a signal of rewards
and punishments [21]. This paper incorporates human advice
into an RL agent.

Markov decision processes (MDPs) learn policies by map-
ping states to actions such that the agent’s expected reward

46 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 1, MARCH 2017

is maximized. An MDP is a tuple (S, A, T, R, γ) that describes
S, the states of the domain; A, the actions the agent can take;
T , the transition dynamics describing the probability that a
new state will be reached given the current state and action;
R, the reward earned by the agent; and γ , a discount factor in
which 0 ≤ γ ≤ 1.

Object-oriented MDP (OO-MDP) are an extension of
MDPs. An OO-MDP is a model-based representation that uses
a fixed-length feature vector of object relations [6]. For exam-
ple, one feature in the Mario domain would be a binary relation
indicating if an enemy is east of Mario at each time step. A
drawback of OO-MDPs is all relations must be defined by a
designer. Also, because the feature vector is fixed in length,
the agent cannot adapt to new objects in the environment.
Object-focused Q-learning (OF-Q) is a modified version of
OO-MDPs.

OF-Q with an off-policy TD control Q-learning algorithm
was used to train the Q-values for each object’s policy. Unlike
OO-MDPs, OF-Q is model-free and does not have a fixed-
length feature vector [5]. The number of objects and relations
in the feature vector can vary through time. Every object class
has its own policy and reward signal. Since this paper focuses
on the efficacy of using sentiment as a filter on natural lan-
guage explanations, a well-understood tabular algorithm was
used. In (1), sot and at are the object’s state and action chosen
at time t, Q(sot , at) is the Q-value for a given object state and
action, r is the reward received after carrying out action at, α

is the learning parameter, and γ is the discount parameter for
expected future rewards

Q
(
sot , at

)← (1− α)Q
(
sot , at

)

+ α
[
r + γ max

a
Q

(
sot+1, a

)]
. (1)

RL agents must tradeoff between exploring and exploiting—
whether to search for better policies or carry out what the agent
has already learned. If the agent decides to exploit the policy,
the action with the maximum Q-value over all objects in the
state space is chosen since it is expected to yield the greatest
reward

π(s) = arg max
a

max
o

Q(so, a). (2)

While natural language explanations can be incorporated
into many machine learning algorithms, we used OF-Q to
represent tasks for two main reasons [5]. First, OF-Q can
directly use object-based human instruction, which improves
the transparency between the human teacher and robotic
learner. Second, object-based algorithms provide a method to
solve high-dimensional state spaces, like Mario.

C. Learning From Human Teachers

Three commonly studied methods of human instruction are
explanations, demonstrations, and critique [4]. Explanations
transfer knowledge through language. Demonstrations provide
ideal actions to take in situations. Critique is positive or neg-
ative feedback that informs students how good or bad their
actions were.

Most machine learning methods that learn from human
teachers force people to provide state-specific information.

That level of detail is often not intuitive or natural, and
precludes the possibility of learning from natural language that
lacks state information. When an agent learns from demonstra-
tions, the agent learns a mapping from states to actions [3].
An agent that learns from demonstrations is affected by how
much of the state space was explored in the demonstrations
and how well the person performed. Paired states and actions
from demonstrations can also be used with apprenticeship and
inverse RL to approximate the reward function the teacher was
following [1]. Critique is linked to the current state by inform-
ing an agent how good or bad its actions were, which affects
the probability the action will be taken in the same state in
the future [7]. Critique can also be used directly as a reward
signal to tell the agent how positive or negative its actions
were in certain states [4]. All of these approaches link human
input to specific states.

Various forms of advice have been developed in other work,
including linking one condition to each action [12], and link-
ing a condition to rewards [11]. Several connect conditions to
higher-level actions that are defined by the researcher instead
of primitive actions [8], [10], [12]. Reference [2] creates poli-
cies using demonstrations and advice. Reference [14] parses
language into a graphical representation and finally to primi-
tive actions. Reference [12] has the person provide a relative
preference of actions, whereas the agent determines the order
of preferred actions in our work. Reference [17] explored
learning multiple interpretations of instructions. Similar to this
paper, the advice in [2] does not require people to give spe-
cific numbers for continuous state variables, but uses a set
of predefined advice operators. The advice developed here
links one action to each object. This allows each action to
be used multiple times in one domain; for example, in the
Mario domain the agent may be advised to jump to the right
quickly for chasms and enemies. Extracting advice concern-
ing primitive actions allows the researcher to include less
domain-specific knowledge in the agent.

Many researchers incorporate advice using IF-THEN rules
and formal command languages [10], [12]; if the state meets
a condition, then the learner takes the advice into account.
Formal command languages and IF-THEN rules require advice
that is state specific and contains numbers. “When the agent
is within 10 m of this object, do this action.” Developing a
parser is labor intensive, and prior knowledge like distance
calculations must be encoded. This paper is different because
the advice is object specific, the agent learns which part of
the state space the advice applies, and a person does not need
to provide numbers. This allows an agent to learn from a few
simple sentences that nonexperts can provide. “Jump when
Mario encounters a chasm.” No state-specific information is
provided by the person, like: where is the chasm with respect
to Mario? How far away from the chasm should Mario jump?
What should Mario’s speed be near the chasm?

Most methods are permanently influenced by the advice.
Reference [10] can adjust for bad advice by learning
biased function approximation values that negate the advice.
Reference [12] uses a penalty for not following the advice
that decreases with experience. This paper differs because the
advice is followed a set number of times for each object and

KRENING et al.: LEARNING FROM EXPLANATIONS USING SENTIMENT AND ADVICE IN RL 47

each state in addition to exploration. After the advice is fol-
lowed a set number of times, the exploitation action selections
are based entirely on experience, and advice is no longer con-
sidered by the agent. If it was good advice, it will be reflected
in the Q-values and will continue to be the policy.

III. OBJECT-FOCUSED HUMAN ADVICE

Object-focused advice ties actions to objects instead of
specific states and generalizes the advice over the object’s
state space [9]. Before the agent starts learning, a person
instructs the agent what action to take when dealing with
an object. For example, in the Mario Bros. game, a person
could advise the agent to jump right (action) when encoun-
tering a coin (object). The person does not need to specify
state information, like where a coin needs to be with respect
to Mario, in order to take the advised action. The agent
will take the action the human advised a specified number
of times, regardless of its experience, before following nor-
mal exploitation. The job of the sentiment filter is to tell the
agent whether a sentence should be treated as advice or a
warning.

It is likely this type of general, object-focused advice will
only apply to some subset of the state space. The advice of
jumping right will gain a reward if the coin is to the right of
Mario, but will not work if the coin is to Mario’s left. The
agent determines the applicable parts of the state space and
how good the advice is through experience. Following human
advice occurs only during exploitation and does not interfere
with exploration. Another way of thinking about this is fol-
lowing advice initially supplants exploitation with a form of
exploration directed by a human. This is separate from, and in
addition to, ε-greedy exploration. Since ε-greedy exploration
is used, object-focused advice has the convergence properties
of ε-greedy exploration.

Using object-focused advice that is independent of the
object’s state allows the person to perform object-level gener-
alization and abstraction instead of the agent. Generalization
is a vital part of induction because it is a way to extend
the knowledge learned from one particular example to many
others. Generalizing over the entire state space of an object
may seem drastic, but it is a way to quickly operationalize
and learn from human explanations without state informa-
tion. It is unrealistic to expect people to provide detailed
state information when giving advice. A person might say,
“jump on the enemy,” but will not say, “Hold the jump key
for 10 frames when Mario is within 2.5 horizontal blocks
of an enemy with a velocity of 3.2 units/frame.” The agent
will take the action advice of jump on the enemy, and deter-
mine to which portions of the state space, if any, the advice
applies.

A. Advice

The first step is to get advice from a person that describes
what actions the agent should take. Advice is given to the
algorithm as two lists: one containing the objects and the other
the advised actions. Advice can be provided for as many or
as few objects in the state space as a person decides. If the

agent encounters an object for which advice was not given,
the policy is initialized without advice and the agent learns
from exploration and experience.

Next, an object policy must be created for each object a
person gave advice for. If a person advises the agent to jump
when dealing with coins, an empty object policy table is cre-
ated that sets the advised action to “jump.” Whenever a new
object state is encountered (like the first time Mario sees a coin
to the northeast), a new state entry is made in the coin’s policy
table with specific state values like the x- and y-positions of
the coin with respect to Mario. This new state entry includes
a value that counts the number of times the advice has been
followed as well as a threshold number of times the advice
should be followed. This is what allows the agent to determine
which part of the state space the advice applies—it tries the
advice a set number of times everywhere in the state space,
and the resulting Q-values reflect whether the advice is good
or bad in that region of the object’s state space. For example,
the first 25 times Mario sees a coin to the northeast, Mario
would follow the advice to jump and update the Q-values
based on the earned reward. The first 25 times Mario sees
a coin to the southwest, Mario would also follow the advice
to jump.

To include object-focused advice in the OF-Q algorithm,
an extra Q-value was created that corresponds to advice, not
a specific action. This indicator Q-value is initialized to a
value much larger than any reward the agent could achieve
in the state space. During action selection in (2), this indi-
cator Q-value forces the policy to choose the advice. While
the advice is followed, the Q-values that correspond to each
action are updated as expected. The indicator Q-value is never
updated, nor does it affect the outcome of the Q updates
in (1). After the advice has been followed some set number of
times, the indicator Q-value is removed and the policy chooses
exploitation actions based on experience.

For every time step in game execution, the agent must
choose an action (Algorithm 1). First, object recognition is
used to determine which objects are currently in the state.
Reward allocation from the last time step is completed so
the reward is applied to the proper objects’ policies. Then,
ε-greedy exploration is utilized. During exploitation, if advice
has been followed for an object less than a set number of times,
the large indicator Q-value will force the advised action to be
chosen. ε is exponentially decayed at the end of each level.

Two interesting aspects of object-focused advice are its abil-
ity to recover from adversarial advice and its variable “trust”
in a person. Following advice a set number of times and then
relying on experience allows the agent to recover from adver-
sarial advice, which is antagonistic input that instructs the
agent to take an action expected to result in the least reward
(greatest punishment). An example of adversarial advice in the
Mario domain is standing still while an enemy approaches.
Also, object-focused advice lets the agent’s trust in the human
vary across the domain by treating each piece of advice with-
out prejudice; if a person provides one piece of good advice
along with eight pieces of bad advice, the agent will use its
experience to build policies that reflect the good and ignore
the bad.

48 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 1, MARCH 2017

Algorithm 1 Get Action
1: function GETACTION(reward, environment)
2: objects = getObjectsInStateSpace(environment)
3: for each object ∈ objectsOld do
4: Reward allocation: update Q values
5: If advice followed, increment timesAdviceTried
6: end for
7: for each object ∈ objects do
8: If this object has never been seen by the agent,
9: create a new object policy

10: If this object has never been seen in this state,
11: add a state entry to the object’s policy
12: end for
13: if rand(0, 1) > ε then � Exploit
14: Initialize action and Qmax ←−∞
15: for each object ∈ objects do
16: qi ← maxi(Q(object.state, ai))

17: if qi > Qmax then
18: Qmax ← qi, action = ai

19: end if
20: end for
21: else � Explore
22: action = random{actions}
23: end if
24: objectsOld = objects
25: end function

B. Warnings and Multiple Objects

Advice describes what to do, while warnings describe what
not to do. Similar to advice, warnings of what not to do are
incorporated by using an indicator Q-value. Instead of a large
positive value, a large negative indicator value is used. object-
focused advice, as previously described, chooses an action by
looking at each object separately. To incorporate warnings, all
objects in the state space are taken into account together by
summing up the Q-values associated with each action across
all objects. Choosing an action by taking multiple objects into
account allows us to get an idea of the overall severity of each
action.

Consider the case of both a coin and enemy in the state
space shown in Tables I and II. Assume a person gave advice to
move right for coins and jump right for enemies, and warned
the agent to not move left for coins or walk right for ene-
mies. If each object is considered separately and no warnings
are used, the agent may follow the advice for coins to move
right, which would cause Mario to walk into an enemy and be
injured. This is solved by considering all objects in the state
space and including warnings about which actions to avoid.

Table I shows how multiple objects are considered by sum-
ming Q-values across all objects in the state space. The
indicator Q-values for advised actions are +2000, warnings
are −2000, and the default initial value when no information
is given is 0. In this example, the initial Q-values will result
in the agent choosing to jump right since it has the maxi-
mum Q-value in the total row. Moving right has a summed
Q-value of zero because the action was advised for coins but

TABLE I
EXAMPLE OF MULTIPLE OBJECTS AND WARNINGS.

INITIAL Q-VALUES WITH INDICATORS

TABLE II
EXAMPLE OF MULTIPLE OBJECTS AND WARNINGS.

LEARNED Q-VALUES

warned against for enemies (2000 − 2000 = 0). Moving left
has the worst summed Q-value because it was warned against
for coins. Combining multiple objects still produces a ranked
preference of actions; jumping right (Q = 2000) is better than
walking right (Q = 0), which is in turn better than moving
left (Q = −2000). Initially, the agent does not have a sense of
severity; it does not know that injuring Mario is much worse
than missing a coin. This is reflected in the learned Q-values.

Table II shows the learned Q-values for the same example.
Eventually, the indicator Q-values will not be added in and the
agent will rely on experience. Jumping right has the largest
summed Q-value (Q = 10 + 50 = 60). Notice that the agent
expects moving left (Q = −1 + 0 = −1) to be better than
moving right (Q = 10 − 50 = −40), which is not the same
order as the initial action preferences. Even if the agent moves
right and collects a coin, it will run into an enemy and be
injured; moving left results in a small Q-value hit.

Summing an action’s Q-values across multiple objects
allows the agent to learn the importance and severity of all
given advice and warnings. In Table II, the total row shows
the agent has learned that the warning to avoid walking right
into an enemy is much more severe than walking left near
a coin.

IV. EXPERIMENTAL METHOD

The main goals of the human-subject experiment were to
determine if sentiment analysis could be used as a natu-
ral language filter to inform action selection and assess the
performance of object-focused advice.

The experiment had four phases: 1) familiarization;
2) free-form explanations; 3) structured explanations; and
4) a fill-in-the-blank survey. In post-processing, the natural
language explanations were filtered through a sentiment anal-
ysis to determine if each sentence was advice of what to do or
a warning of what not to do. Once advice and warnings were
in the form or linking an object to an action (OF-advice), an
agent was trained using the advice to shape its initial action
selection. This process is shown in Fig. 1. The cumulative
reward for each object was analyzed to evaluate the agent’s
performance over 500 trials.

A. Mario Domain

The experiment was conducted using the Mario Bros. plat-
form from the 2009 Mario AI Competition [22], as seen

KRENING et al.: LEARNING FROM EXPLANATIONS USING SENTIMENT AND ADVICE IN RL 49

Fig. 1. Work flow chart.

Fig. 2. Participant’s view of the Mario Bros. game.

in Fig. 2. It is a partially-observable environment in which
Mario must collect rewards and avoid being harmed or killed
while moving toward the goal to the right. Mario wins a level
by reaching the goal, and loses by running out of time, falling
into a chasm, or being repeatedly injured by an enemy. The
primitive actions are right, left, jump, and speed. Multiple
actions can be used at once. Momentum is incorporated into
Mario’s dynamics, so when some keys are held down, the
results are different than pressing a key once. Before each
level begins, the Mario platform generates the level using sev-
eral parameters, including an integer that represents the level’s
difficulty. The difficulty determines the number and types of
obstacles and enemies in the level. For example, a chasm is
too difficult to appear in levels with a difficulty of zero.

The agent defines objects in a generalized way, which
enables the agent adapt to new objects in the environment.
Each object’s state includes x- and y-positions with respect to
Mario’s location as well as an integer code from the Mario
environment that indicates the type of object (coin, Goomba,
etc.). The Mario Bros. platform provides a 22×22 grid of inte-
gers at every time step that shows the environmental objects
surrounding Mario, who appears at the center of each grid. The
platform also provides an integer code for each visible enemy
as well as the continuous x- and y-positions with respect to
Mario. A subset of the available information was used in the
representation. Environmental objects like coins were included
in the state space if they appeared in the 3×3 grid directly
surrounding Mario’s location, while enemies were included
if they appeared anywhere on the screen. This allowed us to
determine how advice performed both with a reflexive agent
that looked directly around Mario and policies that looked at
the whole screen. The only value of Mario’s state that was
included by the agent was whether Mario could jump at each
time step. Representing Mario in this manner creates a state
space of approximately 1025 states.

Fig. 3. Explanations.

B. Familiarization

In the first step of the experimental protocol, participants
played Mario until they were comfortable and had at least
played one level each at a difficulty of 0, 1, and 2. This ensured
each person saw the same objects before providing advice.

C. Human Explanations

Explanations were collected from human participants in
three successive trials, in order of increasing structure and
provided information, as seen in Fig. 3. Taking explanations
in the order of increasing structure and provided information
allowed the most natural and intuitive human feedback at each
step. Details of each type of explanation is provided in the
following sections.

1) Free-Form Explanations: The free-form explanation was
collected first since no information was given to the human
teacher—this means the participant’s explanation was not
tainted by vocabulary, expected information, or a structure
imposed by the researcher. The researcher asked the participant
the following question.

“Imagine I know nothing about how to play Mario.
Can you explain to me how to play Mario?”

No guidance or instruction was provided to the participant
indicating how to respond. The participants gave their explana-
tions in natural language, and the explanations were collected
as audio recordings.

2) Structured Explanations: For the second explanation, the
participants were prompted to provide certain information. At
this point, the responses were still in natural language. The
participants could ignore, loosely follow, or attempt to ful-
fill the prompt. This type of structured explanation gives an
approximation of a robotic agent asking an end-user to pro-
vide object-focused advice. The researcher asked participants
the following question.

“There are many objects in Mario like coins and
different types of enemies. For each object, can you
provide one action that you would advise someone to
use when dealing with that object? Try to fill in the
blank: When Mario encounters an object, he should
do this action.”

Lists of objects and actions were not provided to the
participants—they spoke about what they remembered in natu-
ral language, including their own labels for objects and actions.
The researcher collected audio recordings of the responses.

50 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 1, MARCH 2017

3) Survey Explanations: Finally, participants provided
advice by completing a fill-in-the-blank survey. The partic-
ipants were given a list of objects and actions, including
pictures of the objects, and were asked to provide one advised
action for each object. Participants were told they did not have
to provide advice for every listed object—only the objects they
thought were important. The advice was used to train agents
offline; the results are in the following section.

D. Post-Processing

1) Sentiment Analysis as Filter: We used a sentiment anal-
ysis to filter natural language explanations into advice and
warnings. Sentences classified with positive or neutral senti-
ment are considered to be advice of actions to take. Sentences
with negative sentiment are treated as warnings of actions to
avoid. Detailed results of the sentiment filter are found in
Section V-B.

2) Object-Focused Advice and Warnings: Once each sen-
tence in an explanation has been filtered into positive or
neutral sentiment (advice) or negative sentiment (a warning),
the explanation can be converted into object-focused advice.
If a sentence is classified as advice or a warning and contains
an object and action, the paired object and action are added
to lists containing either the advice or warnings. Multiple
actions can be associated with each object. To test the machine
learning performance, the survey data were used in which
the grounding from language to object/action was provided.
Further work on grounding and ambiguity are out of the scope
of our research questions.

3) Object-Focused Q-Learning: Once the object-focused
advice was created, it was used to initialize the OF-Q agent.
Each agent was trained using the object-focused advice and
OF-Q algorithms discussed in Sections II and III. The author
of this paper provided the adversarial advice, which is advice
meant to minimize the agent’s performance. An agent using
no advice was used as a baseline for comparison.

The results were averaged over 100 trials. A sliding window
average with a width of 25 trials was used. The parameters
used were α = 0.1, γ = 0.95, ε0 = 0.8, and εmin = 0.15.
ε-greedy exploration was used.

V. RESULTS AND DISCUSSION

The experiment had five participants who provided object-
focused advice; one agent was trained per participant. The
author of this paper provided the adversarial advice. An agent
using no advice was used as a baseline for comparison. The
labels of “good,” “mediocre,” and “bad” were applied to par-
ticipants’ advice by looking at the learned policy’s cumulative
reward. The participants were asked to give the best advice
they could, but some resulted in better or worse policies.

In OF-Q, each object class has its own reward function.
Therefore, in addition to analyzing the total cumulative reward
for the entire state space, we evaluate the reward for each
object’s state space. Policies are learned for each object.

In the following sections, we will discuss the nature of the
explanations, show the accuracy of the sentiment filter, and
discuss the agent’s performance using object-focused advice.

A. Observations on the Nature of Explanations

The natural language explanations from participants were
varied in many ways, including the amount of prior knowledge
the agent was assumed to have, the level of detail provided,
and whether primitive or higher-level actions were described.
However, the similarities across explanations were intriguing.
All of the participants spoke in terms of objects, not state space
variables; none of the participants gave numbers to specify
particulars of the state like velocity and distance, supporting
the claim that it is useful to be able to learn from explanations
that are not state-specific.

1) Information People Did Not Provide: The most striking
observation from the natural language explanations was none
of the participants provided any numbers to specify distance,
relative position, velocity, etc. This reinforces the idea that it
is useful for an agent to be able to learn from explanations
that do not contain specific state information.

If an object or situation is considered too easy and obvious
to deal with, people tend not to mention it in their explanations.
Almost no one described how Mario should deal with steps
in the natural language explanations.

2) Extra Information People Provided: For the survey, each
participant provided advice for every available object, even
though they were told they did not have to (and even if
they had not encountered the object during the familiarization
phase).

Several participants gave visual descriptions of how to iden-
tify what objects they were talking about—how to link their
labels to objects. “You are a guy in red clothes.” “Enemies
look like people walking around.” “A pit is when there is no
floor to support you.” It would be interesting to use this type
of explanation, but the agent would need to start with much
more background knowledge.

Some participants described a sequence of actions when
dealing with objects. They wanted to advise Mario to speed
up and then jump over a chasm, or go under and then jump
to hit a brick. The advice developed here is a simple link
from one object to one action—it cannot currently take full
advantage of the nuances of natural language explanations.

Many participants provided advice from their prior knowl-
edge of similar domains. The most common was advice
explaining how to use tunnels to reach secret levels, which
was not possible in the experiment’s version of Mario, and
was therefore never seen in the familiarization phase. One par-
ticipant assumed the agent would know about right-scrolling
games, and would apply that knowledge to Mario.

Most participants assumed the actions belong to the domain,
not the agent. A couple of participants explained the effect
of each key—each primitive action of the game. It was not
assumed that these were the student’s primitive actions, but
rather actions the student would need to learn. If a teacher were
to explain math operators like addition and multiplication, she
would teach how the operators work; the operators would exist
in the math domain, not the student’s natural, inborn set of
actions.

3) Differences in Experience: The amount of prior knowl-
edge the agent was assumed to have varied drastically
across participants. The participant with the least video

KRENING et al.: LEARNING FROM EXPLANATIONS USING SENTIMENT AND ADVICE IN RL 51

game experience provided the most details, including giv-
ing advice in terms of primitive actions. The participant
with the most video game experience provided the fewest
details and assumed the agent had much prior knowledge,
including which actions were available and what each action
accomplished.

The least experienced participant often provided a piece
of action advice followed immediately by the corresponding
primitive action. This led to an interesting error: the natu-
ral language explanation was correct, but the given primitive
action key was wrong. It is easy to accidentally say the “s”
key instead of the “a” key when little meaning is associated
with s and a. It is much harder to mistake the word jump
for “fireball” when speaking. Enabling agents to learn from
natural language explanations may reduce errors compared to
attempting to make normal humans speak “computer.” Agents
will be able to learn from many more sources in more environ-
ments if people do not have to change their natural teaching
methods.

4) Generalizations: In natural language explanations, par-
ticipants tended to generalize behavior across objects by
suggesting the same policy for many objects. Some gener-
alizations were, “enemies,” “obstacles,” and “things coming at
you.” People are good at generalization. It is powerful if an
agent can take a few generalized sentences and extract initial
policies for many objects.

In the free-form and structured explanations, participants
often discussed actions like “jump on” and “get,” as in “jump
on an enemy” or “get the coin.” These actions are a higher-
level of abstraction than the primitive actions, in which a
person would have to choose between “jump right” and “jump
left.” It may be better to allow people to specify higher-order
actions that naturally generalize across the state space instead
of making them choose a primitive action. Mario can get the
coin if it is anywhere on the screen by decreasing the dis-
tance between Mario and the coin; Mario can get a coin by
jumping to the right if the coin is to the right of Mario. The
advice developed here used primitive actions. The explana-
tions of jump on and get might also imply a planner could be
helpful instead of defining higher-level actions in the future.
If the effects of the primitive actions were known, a planner
could specify a sequence of actions necessary for Mario to
jump such that it landed on an enemy’s head or navigated to
a coin’s location. Alternatively, it would help to consider the
possible actions in the domain as separate from the agent’s
actions.

5) Human-Agent Interaction: The experimenter let the par-
ticipants continue speaking until they were done. They seemed
to expect to be cut off or given some sort of feedback or
indication that they had explained adequately and enough.
Explanations died off awkwardly and uncertainly. If they
were explaining directly to a robot, feedback, transparency,
and gestures could help tell the teacher that the knowledge
is understood, the teacher can continue, finish, or change
explanation style.

Many participants provided reasons for actions, as if they
needed to explain the meaning of actions to the agent or con-
vince the agent why an action should be taken. “Jump on

an enemy so you do not lose a life.” Future work with this
RL agent may try to convert reasons for actions into reward
information—losing a life is bad, which should give the agent
a negative reward, so the agent should jump on an enemy to
avoid a negative reward.

B. Sentiment Analysis

One of our goals was to use sentiment analysis to filter
each sentence from a natural language explanation into either
advice (what to do) or warnings (what not to do). We started
by classifying entire sentences as either positive/neutral or
negative.

We found that positive and neutral classifications were
accurate, but false negatives were a significant problem. For
the free-form explanations, the sentiment analysis correctly
classified approximately 86% of positive and neutral sen-
tences. However, only 47% of sentences classified as negative
are truly negative (describing warnings of what not to do).
Approximately half of the sentences classified as negative are
false negatives. For the structured explanations, 95% of the
positive and neutral sentences were correctly classified, but
84% of the negative classifications were false negatives.

Approximately half of the free-form sentences were classi-
fied as positive and neutral while the other half were negative.
Less than half of the structured explanations were classified as
positive or neutral. This is interesting because before each par-
ticipant gave a structured explanation they were prompted to
give positive advice: “If Mario encounters an object, he should
do this action.” If people conformed to the prompted format
to give positive advice and the sentiment classification were
perfect, we would expect 100% of the structured explanations
to be classified as positive or neutral. Surprisingly, people con-
formed to providing positive advice quite well since only 4/44
sentences were truly warnings; however, people were not as
good at providing one action for an object, often providing
sequences of actions.

If a warning like “Do not walk right into an enemy” is
misclassified as advice, the agent will walk right whenever an
enemy is in its state space, which will injure or kill Mario.
The agent’s initial behavior will be the opposite of what the
human teacher intended. After the advice is followed a thresh-
old number of times, the agent will rely on its experience and
avoid walking right into an enemy. If advice like jump on
the enemy is misclassified as a warning by the sentiment fil-
ter, the agent will avoid jumping when an enemy is in its
state space, so its initial behavior will not be what the human
teacher intended. The best sentiment tools are approximately
85% accurate, so there will be misclassifications. While we
would prefer a perfectly accurate sentiment filter, a misclas-
sification is not disastrous because it can be valuable for an
agent to learn what not to do early so it does not repeat its
mistakes in the long term.

One reason false negatives are likely to occur is people
include consequences or reasoning in their explanations. The
following sentence from a participant was classified as a warn-
ing (negative) even though it was meant as advice of what to
do. If you see a shell shooting at you, jump to avoid it.

52 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 1, MARCH 2017

Fig. 4. Sentiment classification decision tree.

TABLE III
FREE-FORM EXPLANATIONS AFTER RECLASSIFICATION

False negatives are also likely to occur when an object or
action associated with a negative sentiment is included in an
explanation. The following sentence is classified as negative
even though it describes what actions the agent should take.
There are holes in the ground you should jump over.

Positive and neutral classifications are quite accurate, but
negative classifications should not be trusted without further
processing. To correct the false negatives, we split each sen-
tence into clauses and determined the sentiment of each clause.
If at least half the clauses were positive/neutral, we reclassi-
fied the sentence as positive. Consider the examples from the
previous two paragraphs. After being split into two clauses,
If you see a shell shooting at you, is neutral; the clause,
jump to avoid it, is negative. Similarly, There are holes in the
ground, is negative, but you should jump over, is neutral. Both
false negatives can now be reclassified correctly as advice of
what to do.

The reclassification decision tree is shown in Fig. 4. If a
sentence is classified as positive, it is used as advice of what
actions to take. If a sentence is classified as negative, the sen-
tence is split into clauses; each clause is classified as positive
or negative. If 50% or more of the clauses are positive, the
sentence is reclassified as advice of what to do. If the sentence
is still classified as negative, it is used as a warning of what
not to do.

Tables III and IV show the results of reclassifying sentences
with negative sentiment. By splitting negative sentences from
free-form explanations into clauses and reclassifying, 78% of
the false negatives were correctly reclassified as positive. All
of the sentences that remained negative were correctly classi-
fied. For structured explanations, splitting negative sentences
into clauses and reclassifying caused 86% of false negatives
to be correctly classified as positive. Two out of the three
sentences that remained negative were false positives.

TABLE IV
STRUCTURED EXPLANATIONS AFTER RECLASSIFICATION

Reclassifying sentences with negative sentiment by splitting
each sentence into clauses increased the overall accuracy of
classification from 56% to 83% for the free-form explanations.
Similarly, the accuracy of the structured explanation classi-
fications was improved from 50% to 86% by reclassifying
sentences with negative sentiment.

Another approach to reducing false negatives would be
to retrain the sentiment model on language specific to the
desired domain. Games are generally violent. Mario’s lexi-
con includes killing, chasms, enemies, impalement, fireballs,
and shooting—not activities or objects thought of as positive
in the mainstream English language.

From a traditional machine learning perspective, since the
only concern is the agent’s performance in a particular domain,
the language model should be retrained for the domain. The
data used to train the model should be representative of the
data the agent will encounter in the future. However, from a
human-agent interaction perspective, the answer is not as clear.
Should we think of the future data as commands in a domain-
specific lexicon or as language people might use? A goal of
interactive machine learning is to bring the algorithm to the
person instead of forcing the person to come to the algorithm.
If the model is retrained for a specific domain and a person
is required to speak in a limited, domain-specific vocabulary,
the person’s natural behavior is altered to make the algorithm
work. If the model is trained on all of mainstream English
and a person is allowed to say anything, the person is able
to teach an agent using a more natural behavior. People are
unlikely to limit themselves to a specific lexicon—they will
use words they are familiar with, so it is beneficial for the
sentiment model to have an understanding of the mainstream
use of the language. Also, the words people choose inform
what they think of situations. The monster is chasing me is
negative, but the boy is chasing me is neutral.

C. Object-Focused Advice

The following sections discuss the performance of object-
focused advice. First, we discuss how the quality of advice
varied given different explanation formats. Then, we show the
cumulative reward earned over an object’s entire state space,
how the agent learns where the advice applies after gener-
alizing over the object’s state, and then look closer at one
particular subset of an object’s state space.

1) Advice From Explanation Formats: Fig. 5 shows the
object-focused advice and warnings for each participant and
each form of explanation. There are many items worth noting,
including the amount of actionable advice for each explanation
type and the quality of the advice.

The amount of actionable advice increased with the struc-
ture of the explanation format. It is expected that free-form

KRENING et al.: LEARNING FROM EXPLANATIONS USING SENTIMENT AND ADVICE IN RL 53

Fig. 5. Object-focused advice for each explanation type. Note that the responses for the free-form and survey responses are varied, while almost all of the
structured responses are to jump. The poor performance of the structured responses is likely due to the increased cognitive load of that explanation format.
Warnings are shown in red and underlined. P#=Participant#. JRS=JumpRightSpeed. JS=JumpSpeed. The question marks indicate the participant did not specify
if shells were considered enemies.

explanations will contain fewer actionable sentences since the
sentences can contain any information in any format. The
structured explanations prompt teachers to link objects to
actions, so more sentences are expected to contain actionable
advice. Every survey entry will be actionable since teach-
ers can only choose from a list of actions for each object.
Each participant provided advice for every object in the sur-
vey explanation, even though it was not required and they
did not see all of the objects during the familiarization phase.
Even though chasms were the leading cause of death in Mario,
no one provided advice about chasms in the free-form expla-
nations, three people did in the structured explanations, and
everyone did in the survey.

Something very interesting happened with the structured
explanations—while the number of actionable sentences
increased from 19 to 27 compared to free-form explanations,
the quality and variation of the advice decreased as seen
in Fig. 5. In the free-form explanations, the advice had a
somewhat varied vocabulary including collect, jump, right,
hitBottom, fireball, do not run into, and jump over. For the
structured explanations, almost every piece of advice was
jump. In Mario, jumping vertically with no horizontal veloc-
ity will eventually lead to losing the level. For the survey
explanations, the variation in advice increased again.

The poor advice from the structured explanations is likely
due to the increased cognitive load of the explanation for-
mat. Free-form explanations do not force people to provide
specific content or formulate an answer in a particular for-
mat. People focus entirely on what to say, not how to say
it. Structured explanations, while still in natural language,
prompt people to provide specific content in a certain way.
Now, people have to focus on not just what to say, but how
to say it. Participants did a fairly good job of providing con-
tent in the desired format, as evidenced by the increase in
actionable advice. However, the extra work to formulate their
responses led to mostly worthless advice. Having to extem-
poraneously create a natural language response in a certain
structure was too difficult to yield worthwhile results, even
in a game domain. For the survey explanations, the cogni-
tive load was less compared to the structured explanations.
Domain information including pictures and labels for objects
and actions were provided to participants. They did not have

Fig. 6. Cumulative reward from survey.

to remember domain information or format responses; they
simply had to fill in as many blanks as they chose. If robots
ask people for information, the amount of information given
to the person and the method of response should not impose
a high cognitive load or the person’s response may be of poor
quality.

2) Total Cumulative Reward: Fig. 6 is included for com-
pleteness and shows the total cumulative reward earned by an
agent with and without advice. The agent with advice is able
to achieve better performance immediately.

3) Performance Over Object’s Entire State Space: Fig. 7
compares the performance of participants’ advice for chasms
with adversarial and no advice. Good advice led to an agent
with much better performance than adversarial or no advice.
An agent trained with adversarial advice quickly recovers and
performs as well as no advice, but not as well as good advice.
After 400 trials of learning, the best advice from the exper-
iment led to Mario falling into chasms approximately 16%
of the time, while the agents using adversarial or no advice
fell into chasms 34% of occurrences. Chasms are difficult for
the reflexive state representation that looks at the 3×3 grid
surrounding Mario. Mario’s velocity and whether he is in the
air are not part of the state representation. This leads to state
aliasing when learning policies for chasms. The policy can-
not tell if Mario is approaching the chasm quickly or slowly,
which changes the likelihood a given action will succeed.

It is possible for a participant to provide poor advice for
one object but good advice for another. The agent treats each
piece of advice without prejudice. Even if a participant gave
bad advice for chasms, the agent would not discount the rest
of the advice given by the same person.

4) Object-Level Generalization (Learning Where Advice
Applies): Fig. 8 shows the agent learns to which part of the

54 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 9, NO. 1, MARCH 2017

Fig. 7. Reward for chasms from survey.

Fig. 8. Visualizing object-level generalization in a policy for Goombas from
survey. The color scale represents Q-values showing when to jump quickly
to the right.

Fig. 9. Comparing the reward of good, mediocre, adversarial, and no advice
when a coin is northeast of Mario from survey.

state space the advice applies. The agent was advised to jump
to the right quickly when encountering Goombas. The agent
learned this was a good policy when the Goomba was to the
right of Mario in a “goldilocks” zone—not too close but not
too far away. The agent learned jumping to the right quickly
was bad advice when the Goomba was directly above Mario,
because he would become injured when his head ran into the
bottom of the Goomba. Using peoples’ advice as object-level
generalization allows the agent to quickly generalize a policy
to relevant areas of the state space that would be difficult to
learn about via exploration.

5) Performance in Specific Subset of Object’s State Space:
Now that we have seen the performance of policies across the
entire state space of an object and how generalization over
the state works, let us review the performance in one specific
subset of an object’s state space. Fig. 9 shows the results when
a coin is northeast of Mario.

It can be more difficult to recover from mediocre advice
than adversarial (Fig. 9). With adversarial advice, the agent
recognizes quickly that the advice is harmful by earning

Fig. 10. Impact of warnings on reward for coins and participant 3 from
survey.

negative Q-values. The most exploration occurs in the first
several trials, so it is likely the agent will experience many
actions with better performance than the adversarial advice.
With mediocre advice, the Q-values will be positive, although
not optimal. Fewer actions will earn higher Q-values, and a
better policy may not be found in a timely manner. Because
of the nature of ε-greedy exploration, it is unlikely the same
advice will be followed multiple times in a row, which makes
the situation more difficult in Mario’s domain due to the
combination of momentum in Mario’s movements and state
aliasing.

6) Advice+Warnings: Fig. 10 shows that incorporating
“what not to do” warnings in addition to “what to do” advice
increased the cumulative reward earned by the agent for
different objects. Avoiding dangerous actions and consider-
ing multiple objects simultaneously during action selection
improved the agent’s performance.

The agent accumulated approximately twice the
reward when both advice and warnings were included.
Algorithmically, this implies that if a robot or software
agent queries a human teacher for advice, it may improve
performance by asking for both advice and warnings. Even
though the experiment did not specifically ask participants to
provide warnings, they were able to do so for the free-form
and structured explanations. This is a result we will explore
in future work.

VI. CONCLUSION

Sentiment analysis can be used to filter natural language
explanations into advice of what to do and warnings of what
not to do. Negative classifications should not be immediately
trusted since there is a high likelihood of false negatives.
Splitting sentences with negative sentiment into clauses and
reclassifying increased the overall accuracy of the sentiment
filter by approximately 30% to around 85%. While a senti-
ment filter can process free-form explanations, many of the
sentences are not actionable and cannot be directly utilized as
advice.

Once the explanations have been split into advice and warn-
ings, object-focused advice and OF-Q can be used to train the
agent to maximize its reward for each object. We presented
a novel method of using human advice and warnings that
links objects to actions and does not require people to specify
state variables. object-focused advice allows people to gener-
alize over an object’s state space, which means people are not
forced to provide numbers or particulars describing the state
in explanations. A model-free approach has been described

KRENING et al.: LEARNING FROM EXPLANATIONS USING SENTIMENT AND ADVICE IN RL 55

that increases performance and does not require the intensive
construction of formal language translations.

The goal of object-focused advice is not to capture all the
nuances and subtleties of free-form teaching, but rather to
make use of human explanations without state information.
It is vital to develop methods that use human explanations
that are not state-specific since they reflect much of nonexpert
instruction.

REFERENCES

[1] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. 21st Int. Conf. Mach. Learn., Banff, AB,
Canada, 2004, p. 1.

[2] B. D. Argall, B. Browning, and M. Veloso, “Learning robot motion
control with demonstration and advice-operators,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Nice, France, 2008, pp. 399–404.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robot. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[4] S. Chernova and A. L. Thomaz, “Robot learning from human teachers,”
Synth. Lectures Artif. Intell. Mach. Learn., vol. 8, no. 3, pp. 1–121, 2014.

[5] L. C. Cobo, C. L. Isbell, and A. L. Thomaz, “Object focused Q-learning
for autonomous agents,” in Proc. Int. Conf. Auton. Agents Multi Agent
Syst., St. Paul, MN, USA, 2013, pp. 1061–1068.

[6] C. Diuk, A. Cohen, and M. L. Littman, “An object-oriented representa-
tion for efficient reinforcement learning,” in Proc. 25th Int. Conf. Mach.
Learn., Helsinki, Finland, 2008, pp. 240–247.

[7] S. Griffith, K. Subramanian, J. Scholz, C. Isbell, and A. L. Thomaz,
“Policy shaping: Integrating human feedback with reinforcement learn-
ing,” in Proc. Adv. Neural Inf. Process. Syst., 2013, pp. 2625–2633.

[8] M. Joshi, R. Khobragade, S. Sarda, U. Deshpande, and S. Mohan,
“Object-oriented representation and hierarchical reinforcement learn-
ing in infinite mario,” in Proc. IEEE 24th Int. Conf. Tools Artif.
Intell. (ICTAI), vol. 1. Athens, Greece, 2012, pp. 1076–1081.

[9] S. Krening, B. Harrison, K. M. Feigh, C. Isbell, and A. Thomaz, “Object-
focused advice in reinforcement learning,” in Proc. Int. Conf. Auton.
Agents Multi Agent Syst., Singapore, 2016, pp. 1447–1448.

[10] G. Kuhlmann, P. Stone, R. Mooney, and J. Shavlik, “Guiding a reinforce-
ment learner with natural language advice: Initial results in RoboCup
soccer,” in Proc. AAAI Workshop Supervisory Control Learn. Adapt.
Syst., San Jose, CA, USA, 2004.

[11] J. MacGlashan et al., “Grounding English commands to reward func-
tions,” in Proc. Robot. Sci. Syst., Rome, Italy, Jul. 2015.

[12] R. Maclin, J. Shavlik, L. Torrey, T. Walker, and E. Wild, “Giving advice
about preferred actions to reinforcement learners via knowledge-based
kernel regression,” in Proc. Nat. Conf. Artif. Intell., vol. 20. Pittsburgh,
PA, USA, 2005, pp. 819–824.

[13] C. D. Manning et al., “The Stanford CoreNLP natural language pro-
cessing toolkit,” in Proc. 52nd Annu. Meeting Assoc. Comput. Linguist.
Syst. Demonstrations, Baltimore, MD, USA, 2014, pp. 55–60.

[14] C. Meriçli, S. D. Klee, J. Paparian, and M. Veloso, “An interactive
approach for situated task specification through verbal instructions,” in
Proc. Int. Conf. Auton. Agents Multi Agent Syst., Paris, France, 2014,
pp. 1069–1076.

[15] B. Pang and L. Lee, “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales,” in Proc. 43rd
Annu. Meeting Assoc. Comput. Linguist., Ann Arbor, MI, USA, 2005,
pp. 115–124.

[16] B. Pang and L. Lee, “Opinion mining and sentiment analysis,” Found.
Trends Inf. Retrieval, vol. 2, nos. 1–2, pp. 1–135, 2008.

[17] M. S. Sivamurugan and B. Ravindran, “Instructing a reinforcement
learner,” in Proc. FLAIRS Conf., Marco Island, FL, USA, 2012.

[18] B. F. Skinner, The Behavior of Organisms: An Experimental Analysis.
New York, NY, USA: D. Appleton, 1938.

[19] B. F. Skinner, “Selection by consequences,” Science, vol. 213, no. 4507,
pp. 501–504, 1981.

[20] R. Socher et al., “Recursive deep models for semantic compositionality
over a sentiment treebank,” in Proc. Conf. Empir. Methods Nat. Lang.
Process. (EMNLP), vol. 1631. Seattle, WA, USA, pp. 1631–1642, 2013.

[21] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1. Cambridge, MA, USA: MIT Press, 1998.

[22] J. Togelius, S. Karakovskiy, and R. Baumgarten, “The 2009 Mario AI
competition,” in Proc. IEEE Congr. Evol. Comput. (CEC), Barcelona,
Spain, 2010, pp. 1–8.

Samantha Krening received the B.S. and M.S. degrees in aerospace engi-
neering from the University of Colorado at Boulder, Boulder, CO, USA, in
2011, where she emphasized in astrodynamics and nonlinear control. She is
currently pursuing the Ph.D. degree in robotics with the Georgia Institute of
Technology, Atlanta, GA, USA.

She was with NASA’s Jet Propulsion Laboratory in Guidance and Control
for the Cassini spacecraft. Her current research interests include machine
learning, human–robot interaction, learning from natural language, and
explainable AI.

Brent Harrison received the B.S. degree in computer science and the B.A.
degree in English from Auburn University, Auburn, AL, USA, in 2008, and
the M.S. and Ph.D. degrees in computer science from North Carolina State
University, Raleigh, NC, USA, in 2012 and 2014, respectively.

He is a Research Scientist with the Georgia Institute of Technology, College
of Computing, Atlanta, GA, USA. His current research interests include
machine learning, computational storytelling, and artificial virtual agents.

Dr. Harrison is a member of the Association for the Advancement of
Artificial Intelligence.

Karen M. Feigh (M’09–SM’14) received the B.S. degree in aerospace engi-
neering from the Georgia Institute of Technology, Atlanta, GA, USA, the
M.Phil. degree in engineering from Cranfield University, Cranfield, U.K.,
and the Ph.D. degree in industrial and systems engineering from the Georgia
Institute of Technology.

She is an Associate Professor with the School of Aerospace Engineering,
Georgia Institute of Technology. Her current research interests include cog-
nitive engineering, design of decision support systems, human automation
interaction, and behavioral modeling.

Charles Lee Isbell, Jr. received the B.S. degree from the Georgia Institute of
Technology, Atlanta, GA, USA, and the Ph.D. degree from the Massachusetts
Institute of Technology, Cambridge, MA, USA.

He is a Professor and the Senior Associate Dean with the Georgia Tech
College of Computing. His current research interests include time build-
ing autonomous agents that engage in life-long learning in the presence of
thousands of other intelligent agents, including humans.

Mark Riedl received the Ph.D. degree from North Carolina State University,
Raleigh, NC, USA, in 2004.

He is an Associate Professor with the Georgia Tech School of Interactive
Computing, Atlanta, GA, USA, and the Director of the Entertainment
Intelligence Laboratory. His current research interests include intersection of
artificial intelligence, virtual worlds, and storytelling.

Andrea Thomaz (M’04) received the B.S. degree in electrical and computer
engineering from the University of Texas at Austin, Austin, TX, USA, in
1999, and the M.Sc. and Ph.D. degrees from the Massachusetts Institute of
Technology, Cambridge, MA, USA, in 2002 and 2006, respectively.

She is an Associate Professor of Electrical and Computer Engineering,
University of Texas at Austin. Her current research interests include compu-
tationally model mechanisms of human social learning in order to build social
robots and other machines that are intuitive for everyday people to teach.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

