
Navigation Among Movable Obstacles with
Learned Dynamic Constraints

Jonathan Scholz1 Nehchal Jindal2 Martin Levihn2 Charles L. Isbell2 Henrik I. Christensen2

Abstract— In this paper we present the first planner for the
problem of Navigation Among Movable Obstacles (NAMO) on
a real robot that can handle environments with under-specified
object dynamics. This result makes use of recent progress from
two threads of the Reinforcement Learning literature. The first
is a hierarchical Markov-Decision Process formulation of the
NAMO problem designed to handle dynamics uncertainty. The
second is a physics-based Reinforcement Learning framework
which offers a way to ground this uncertainty in a compact
model space that can be efficiently updated from data received
by the robot online. Our results demonstrate the ability of a
robot to adapt to unexpected object behavior in a real office
scenario.

I. INTRODUCTION

Creating robots that can efficiently maneuver in domestic
environments, such as homes and offices, is an important
long-term goal in robotics. If the robot is capable of ma-
nipulating obstacles to clear paths to the goal, this problem
is referred to as Navigation Among Movable Obstacles
(NAMO). However, unlike factories and laboratories, it is
unreasonable to expect that these environments can be accu-
rately specified in advance. Therefore a key challenge is to
allow the robot to cope with the inevitable inconsistencies
between its expectations and the actual behavior of the
environment when a plan is executed. This paper presents a
Reinforcement Learning approach to this problem, in which
the robot is formalized as an agent that acts based on beliefs
about the dynamics of objects in the environment, and adapts
when its expectations are violated.

Our work draws on two threads from the RL literature.
The first is the NAMO-MDP [7], [8], a hierarchical Markov-
Decision Process framework for solving NAMO tasks with
stochastic dynamics models. The second is Physics-Based
Reinforcement Learning (PBRL) [14], which provides a
concrete parameterization of dynamics uncertainty in terms
of probability distributions over physical parameters, such
as mass and friction, inside a physics engine describing the
scene. Although promising, the usefulness and scalability of
these methods on an actual (non-simulated) NAMO task have
not yet been demonstrated.

In order to integrate these methods into a practical planner
on a real robot, the key challenge is to provide a solution
for the low-level manipulation tasks that does not break the
hierarchical abstraction of the NAMO-MDP, but can handle

1. Google DeepMind, London, UK. Email: jscholz@google.com
2. Robotics and Intelligent Machines at the Georgia Institute of

Technology, Atlanta, GA 30332, USA. Email: nehchal@gatech.edu, is-
bell@cc.gatech.edu

the large and highly constrained control space of the robot-
object system. We introduce two methods for addressing this
challenge. The first is a whole-body manipulation controller
which abstracts away the robot’s body and presents a low-
dimensional action space in terms of the manipulated object.
The second is a heuristic for searching this action space that
is encoded as a model-dependent manipulation policy. This
policy representation is conditional on the world state and
the parameters of the target object, and serves to guide search
towards actions that are appropriate for the dynamics of the
target object.

This paper is organized as follows. Section II provides an
overview of related work. Section III summarizes the two
building blocks of this work, Physics-Based Reinforcement
Learning and Markov Decision Processes for Navigation
Among Movable Obstacles. Section IV and Section V-
C present our method for whole-body manipulation with
learned object models, and we evaluate our method in
Section VI. We provide closing remarks and discuss future
work in Section VII.

II. RELATED WORK

Approaches to whole body manipulation can be distin-
guished based on two key properties: whether they consider
kinematic or dynamic constraints on the robot , and whether
they consider kinematic or dynamic constraints on the target
object . In this work we consider a kinematically-constrained
robot interacting with objects that have unknown dynamic
constraints. Dynamically-constrained robots, such as bipeds,
must take into account the robot’s reaction to applied forces
in a balancing controller. These platforms offer the possibility
of exploiting the robot’s dynamics to increase the amount
of applied force [15], but in practice this comes at the
expense of stability and safety. Kinematically-constrained
objects are ubiquitous in human environments, for example
doors, drawers, utility carts, and tables with lockable casters.
Planning with kinematically-constrained objects has recently
become a popular topic in robot manipulation.

[12] provides an example of planning for an unconstrained
object (a cart) with an unconstrained robot base (the PR2).
Even in this simple case, the robot+cart system is kinemati-
cally constrained via the grasp point, and the authors resort
to graph-search over articulation primitives to achieve long-
horizon mobile manipulation.

An example of a dynamically-constrained robot interacting
with kinematically constrained objects can be found in [2].
This is similar to the problem we consider here, but was

2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Daejeon Convention Center
October 9-14, 2016, Daejeon, Korea

978-1-5090-3762-9/16/$31.00 ©2016 IEEE 3706

implemented on a NAO, which is a small bi-pedal robot that
is dynamically stable but incapable of reaching and pushing
large objects such as office furniture. The planner in [2]
focused on maintaining balance while tracking a constrained
gripper trajectory with a single arm, and only utilized torso
and leg DOF to maintain static balance. The authors consid-
ered two constraint classes, prismatic and revolute, and as-
sumed that both the constraint and the corresponding gripper
trajectory (e.g. a circular arc) are known a priori. By contrast,
we consider bi-manual manipulation while navigating with
a non-holonomic base. Further, instead of strict kinematic
constraints we consider anisotropic friction, a second-order
constraint on object pose that acts via forces, and can there-
fore model slippage from idealized kinematic trajectories.1

Thus instead of assuming predefined parametric trajectories,
we obtain object trajectories by integrating object pose under
applied manipulation forces using a physics simulator that is
parameterized by the robot’s current beliefs.

Another important distinction is that the results in [12]
and [2] are concerned with only a single manipulation
action. The goal of this work is to utilize these manipulation
capabilities to solve long-horizon tasks with multiple grasp
and manipulation actions. This motivates the contributions
in Section V-C.

Another major theme of this paper is online model learn-
ing. Learning the parameters of dynamical systems is a well-
studied topic in machine learning and control theory, and
there are numerous approaches including non-parametric re-
gression [3], spectral learning for subspace [16] or predictive-
state [1] representations, Bayesian model selection [10], and
many more. Here we concern ourselves with physics-based
scene-level dynamics where the primary focus is constrained
object movement. We summarize the relevant work in this
area, and for a broader review see [14].

Like the physics-engine-based method considered here,
[20], also considers fitting object masses in a physics engine
using video data. However, this model lacked any notion
of physical agent, which implicitly assumes that the only
applied force is gravity. By contrast, our approach considers
control input from a robot, in the form of applied forces and
torques, as a critical component of the inference process. This
is similar to [11] and [17], which learn action-conditional
latent dynamics representations from pixel inputs. However
unlike [11], [17], we focus on explicit physics-based model
spaces for two reasons. The first is sample efficiency –
both pixel-based methods had to be trained on millions of
frames to reach adequate performance. Second, as we will
see in Section IV-C, the parameters in a physics-based model
space carry specific semantic meaning that can be utilized for
efficient planning and control.

III. PRELIMINARIES

This work builds chiefly on two methods from the machine
learning and robotics literatures, which we summarize here.

1This “softness” also turned out to be useful for estimation because it
smooths the gradient of loss function on object parameters.

A. Physics-Based Reinforcement Learning

Physics-based Reinforcement Learning (PBRL) is a
model-based RL framework specifically designed for agents
interacting with physical objects [14]. The general idea in
PBRL is to capture the robot’s uncertainty about world
dynamics as probability distributions over the dynamics pa-
rameters of a physics engine describing the scene. The main
advantage of this approach is that the model representation
is concise, allowing the agent to quickly estimate the model
and generalize accurately.

To update a PBRL model, the robot gathers data by
applying in-plane manipulation forces to one or more points
on the object, and records the force-torque responses and
resulting object trajectory. To avoid having to introduce
the end-effector contact point(s) in the model, the sensor
readings can be adjusted to compensate for the weight of
the end-effector, and transformed to the object frame in real-
time based on the current gripper pose. These operations are
discussed in greater detail in [13].

The world-frame object trajectories and applied forces
provide all the inputs necessary to simulate a full manip-
ulation episode. Defining the model loss as the L2-norm
on the integrated trajectory error, as discussed in [13], the
model parameters can be estimated with standard non-convex
inference techniques, e.g. MCMC [9] or L-BFGS [21].

B. Navigation Among Movable Obstacles

The Navigation Among Movable Obstacles (NAMO)
problem is like standard navigation problems, with the caveat
that the path may be obstructed by movable obstacles that the
robot can choose to clear. Unlike other mobile manipulation
tasks such as cart pushing [12], the manipulation tasks in
NAMO are underspecified: given a map of the room, how
does the robot decide which path to take, or which object
to move? If the final positions of all objects are unspecified,
this leads to a problem dimensionality that is exponential
in the number of objects in the scene, and is known to be
NP-hard [18].

In addition to the dimensionality problem, practical so-
lutions must handle uncertainty about the dynamics of the
manipulable objects. [7], [8] presented the first stochastic
planning method for solving NAMO problems in realistic
environments with model uncertainty. The core technical
idea behind this method is the NAMO-MDP, a hierarchical
MDP model for capturing the abstract subproblem of moving
between free space regions.

The NAMO-MDP defines a two-level hierarchy, with
moving between regions as the abstract task, and clearing
individual obstacles as the low level task. An action in the
abstract MDP involves manipulating an obstacle to clear a
path to a neighboring free-space region. This property is the
basis for the state and action spaces in the NAMO MDP,
visualized in Fig. 1.

The high-level NAMO-MDP can thus be viewed as a
reward shaping mechanism to focus the low-level search on
actions that are likely to clear paths to useful locations. This
problem decomposition attains its savings by constraining

3707

F1 F2

Couch

Love Seat

Table 1

Table 2

F3
F4

F1

F2

F4 GCouch

Love Seat

F3

Couch

Table 1

Love Seat Table 2

Table 1

(a) Robot determines free space re-
gions as subgraphs in a PRM.

F1 F2

Couch

Love Seat

Table 1

Table 2

F3

F4

F1

F2

F4 GCouch

Love Seat

F3

Couch

Table 1

Love Seat Table 2

Table 1

(b) Resulting MDP.

Fig. 1. Robot determines free space regions as subgraphs in a PRM and
constructs MDP accordingly.

actions to affect only one object at a time, and collapsing all
states within a free-space region to a single value.

The Q-value of a NAMO action represents the sum of two
quantities: the cost of executing the manipulation action, and
the reward of the target free-space region if the action was
successful. In order to compute this high-level Q-value, a
planner must be called to search for a manipulation action
that can clear the target obstacle. This low-level manipulation
problem defines another MDP, whose dynamics and action
space depend on the robot and environment.

In earlier simulation-based work the low-level manipu-
lation problems could be solved with Monte-Carlo Tree
Search (MCTS) methods. Specifically, the discretized grid
case was solved using vanilla MCTS over discrete push
actions [5], and the continuous dynamically-constrained case
was solved using Monte-Carlo simulation of KinoDynamic-
Rapidly Exploring Random Trees (KDRRT) [6]. We found
that these methods were not viable for directly obtaining
whole-body controls on a high-dimensional physical robot.
MCTS requires discretizing the configuration space, and is
infeasible on sparse-reward tasks such as NAMO without
some exogenous search bias. In our preliminary experiments
we found that even KDRRT was not very efficient, and often
produced low-quality plans when the model was not known
with high accuracy [8]. This motivated a more constraint-
centric approach, coupled with a policy-based search bias,
which we present next.

IV. APPROACH

The raw control space of humanoid robots can be
quite large. For example, the robot utilized below has a
differential-drive base and two arms, yielding a total of
3+7+7 = 17 DOF.2 However, while actually manipulating
an object, the dynamics of the robot-object system are highly
constrained by the rigid coupling of the arms and the possible
constraints on the motion of the object itself (e.g. a cart or
a table with a locked wheel).

In this paper, we are primarily concerned with manipula-
tion tasks involving pushing or pulling large objects on flat
surfaces. In order to achieve coherent object motion, we must
therefore search over control inputs that respect the following
constraints:

2The base has 3 effective DOF, although only 2 are directly controllable.

1) Both grippers remain in-plane.
2) Both grippers produce the same twist in the object

frame.
3) Overall gripper and base motion respects object con-

straints.
In addition to these hard constraints, it is also desirable

that the grippers remain in their reachable workspace, and
Section IV-A discusses a method for satisfying this constraint
by shifting work from the arms to the robot base.

Our approach is to first reduce the dimensionality of
the action space by defining a whole-body manipulation
controller that abstracts away the robot DOF and provides
an action space in terms of the manipulated object. This
controller induces a planning problem in terms of the object
grasp point and the desired object velocity. We then define
a heuristic for planning in the form of a stochastic manipu-
lation policy, which biases action selection during planning
according to actions that are likely to be valid for the target
object.

A. Constrained Object Manipulation
Like many humanoid robot systems, we assume access to

low-level current and velocity controllers for the individual
wheels and joint motors, but not necessarily torque control.3

Our goal is therefore to achieve velocity control of grasped
objects in terms of velocities at the wheel motors and the
joints in the body and arms.

The starting point for our approach is to define a whole-
body Jacobian pseudo-inverse controller which computes
base and gripper velocities in the robot-frame from desired
object velocities in the object-frame.4

A body Jacobian for the planar robot-object system is an
3×9 matrix mapping robot and gripper velocities in the robot
frame to object velocities in the object frame. It is obtained
by stacking three velocity transformations: one mapping base
velocity in the robot frame to object velocity in the object-
frame (with the base y-component dropped), and the others
mapping gripper velocity in the robot frame to object velocity
in the object frame (for Cartesian gripper controllers defined
in the robot frame):

J =

[o
bR 0 o

lgR 0 o
rgR 0

o
b py − o

b px 1 o
lg py − o

lg px 1 o
rg py − o

rg px 1

]
(1)

where B
AR denotes a 2×2 rotation from frame A to B, and B

A p
denotes the position of the origin of frame A in B. Subscripts
indicate the appropriate frame, with the robot base b, object
o, left-gripper lg, and right-gripper rg. To use Eq. 1 for
control, the simplest method is to drop the base-y component
(second column of J) to obtain the controllable Jacobian J̄
and apply the pseudo-inverse to obtain body velocities from
desired object velocities:

r
ov = J̄+o

ov (2)

3Force and torque is often difficult or impossible to control precisely;
Many arms are not equipped with joint-torque sensors, and even given a
force-torque sensor at the gripper, closed-loop force-control can be noisy
and error-prone without accurate models of the dynamics of the manipulator.

4The mapping from planar gripper velocities to manipulator joint veloc-
ities was achieved using the manipulator Jacobian.

3708

(a) Without Steering (Infeasible) (b) With Steering

Fig. 2. Comparison of body Jacobian with and without steering for a cart
pushing trajectory.

(a) Without Steering (Infeasible) (b) With Steering

Fig. 3. Comparison of body Jacobian with and without steering for a table
pulling trajectory.

By simulating the outcome of this controller in the PBRL
world corresponding to the robot’s current beliefs, we can
generate trajectories which are expected to succeed in the
real world.

The Jacobian-based control approach described above
offers a sound method for planning robot trajectories that
are accurate and safe to execute, but we found that it
frequently allowed the arms to drift out of the reachable
workspace (Fig. 2(a) and Fig. 3(a)). This problem comes
from having a differential drive base: any desired object
velocity perpendicular to the wheels could only be achieved
with the arms. We addressed this problem by splitting the
Jacobian transform into two parts, and running a steering
controller for the base at each intermediate waypoint before
simulating the gripper velocities.

The process for each time-step can be summarized as
follows:

1) Integrate the desired object-frame velocity o
ovi to obtain

an ideal object waypoint, assuming no constraints.
2) Integrate the corresponding robot base velocity r

rvi to
compute a desired base waypoint, and then call a base
steering controller to obtain a reachable base waypoint.

3) Compute the residual error between the updated object
location given the new base pose and the waypoint
computed in step 1 (i.e. the work to do be done by the
arms), and apply a manipulation controller to minimize
this error.

The base controller computes wheel velocities to achieve
the desired base velocity, and steering can be achieved by
adding a term to produce an angular velocity that turns
the robot to minimize the y (lateral) velocity. Incorporating
the steering controller into the trajectory generation process

relieved the burden on the arms to control errors in the y
direction, allowing the grippers to remain in the middle of
their workspace. Fig. 2 and Fig. 3 illustrate the effect of
adding steering to the body controller.

In summary, the manipulation controller is a mapping
from desired object velocities o

ov ∈ R3 to satisfying in-plane
body velocities [bbv,b

lgv,b
rgv]T ∈ R8. The gripper velocities

can then be mapped to joint velocities q̇r, q̇l ∈ R7 by the
manipulator jacobians, subject to the constraint that out-of-
plane translational and rotational velocities are zero. Overall
this formulation reduces the dimensionality of the 3+7+7=
17 DOF system to a 3-dimensional space.

B. Planning

Using the method described above, the only free pa-
rameters for manipulation are (1) the grasp point on the
object (2) the desired object velocity, and (3) the duration
of the action. We can compactly parameterize the grasp
space as an angle at the object center-of-mass. Candidate
grasp points are obtained by computing the boundary point
at this angle, projecting the boundary point off the object
face (to leave room for the arms to grasp the object), and
checking for a collision-free navigation path to this point. If
a path is found, this point is added to a list of viable grasp
points. This process can be visualized in Fig. 4. Manipulation
planning therefore consists of searching the space of valid
grasp angles, object velocities, and trajectory lengths, and
evaluating the outcomes in the simulator.

Solving a NAMO subtask involves running this manipu-
lation planner to attempt to find a way to clear an obstacle
between two given free-space regions. To solve the subtask
we perform monte-carlo sampling of model beliefs, and for
each model we perform a search over manipulation parame-
ters am ∈R5 to generate candidate manipulation trajectories.

Recall that the reward function Ra
s for this subtask is the

sum of two terms: the average cost of the manipulation
trajectory plus a discounted reward for the region reached.
We chose a cost function to penalize total time, force,
and torque applied to the object. We achieve this with a
decreasing sigmoid function that is shifted and scaled to the
range y ∈ [0,α] for total time ttotal , total linear force ftotal ,
and total torque τtotal applied during a manipulation action:

Ra
s =

1
3

3

∑
i=1

α

1+ exp(β (xi
mi
−η))

−α +Vs′ (3)

for quantities x = [ttotal , ftotal ,τtotal] with nominal maxima
m = [tmax, fmax,τmax]. The shape parameters α and β control
the magnitude and steepness, respectively, of the cost func-
tion. In the experiments in Section VI we set α = 200

4 = 25
(for terminal reward 200), β = 10, and η = 5.

High-level NAMO planning proceeds by sequentially solv-
ing these subtasks in an ordering imposed by the current
free-space region values. This causes the overall planning
process to proceed backwards from the goal as free-space
values are computed and propagated to neighboring regions.
For further discussion of this effect, and demonstration (in
simulation) on larger domains, see [7], [8].

3709

C. Manipulation Policies

The inner-loop of the planning process described above
requires integrating the body velocities in a simulator param-
eterized by robot’s current world beliefs to obtain executable
trajectories. This process can be computationally expensive,
particularly if we wish to perform many Monte-Carlo sam-
ples to obtain high confidence.

For this reason, we define a model-dependent manipulation
policy, which constrained the set of achievable velocities and
grasp points as a function of object dynamics:

am ∼ π(s;φ) (4)

Where φ denotes the model parameters. The form of π can
be arbitrary, and in this work we consider a (hand-defined)
decision tree over φ with k dynamics categories. Each leaf
node corresponds to a single model class, and each class
parameterizes a distribution over action parameters am ∈R5.
Rather than uniform random search over am, we sample
actions from π while building our search tree. The policy we
describe can thus be viewed as an optional planning heuristic
which trades completeness for computation time.

V. IMPLEMENTATION

A. Model Parameterization

Our focus is on manipulating large indoor objects, such
as tables and chairs. We found that a single constraint class,
anisotropic friction, was very expressive, and captured all
of the effects of interest in our office setting. We review
the anisotropic constraint model from [14] here, and the
requirements for accurately estimating its parameters (along
with object mass) from data.

Anisotropic friction is a velocity constraint that allows sep-
arate friction coefficients in the x and y directions, typically
with one significantly larger than the other. In this work we
parameterize the anisotropic friction joint by the 5-vector
Jw = 〈wx,wy,µx,µy,µθ 〉, corresponding to the joint position
in the body frame, the two orthogonal friction coefficients,
and an angular friction term. The angular term was added
from the presentation in [13] to capture the wheel drag
when rotating an about about a fixed point. In addition to
simulating wheels, this constraint can also model planar
revolute motion such as a locked caster (by making both
linear coefficients large), or fully static (by making all 3
coefficients large).5

B. Policy Definition

We consider four model classes for the purposes of defin-
ing manipulation policies: static, unconstrained, anisotropic,
and fixed-point. Static objects have sufficiently large values
for all friction coefficients that no manipulation is possible.
If an object is known to be static, the manipulation policy is
null. Unconstrained objects have no physical constraints, and
are free to move in any direction. For unconstrained objects
we consider the three planar DOF separately for a total of six

5Note this is different than simply assuming the object has a large mass,
because friction can dissipate the energy provided by the robot, whereas a
mass-only model does not, resulting in slow drift.

(a) Sampling for
Unconstrained Table

(b) After Grasping Locked Table

Fig. 4. Sampling reachable grasp points depends on object dynamics. (a)
For unconstrained object, points are sampled for each face and projected off
the surface to leave room for grasp. (b) After grasping a fixed-point object.
Note sampled boundary point and gripper offsets.

directions: o
ov∈ {±vx}×{±vy}×{±vθ}. Anisotropic objects

have a single large friction coefficient µx|µy > 0.3, and
behave like wheeled bodies. To manipulate these objects we
only consider angular velocities at the constraint point and
linear velocities along the unconstrained axis (e.g. if µx < 0.3
and µy > 0.3 then we only consider linear velocities along the
constraint’s x-axis). Fixed-point objects have large values for
both linear friction coefficients µx,µy > 0.3, and rotate about
the joint anchor. These objects are the most constrained,
and to manipulate them we consider only angular velocities
±vθ at the constraint point. Note that this pure angular
velocity at the constraint point will produce time-varying
linear components at the object center-of-mass, and encoding
this transform in the manipulation policy is an additional
form of physical domain knowledge that leverages our model
representation.

The grasp angle is chosen to produce grasp points that
are manipulable for the target object. If the object is uncon-
strained, as in Fig. 4(a), the grasp points are sampled from all
object faces. If the object has a locked wheel, as in Fig. 4(b),
the grasp angles are constrained to the top and bottom face
along the opposite end of the object.6

These rules were sufficient for our purposes, but learning
model-dependent policies is an interesting area of research
that may further justify our choice of model representation
over non-physics-based alternatives.

C. Predictive Hierarchical Execution

To solve a NAMO problem in realistic environments, the
next step is designing a robust method for executing these
manipulation actions on a physical robot, and handling when
the robot’s beliefs are wrong. For NAMO tasks we have three
primary considerations:

1) NAMO requires sequencing multiple object interac-
tions, and we therefore must consider navigating to,
grasping, and releasing objects, in addition to actual
object manipulation.

6Formally, we selected angles from the set ±atan2(
√

3
2 , w

2h), where w,h
denote object width and height, respectively.

3710

Subtask Parameters
x,y = GetGraspPoint(oi) oi: Target object id
NavToPt(x,y) x,y: Navigation goal point
Grasp(oi) oi: Target object id
Clear(fi) fi: Target free-space region id
UpdateModel(D) D: Data gathered during Clear
Release(oi) oi: Target object id

Fig. 5. Subtasks involved in the execution of a NAMO action.

2) The termination condition for manipulation actions is
not a specific goal configuration, but rather any state
that creates an opening.

3) Models may be wrong, so the robot should maintain
expectations about the results of its actions, and abort
to update its world model as necessary.

For these reasons a single high-level NAMO action is
actually composed of a set of distinct intermediate subtasks:
finding a valid grasp point according to the world state and
model (Section IV-C), navigating to the grasp point, grasping
the object, and executing a manipulation trajectory while (a)
comparing forces with expected values from planning, abort-
ing and updating the model as necessary, and (b) periodically
checking for openings created using a path planner.

To handle this we implement a (stochastic) state machine
for coordinating the execution of these operations. An ab-
stract NAMO action instantiates each of the operations above
with the appropriate parameters, as defined in Table V-C.

The most important aspect of this construction is the
mechanism for execution monitoring and model updating.
We achieve this ability by leveraging our physics-engine
framework to compute and save gripper forces during manip-
ulation planning.7 If unexpected forces are observed during
execution, the subtask pauses and the data gathered during
the aborted episode are passed to a learning procedure based
on the method discussed in Section III. After the model has
been updated, the planner releases the object and recomputes
the NAMO policy for the current world state (note that
the aborted action may have changed the action cost, and
possibly even the free-space connectivity).

The Clear subtask uses the body controller defined in
Section IV-A for object manipulation. During manipulation,
this subtask periodically checks for openings to the target
free-space region using a fast circular-footprint RRT path
planner. For each timestep, Clear also computes the object-
frame forces from the wrist sensor signals, and compares
them to the expected forces applied during planning. This
subtask terminates when either (a) a force is perceived that
exceeds the maximum expected value by a user-defined
threshold (150% in our implementation), or (b) the controller
stalls or reaches a timeout.

VI. EVALUATION

We performed three experiments from identical scene
configurations with differing object dynamics in order to
highlight our method’s robustness to model uncertainty. In

7This is similar to the idea of efference-copy in biological systems [19].

addition to replicating the model-identification results from
[13], these experiments also show how manipulation control
can leverage the learned parameters explicitly for control.
These results constitute the first real-robot implementation
of the NAMO MDP.

Task configurations were chosen to replicate typical office
environments. We selected two tables to use as obstacles
in this task: one which is square with actual mass 33Kg,
and another which is rectangular with mass 38Kg. For these
experiments we used a six-camera overhead vision system
that tracked the robot and objects using AR-tags [4]. Both
tables have four lockable casters which significantly affect
the table’s dynamics, but their true state is not available to
the robot.

Key-frames from an experiment involving two constrained
objects are shown in Fig. 6. Planning and execution in
this task proceeds as follows: The robot identified two free
space regions and selected the square table as the lowest-cost
obstacle to clear. When the robot grasped and attempted to
push this object out of the way it encountered unexpectedly
large force along the pushing direction, and halted to update
its model. Using the method from Section III-A, the robot
estimated an anisotropic friction constraint in the middle of
the table with three large coefficients, effectively rendering
it static. The robot then recomputed the object Q-values
and elected to pull the rectangular table down to create an
opening. Instead of succeeding on its first attempt, the table
rotates unexpectedly, due to a locked wheel on the left corner
of the table. Rather than aborting, the robot the successfully
estimates the coefficients and pose of this constraint, and
executes a parameterized fixed-point action to rotate the table
about this point (Section IV-C). The result of this rotation
action can be seen in Fig. 6(j). This action successfully
opened a path to the goal, as can be seen in Fig. 6(k).

This behavior was successfully replicated with the exact
same code-base under cases in which both tables were
unconstrained (Experiment 2), and in which the square
table was static and the rectangular table was unconstrained
(Experiment 3). Quantitative results from these experiments
can be found in Table 7. Footage from these experiments can
be found in the accompanying video, or online.8

A. Failure Cases

Although the results described here demonstrated adaptive
behavior, there were several common points of failure in
our experiments. Foremost, many of the subroutines involved
in our overall method involved some form of randomness,
including PRM free-space detection, RRT path planning,
grasp-point sampling, and MCMC model inference. We were
able to tune these algorithms to achieve 90+% success rates
on each subroutine, but the long horizon of the tasks we
consider here led to frequent failures at some point in the
pipeline.

In addition, these experiments depended on off-board
vision using six overhead cameras, and the limited coverage

8http://www.cc.gatech.edu/ jscholz6/resources/projects/PBRL/pbrl.php

3711

(a) Starting Configuration (b) Initial NAMO MDP (c) Expected Solution: Push
Square Table

(d) Table is Stuck (e) Learns Static Constraint (f) New Solution: Pull Long Ta-
ble

(g) Table Rotates Unexpectedly (h) Learns Parameters of
Locked Caster

(i) New Solution: Rotate Long
Table

(j) Table Rotated Successfully (k) Opening Found! (l) Task Complete

Fig. 6. Key-frames from Navigation Among Movable Obstacles task using physics-based model prior (PBRL). The square table has two locked casters,
and the rectangular table has a single locked wheel on the left side. Both of these properties are initially unknown to the robot.

3712

Experiment 1 Experiment 2 Experiment 3
Overall Runtime 7m 46s 3m 12s 4m 48s
Overall Planning time 0m 52s 0m 36s 0m 37s
Number of calls to NAMO planner 2 1 1
Number of calls to UpdateModel 2 0 1
Expected action rewards 183.60,175.12,170.37 173.22 173.22,172.88
Observed action rewards −17.10,−18.64,180.74 177.15 −17.48,176.56

Fig. 7. Planning and execution statistics for NAMO experiments and selected actions. (1) square-table push, rect-table pull, rect-table rotate, (2) square-table
pull, (3) square-table push, rect-table pull. Rewards effectively capture goal bonus (200) discounted by energy consumption and time.

of the system prohibited experiments from any configuration
in which the tables were not in the exact middle of the scene.

VII. DISCUSSION

In this paper we presented the first NAMO planner that
could adapt to unexpected object dynamics online. This
planner made use of a hierarchical MDP planning formal-
ism, and a compact physics-based Reinforcement Learning
framework for sample-efficient model estimation. To make
planning possible on a real robot with a high-DOF control
space, we defined a manipulation controller that reduced the
search space to a 5-DOF object-centric representation. We
then introduced a model-dependent manipulation policy as a
heuristic for searching this space. These controllers and the
associated logic for identifying valid grasp points and model
parameters were encoded in a state machine for coordinated,
robust execution of NAMO obstacle-clearing actions.

Our experiments focused on demonstrating the feasibility
of our methods on a manipulation problem that forced the
robot to detect errors in its world model and adjust its
plan accordingly. The NAMO task presented here included
unobservable physical properties, in the form of lockable
wheels, that required the robot to either switch objects,
or switch control strategies. Our results demonstrated that
online physics-based RL is a viable method for solving a
mobile manipulation task in a real office environment.

We also demonstrated the value of a compact model
parameterization for planning, by making direct use of the
model parameters as decision variables in a manipulation
policy. This would not be possible with a non-inspectable
model class, e.g. a Gaussian Process. Although it would
have been possible for the robot to find a kinematically
feasible trajectory through exhaustive search over grasp
and velocity parameters, it would require a time-consuming
search through a control space a ∈ R5, each involving
expensive trajectory evaluations. From these observations we
would argue that the mapping from model beliefs to control
parameters is a useful concept that should be explored in
greater depth in the future.

REFERENCES

[1] Byron Boots, Sajid M Siddiqi, and Geoffrey J Gordon. Closing
the learning-planning loop with predictive state representations. The
International Journal of Robotics Research (IJRR), 30(7):954–966,
2011.

[2] Felix Burget, Armin Hornung, and Maren Bennewitz. Whole-body
motion planning for manipulation of articulated objects. In Robotics
and Automation (ICRA), IEEE International Conference on. IEEE,
2013.

[3] M. Deisenroth and C. Rasmussen. PILCO: A model-based and data-
efficient approach to policy search. In Proceedings of the 28th
International Conference on Machine Learning (ICML), 2011.

[4] Mark Fiala. ARTag, a fiducial marker system using digital techniques.
In Computer Vision and Pattern Recognition (CVPR), IEEE Computer
Society Conference on, 2005.

[5] M. Kearns, Y. Mansour, and A. Ng. A sparse sampling algorithm
for near-optimal planning in large markov decision processes. In
International Joint Conference on Artificial Intelligence (IJCAI), 1999.

[6] S.M. LaValle and J.J. Kuffner Jr. Randomized kinodynamic planning.
The International Journal of Robotics Research (IJRR), 20(5):378–
400, 2001.

[7] M. Levihn, J. Scholz, and M. Stilman. Hierarchical decision theoretic
planning for navigation among movable obstacles. In Workshop on
Algorithmic Foundation of Robotics (WAFR), 2012.

[8] M. Levihn, J. Scholz, and M. Stilman. Planning with movable
obstacles in continuous environments with uncertain dynamics. In
Robotics and Automation (ICRA), IEEE International Conference on,
May 2013.

[9] Radford M Neal. MCMC using hamiltonian dynamics. Handbook of
Markov Chain Monte Carlo, 2, 2011.

[10] Brett Ninness and Soren Henriksen. Bayesian system identification
via markov chain monte carlo techniques. Automatica, 46(1):40–51,
2010.

[11] Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satin-
der Singh. Action-conditional video prediction using deep networks in
atari games. In Advances in Neural Information Processing Systems
(NIPS), 2015.

[12] Jonathan Scholz, Sachin Chitta, Bhaskara Marthi, and Maxim
Likhachev. Cart pushing with a mobile manipulation system: Towards
navigation with moveable objects. In Robotics and Automation (ICRA),
IEEE International Conference on, 2011.

[13] Jonathan Scholz, Martin Levihn, Charles L Isbell, Henrik Christensen,
and Mike Stilman. Learning non-holonomic object models for mobile
manipulation. In Robotics and Automation (ICRA), IEEE International
Conference on, 2015.

[14] Jonathan Scholz, Martin Levihn, Charles L Isbell, and David Wingate.
A physics-based model prior for object-oriented mdps. In International
Conference on Machine Learning (ICML), 2014.

[15] Mike Stilman, Jon Olson, and William Gloss. Golem krang: Dynami-
cally stable humanoid robot for mobile manipulation. In Robotics and
Automation (ICRA), IEEE International Conference on, 2010.

[16] Peter Van Overschee and Bart De Moor. N4SID: Subspace algorithms
for the identification of combined deterministic-stochastic systems.
Automatica, 30(1):75–93, 1994.

[17] Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin
Riedmiller. Embed to control: A locally linear latent dynamics model
for control from raw images. In Advances in Neural Information
Processing Systems (NIPS), 2015.

[18] Gordon Wilfong. Motion planning in the presence of movable obsta-
cles. In Proceedings of the fourth annual symposium on Computational
geometry. ACM, 1988.

[19] Daniel M Wolpert and Mitsuo Kawato. Multiple paired forward and
inverse models for motor control. Neural networks, 11(7):1317–1329,
1998.

[20] Jiajun Wu, Ilker Yildirim, Joseph J Lim, Bill Freeman, and Josh Tenen-
baum. Galileo: Perceiving physical object properties by integrating a
physics engine with deep learning. In Advances in Neural Information
Processing Systems (NIPS), 2015.

[21] Ciyou Zhu, Richard H Byrd, Peihuang Lu, and Jorge Nocedal.
Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-
constrained optimization. ACM Transactions on Mathematical Soft-
ware (TOMS), 23(4):550–560, 1997.

3713

