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Abstract

Discovering recurring patterns in time series data is a
fundamental problem for temporal data mining. This paper
addresses the problem of locating subdimensional motifs in
real-valued, multivariate time series, which requires the si-
multaneous discovery of sets of recurring patterns along
with the corresponding relevant dimensions. While many
approaches to motif discovery have been developed, most
are restricted to categorical data, univariate time series,
or multivariate data in which the temporal patterns span
all of the dimensions. In this paper, we present an ex-
pected linear-time algorithm that addresses a generaliza-
tion of multivariate pattern discovery in which each motif
may span only a subset of the dimensions. To validate our
algorithm, we discuss its theoretical properties and empiri-
cally evaluate it using several data sets including synthetic
data and motion capture data collected by an on-body iner-
tial sensor.

1. Introduction

A central problem in temporal data mining is the un-
supervised discovery of recurring patterns in time series
data. This paper focuses on the case of detecting such un-
known patterns, often called motifs, in multivariate, real-
valued data. Many methods have been developed for mo-
tif discovery in categorical data and univariate, real-valued
time series [6, 1, 4, 3, 12], but relatively little work has
looked at multivariate data sets. Multidimensional time
series are very common, however, and arise directly from
multi-sensor systems and indirectly due to descriptive fea-
tures extracted from univariate signals.

The existing research that does address the problem of
multivariate motif discovery typically focuses on locating
patterns that span all of the dimensions in the data [10, 11,

Figure 1. Extending the idea of a univariate motif to mul-
tivariate data can take several form: (a) every motif spans
all of the dimensions, (b) each motif spans the same sub-
set of the dimensions, (c) each motif spans a (potentially
unique) subset of the dimension, but motifs never tempo-
rally overlap, and (d) motifs may temporally overlap if they
span different dimensions.

2, 7, 9, 8]. While this generalization from the univariate
case represents important progress and may fit the proper-
ties of a particular data set quite well, we are interested in
addressing a broader form of multivariate pattern detection,
which we call subdimensional motif discovery. Figure 1
depicts four categories of multidimensional motifs in or-
der of increasing generality. The case typically addressed
is shown in Figure 1a where the motifs span all three of
the dimensions. Alternate subdimensional formulations in-
clude Figure 1b where some dimensions are irrelevant to all
of the motifs, Figure 1c where the relevancy of each dimen-
sion is determined independently for each motif, and finally
Figure 1d which allows the recurring patterns to temporally
overlap in different dimensions. In this paper, we present
an algorithm that can efficiently and accurately locate pre-
viously unknown patterns in multivariate time series up to
the generality represented by Figure 1c. Note that our algo-



rithm also naturally handles the more restrictive problems
depicted in Figure 1a, which we call “all-dimensional” mo-
tif discovery, and Figure 1b, as well as the univariate case.

Subdimensional motifs arise in many circumstances in-
cluding distributed sensor systems, multimedia mining, on-
body sensor analysis, and motion capture data. The key
benefit of subdimensional motif discovery is that such meth-
ods can find patterns that would remain hidden to typical
multivariate algorithms. The ability to automatically detect
the relevance of each dimension on a per-motif basis al-
lows great flexibility and provides data mining practitioners
with the freedom to include additional features, indicators,
or sensors without requiring them to be a part of the pattern.
Subdimensional discovery also provides robustness to noisy
or otherwise uninformative sensor channels.

2. Discovering Subdimensional Motifs

Our approach to subdimensional motif discovery extends
the framework developed by Chiu et al. [3], which has also
been adapted by several other researchers to address varia-
tions on the basic motif discovery problem [9, 11, 12]. In
this section, we provide a brief review of the existing algo-
rithmic framework and present our enhancements that allow
efficient subdimensional motif discovery.

Our algorithm searches for pairs of similar, fixed-length
subsequences and uses these motif seeds to detect other oc-
currences of the same motif. The search is made efficient
by first discretizing each subsequence and then using ran-
dom projection to find similar strings in linear time. Once a
potential motif seed is found, the algorithm determines the
relevance of each dimension for that motif and then (option-
ally) estimates the motif’s neighborhood size and searches
for additional occurrences. See Algorithm 1 for a more de-
tailed overview.

2.1. Local Discretization

We adopt the method of symbolic aggregate approxima-
tion (SAX) as a means for very efficient local discretiza-
tion of time series subsequences [5]. SAX is a local quan-
tization method that first computes a piecewise aggregate
approximation (PAA) of the normalized window data and
then replaces each PAA segment with a symbol. The SAX
algorithm assigns a symbol to each segment by consulting a
table of precomputed breakpoints that divide the data range
into equiprobable regions assuming an underlying Gaussian
distribution.

2.2. Random Projection

Random projection provides a mechanism for locating
approximately equal subsequences in linear time. After

Algorithm 1 Subdimensional Motif Discovery

Input: Time series data (S), subsequence length (w), word length
(m), maximum number of random projection iterations (maxrp),
threshold for dimension relevance (threshrel), and a distance
measure (D(·, ·))

Output: Set of discovered motifs including occurrence locations
and relevant dimensions

1. Collect all subsequences, si, of length w from the time series
S: si = 〈Si, .., Si+w−1〉 : 1 ≤ i ≤ |S| − w + 1

2. Compute p̂(D) ≈ p(D(si,d, sj,d)), an estimate of the distri-
bution over the distance between all non-trivial matches for
each dimension, d, by random sampling

3. Search for values of α (alphabet size) and c (projection di-
mensionality) that lead to a sparse collision matrix

4. Compute the SAX word of length m and alphabet size α for
each dimension of each subsequence

5. Build the collision matrix using random projection over the
SAX words; number of iterations = min(

`
m
c

´
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6. Enumerate the motifs based on the collision matrix

(a) Find the best collision matrix entry (ẋ1, ẋ2)

i. Find the largest entry in the collision matrix and
extract the set of all collisions with this value:
X = {(x1
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ii. Compute the distance between the subsequences
x1

j and x2
j in each collision, 1 ≤ j ≤ |X|, and

dimension, d: distj,d = D(sx1
j ,d, sx2

j ,d)

iii. Determine which dimensions are relevant:

rel(d) = I(
R distj,d

−∞ p̂(D)) < threshrel)

iv. Select the collision with smallest average dis-
tance per relevant dimension:

(x1
j , x

2
j ) : j = arg min

j
(

P
d distj,d·rel(d)P

d rel(d)
)

(b) Estimate the neighborhood radius, R, using only the
relevant dimensions

(c) Locate all other occurrences of this motif:
min(D(sẋ1 , si), D(sẋ2 , si)) ≤ R

(d) Remove subsequences that would constitute trivial
matches with the occurrences of this motif

extracting the subsequences and converting them to SAX
words, the algorithm proceeds through several iterations of
random projection. Each iteration selects a subset of the
word positions and projects each word by removing the re-
maining positions. This is essentially axis-aligned projec-
tion for fixed-length strings (see Figure 2a and 2b).

In order to detect similar words, a collision matrix is
maintained. If there are T subsequences, then the colli-
sion matrix has size T x T and stores the number of iter-



Figure 2. (a,b) For each iteration of random projection,
a subset of string positions are selected (here, positions one
and three). (c) The selected symbols are hashed, and (d)
equivalent projections are tallied in a collision matrix.

ations in which each pair of subsequences were equivalent
after discretization and random projection. The matrix is
updated after each iteration by hashing the projected words
and then incrementing the matrix entry for each equivalent
pair (see Figure 2c and 2d). Finally, after the last iteration of
random projection, the entries in the collision matrix repre-
sent the relative degree of similarity between subsequences.
These values provide a means for focusing computational
resources by only analyzing those entries that are large rel-
ative to the expected hit rate for random strings [3].

The total time complexity of the random projection al-
gorithm is linear in the number of strings (T ), the number
of iterations (I), the length of each projected word (c), and
the number of collisions (C =

∑I
i=1 Ci). The complex-

ity is dominated by the collisions since Ci grows quadrati-
cally with the number of equivalent projected words, which
can rise as high as T in the worst case. Specifically, Ci =∑

h∈H

(
Nh

2

)
=

∑
h∈H

1
2Nh · (Nh − 1), where H is the set

of all projected strings and Nh equals the number of strings
that project to h ∈ H . In the case where a large proportion
of the subsequences have the same projection, h∗, we have
Nh∗ = O(T ) and thus Ci = O(T 2), which is infeasible in
terms of both time and space for large data sets.

In order to avoid quadratic complexity, our algorithm
searches for parameters that ensure a sufficiently wide pro-
jection distribution. Using a SAX alphabet of size α and
projection dimensionality of c, there will be αc possible
projected strings, and, given that the SAX algorithm seeks
equiprobable symbols, the distribution should be close to
uniform except where actual recurring patterns create a bias.

At run time, the algorithm dynamically adjusts α and c to
control the number of hits. Starting with α = 3 and c set to
the length of the original word (i.e., no projection), the value
of α is increased if the collision matrix becomes too dense,
while c is reduced if too few matches are found. Further-
more, the collision matrix uses a sparse matrix data struc-
ture to ensure that the storage requirements scale with the
number of collisions rather than with the full size of the
matrix.

When dealing with univariate data, applying the random
projection algorithm is straightforward. For multivariate
data, however, each dimension leads to its own SAX word,
and so a method for combined projection is required. To
address the all-dimensional motif discovery problem (Fig-
ure 1a), researchers have simply concatenated the projec-
tions of the words from each dimension and then hashed the
resulting string [9]. To discover subdimensional motifs, our
algorithm instead increments the collision matrix for each
dimension that matches. This change can be understood as
a switch from a logical AND policy in the all-dimensional
case (i.e., all dimensions must match to qualify as a colli-
sion) to a logical OR policy (i.e., a collision occurs if any
of the dimensions match. The algorithm increments the rel-
evant entry once for each matching dimension to account
for the additional support that multiple similar dimensions
provides.

2.3. Locating Relevant Dimensions

The random projection algorithm, as described in the
previous section, does not provide information about which
dimensions are relevant for a particular motif. Although we
could modify the algorithm to maintain separate collision
matrices for each dimension, initial experiments showed
that this approach led to inaccurate relevance estimation. In-
stead, we use the collision matrix to help locate motif seeds
and then determine the relevant dimensions by analyzing
the original, real-valued data.

When motifs are defined by a fixed, user-specified neigh-
borhood radius, dimension relevance is easily determined
by locating those dimensions which do not cause the dis-
tance between the seeds to exceed the given radius. Specifi-
cally, we can sort the dimensions by increasing distance and
then incrementally add dimensions until the seed distance
grows too large.

In the case when the neighborhood radius must be esti-
mated, a more involved approach is required. Here we es-
timate the distribution over distances between random sub-
sequences for each dimension by sampling from the data
set. Then, given the distribution and a seed to analyze, we
can evaluate the probability that a value smaller than the
seed distance would arise randomly by calculating the cor-
responding value of the cumulative distribution function. If



Figure 3. Graphs showing how the subdimensional dis-
covery algorithm scales with (a) increasing time series
length and (b) increasing motif length

this value is large, then we deem the dimension irrelevant
because it is likely to arise at random, while if it small, it
likely indicates an interesting similarity.

In the experiments presented in this paper, we model the
distances with a Gaussian distribution and require the seed
distance to be smaller than 80% of the expected distances
(i.e., cdf(distd) ≤ 0.2). It is straightforward, however, to
use a more expressive model, such as a nonparametric ker-
nel density estimate or gamma distribution, for more accu-
rate relevance decisions.

3. Experimental Evaluation

We evaluated our algorithm by running experiments us-
ing planted motifs as well as non-synthetic data captured by
on-body inertial sensors. Our experiments demonstrate the
efficacy of the algorithm as well as its scaling properties as
the length of the time series data and the number of dimen-
sions increases. We also investigate the effect of different
distance metrics and provide a comparison with other mul-
tivariate discovery algorithms.

3.1. Planted Motifs

As an initial verification that our subdimensional motif
discovery algorithm is able to locate motifs amongst irrele-
vant sensor channels, we performed a planted motif experi-
ment using synthetic data. For this problem, a random time
series is generated and then one or more artificial motifs are
inserted. The discovery system, which has no knowledge of
the pattern, must then locate the planted motifs.

For the case of a single planted motif, Figure 3 shows
how our algorithm scales as the length of the time series
(T ) increases (Figure 3a) and as the length of the motif (M )
increases (Figure 3b). The algorithm is able to accurately
locate the motif in all cases, and, importantly, it correctly
identifies the irrelevant dimension. From Figure 3a, we see
that the time required to locate the planted motif scales lin-
early with the length of the time series. As the motif length

Figure 4. Event-based accuracy for both the subdimen-
sional and all-dimensional discovery algorithms.

increases, however, the behavior changes. When the L1 dis-
tance metric is used, the algorithm still scales linearly, but
when the dynamic time warping (DTW) distance measure
is used, however, the time scales quadratically. This is not
surprising since DTW is quadratic in M even when warp-
ing constraints are used (in all of the experiments, we used
a 10% Sakoe-Chiba band). In typical cases of motif discov-
ery, however, M � T , and so linear dependence on T still
dominates the overall run time.

3.2. Distracting Noise Channels

In this section, we investigate the ability of our subdi-
mensional motif discovery algorithm to detect multivariate
motifs in real sensor data despite the presence of distracting
noise dimensions. We evaluated robustness in two cases by:
(1) adding increasingly large amounts of noise to a single
distracting noise dimension and (2) adding additional irrel-
evant dimensions each with a moderate amount of noise.

The non-synthetic data set was captured during an ex-
ercise regime made up of six different dumbbell exercises.
A three-axis accelerometer and gyroscope mounted on the
subject’s wrist were used to record each exercise. The data
set consists of 20,711 frames over 32 sequences and con-
tains roughly 144 occurrences of each exercise. This data
set was previously used to evaluate an all-dimensional mo-
tif discovery algorithms [9] and so we use that method as a
basis for comparison.

Figure 4 shows the results of the first experiment in
which a single dimension of noise was added to the six
dimensional exercise data. The graph shows the accuracy
of the discovered motifs relative to the known exercises.
The evaluation framework matched discovered motifs to
known exercises and calculated the score by determining
those motif occurrences that correctly overlapped the real
instances (C), along with all insertion (I), deletion (D),



Figure 5. Event-based accuracy for both the subdimen-
sional and all-dimensional discovery algorithms using au-
tomatic neighborhood estimation.

and substitution errors (S). Accuracy was then calculated
as acc = C−I−S

N where N = C + D + S, the total number
of real occurrences.

From Figure 4 we see that with no noise, both subdi-
mensional algorithms achieve roughly 80% accuracy while
the fixed radius all-dimensional algorithm performs slightly
worse (74.2%) and the automatic radius estimation version
performs somewhat better at 91.7%. As the scale of the
noise in the extra dimension increases, however, the accu-
racy of both all-dimensional systems quickly falls, while ac-
curacy of the subdimensional algorithms remains relatively
unchanged. Note that this behavior is expected as the all-
dimensional algorithms try to locate motifs that include the
(overwhelming) noise dimension, while the subdimensional
algorithms simply detect its irrelevance and only search for
motifs that span the six remaining dimensions that contain
valid sensor data.

In the second experiment, instead of increasing the scale
of the noise, we increased the number of dimensions with
moderate noise (equivalent to a standard deviation of four
in Figure 4, which is close to the average signal level of the
real data). Figure 6 shows three discovered occurrences of
the “twist curl” exercise along with the three noise dimen-
sions that the algorithm identified as irrelevant. The effect
that additional noise dimension have on accuracy is shown
in Figure 5. From the graph, we see that the performance of
both the all-dimensional and subdimensional algorithms de-
crease with extra noise dimensions but the all-dimensional
algorithm decreases much more rapidly. Ideally, the subdi-
mensional algorithm would detect all of the additional noise
dimensions as irrelevant and performance would stay level
as it did in Figure 4. We believe that performance drops
because the algorithm discovers incidental patterns in the
random dimensions which are counted as errors by the eval-
uation framework. This phenomenon makes sense because

Figure 6. Three discovered occurrences of the twist curl
exercise. The top row shows the (correct) relevant dimen-
sions corresponding to the real sensor data while the bottom
row shows the irrelevant (noise) dimensions.

the probability of an unintentional pattern arising increases
as the number of noise dimensions increases.

4. Related Work

Many data mining researchers have developed methods
for motif discovery in real-valued, univariate data. Lin et al.
[6] use a hashing algorithm (later introduced as symbolic
aggregate approximation [5]) and an efficient lower-bound
calculation to search for motifs. Chiu et al. [3] use the same
local discretization procedure and random projection based
on Buhler and Tompa’s research [1] to find candidate motifs
in noisy data. Yankov et al. [12] extend this approach by us-
ing a uniform scaling distance metric rather than Euclidean
distance, which allows the algorithm to detect patterns with
different lengths and different temporal scaling rates. Den-
ton’s approach [4] avoids discretization and frames subse-
quence clustering in terms of kernel density estimation. Her
method relies on the assumption of a random-walk noise
model to separate motifs from background clutter.

Other researchers have developed discovery algorithms
that detect multivariate (all-dimensional) patterns. Min-
nen et al. [9] extend Chiu’s approach by supporting mul-
tivariate time series and automatically estimating the neigh-
borhood size of each motif. In earlier work, the same re-
searchers used a global discretization method based on vec-
tor quantization and then analyzed the resulting string using
a suffix tree [7]. Tanaka et al. [11] also extend Chiu’s work,
but rather than analyzing the multivariate data directly, they
use principal component analysis to project the signal down
to one dimension and then apply a univariate discovery al-
gorithm.

While the above methods discretize the multivariate time
series to allow efficient motif discovery, other research has
investigated methods that do not require such discretization.
Oates developed the PERUSE algorithm to find recurring
patterns in multivariate sensor data collected by robots [10].
PERUSE is one of the few algorithms that can handle non-
uniformly sampled data and variable-length motifs, but it



suffers from some computational drawbacks and stability
issues when estimating motif models. Catalano et al. intro-
duced a very efficient algorithm for locating variable length
patterns in multivariate data using random sampling, which
allows it to run in linear time and constant memory [2].
Minnen et al. framed motif discovery in terms of density
estimation and greedy mixture learning [8]. They estimated
density via k-nearest neighbor search using a dual-tree algo-
rithm to achieve an expected linear run time and then used
hidden Markov models to locate motif occurrences.

5. Future Work

We are currently investigating several research directions
that can improve our subdimensional motif discovery algo-
rithm. For instance, we are interested in using discovered
motifs as the primitives within a broader temporal knowl-
edge discovery system. With such a system, we might dis-
cover that certain motifs provide good predictors for other
motifs or for trends in the data. Similarly, learned temporal
relationships may support the detection of poorly formed
motif occurrences that are predicted by the higher-level
model, or they may help identify anomalies where a pre-
dicted motif is missing.

Generalizing our algorithm to allow for the discovery of
variable-length motifs is another important enhancement.
We are exploring methods that will allow small temporal
variations between motifs and motif occurrences. For in-
stance, methods for temporally extending discovered motifs
or combining overlapping motifs may be applicable [10, 7].
Similarly, we are working to develop a robust method for
estimating the time scale of motifs and allowing for the dis-
covery of motifs at multiple time scales.

Finally, we are also exploring the design of an interactive
discovery system. While we consider the automated opera-
tion of our algorithm to be a strength, an interactive system
may be better suited to allow domain researchers to guide
the discovery process and resolve ambiguities encountered
by the discovery system.

6. Conclusion

We have described several generalizations of the multi-
variate motif discovery problem and have presented a subdi-
mensional discovery algorithm that can efficiently detect re-
curring patterns that may exist in only a subset of the dimen-
sions of a data set. The key insight that allows linear-time
discovery of subdimensional motifs is that we can apply
random projection independently to each dimension only if
the size of the collision matrix is monitored and the relevant
parameters (α and c from Section 2.2) are dynamically up-
dated to limit the density of the matrix. The accuracy and

efficiency of our algorithm was empirically demonstrated
with planted motifs as well as non-synthetic sensor data.
We are currently working with other researchers to apply
our method to additional domains including multi-sensor
EEG recordings, motion capture data for automatic activity
analysis and gesture discovery, entomological data, econo-
metric time series, distributed sensor systems deployed in
homes and offices, and speech analysis.
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