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ABSTRACT 
What is the core of Computing? This paper defines the discipline 
of computing as centered around the notion of modeling, espe-
cially those models that are automatable and automatically ma-
nipulable. We argue that this central idea crucially connects mod-
els with languages and machines rather than focusing on and 
around computational artifacts, and that it admits a very broad set 
of fields while still distinguishing the discipline from mathemat-
ics, engineering and science. The resulting computational curricu-
lum focuses on modeling, scales and limits, simulation, abstrac-
tion, and automation as key components of a computationalist 
mindset. 

Categories and Subject Descriptors 
K.3.2 [Computer and Education]: Computer and Information 
Science Education – curriculum. 

General Terms 
Standardization. 

Keywords 
Computing, Computationalist Mindset, Computational Thinking. 

1. Introduction 
In this paper, we present the carefully considered opinions of a 
diverse group of academics, from the fields that comprise comput-
ing, on the question of our discipline’s core and on how aspects of 
that core should be generally understood by informed citizens as 
well as by those who practice computing in various ways.  

We take the position that computing is a discipline unto itself—
neither math nor science nor engineering nor anything else, 
though it overlaps with many of these—and that it is distinguished 
by a mindset that we call computationalist thinking. Here, we use 

the term computationalist merely to mean someone who does 
computing, and nothing more nor less.1 

As a discipline, computing brings together models, languages, and 
machines to represent and generate processes. The heart of com-
puting is not the particular artifacts around which our curricula 
often revolve. Instead, this key idea—that models, languages, and 
machines are equivalent—is the fundamental core of computing. 
Further, this idea admits a broad set of practices and specialities, 
including computer science, information science, human-centered 
computing, software engineering, and many others, as well as 
what we will call more generally contextualized computing.  

From this position, we also argue that the curricula of existing 
courses should be revisited to inculcate the computationalist 
mindset—specifically, core competencies in modeling, scales and 
limits, simulation, abstraction, automation, and interpretation of 
data. For core computationalists for whom the historical comput-
ing curriculum centers on understanding or using the machine, we 
propose that courses also include a focus on models and lan-
guages—the intellectual frameworks of computationalist thinking. 
For contextualized computationalists, curricula grounded in prin-
ciples of computationalist thinking tailored to domain-specific 
needs has the potential to be transformative, not only by encour-
aging innovation within a domain but also by creating entirely 
new disciplines. Lastly, at both the secondary and post-secondary 
levels, we urge that a minimal level of computationalist literacy 
be required of all students. In some cases, this may require the 
design of completely new courses; in other cases, the organiza-
tional structure of existing courses can be adapted. 

In the next sections, we provide background and context for this 
report, motivating the need to address these issues now. We then 
explain our notion of computing-in-the-large as bringing models, 
languages, and machines together, carefully defining our terms at 
that point. We next show how a variety of fields fit into our 
definition before finally turning to curricula and discussing what 
learning outcomes should be integrated into our educatioal sys-
                                                                    
1 We prefer our philosophical fights to be about computing itself, 

not the word we use to denote those who do computing; how-
ever, we recognize that the term may generate controversy re-
gardless of our disclaimers, as would just about any term. We 
hope that the reader will trust our intent, and try not to imbue 
computationalist with any undue meaning or infer that we are 
making a larger point by its use. 
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tems for different audiences of learners. We conclude by making 
recommendations for next steps in extending what we have pre-
sented here and in presenting these ideas to the larger community. 

2. Background of this Report 
This document reports on the activities and conclusions of a 
Working Group convened at the Conference on Innovation and 
Technology in Computer Science Education at the Université 
Pierre et Marie Curie (Paris VI) during July, 2009 on the question 
of our discipline’s core. It does not purport to be a consensus of 
the discipline, representative of all constituencies or opinions, or a 
strict work of scholarship. It is informed by scholarship—many of 
the participants have engaged in various studies of the discipline, 
of educational best practices, of industrial and academic needs—
and it is firmly grounded in our own experiences as well as an 
emerging shared understanding of the changes that our field has 
undergone. We offer it as a perspective for general consideration, 
much in the spirit of Wing [19], Denning [8] and others. 

The ten members of the working group came from around the 
world (but largely from anglophone educational systems) and 
included representation from large research universities and small 
teaching colleges, liberal arts traditions and engineering-focused 
institutions, as well as secondary education and the computer 
industry. Most of us were trained in what are broadly considered 
core computing fields, though many have worked at the interface 
between computing and other disciplines. All have had a hand in 
curriculum design, development, and reform; some began careers 
with this focus, while others have come to these questions after 
significant engagement in computational research or development 
activities. 

We came together motivated by a sense that computing as typi-
cally taught is too much about the computer and not enough about 
what we have come to call the computationalist mindset; that the 
kind of thinking that comes from this mindset—centered on a 
particular kind of modeling that allows automation, simulation, 
exploration, as well as clarification of the original problem do-
main—is critical to a variety of emerging fields; and that the edu-
cated person in our societies needs a basic facility with these intel-
lectual tools. 

Our goals in making this report are straightforward: We want to 
define a broad field of computing; understand the role of currently 
recognized sub disciplines in that field; identify what is important 
and should be generally understood by informed citizens and 
those who will practice computing in various ways; and begin to 
make recommendations on how to communicate these important 
ideas to students. In particular, we want to articulate the funda-
mental properties of computing and the computationalist mindset, 
in order to understand what computing curricula built around this 
way of thinking might look like.  

3. Why Worry About This Now? 
We believe that computing education is in crisis. Curricula have 
grown too large for many institutions and programs. Several ad-
joining disciplines—information science, software engineering, 
computer engineering, information technology, and informatics—
as well as computer science make compelling claims on comput-
ing, incorporating different but equally voluminous material (such 
as [15]). There is increasing interest in computational X degrees: 

programs bridging computing and other disciplines such as biol-
ogy, social science, art, and economics [3]. Some suggest univer-
sal computing literacy in the form of computer programming [10]; 
others advocate a focus on our mechanics or on modes of thinking 
[8], [19]. Computing has become an inter- and intra- disciplinary 
field of intertwined concepts pervading not just most technical 
fields, but society at large [1]. 

Much of this is to the good; however, it has become increasingly 
difficult to understand how to teach computing. Unlike subjects 
such as mathematics and reading, which benefit from a long his-
tory of pedagogical research into learning and assessment, com-
puting is a relatively young discipline and one with a reputation 
for being poorly taught. Indeed, the field of computing is itself 
struggling for an identity even as academic institutions are trying 
to determine what should be taught, when and how. In order to 
cause a dramatic change in computing education, we need to cre-
ate a model that clarifies what the field is, and why and how to 
study it. We need to make those reasons clear to our students and 
their parents, to professionals, and to ourselves.  

The most recent US curricular standard recognizes five areas of 
computing: computer engineering, computer science, information 
systems, information technology, and software engineering [15]. 
These areas overlap but for the most part focus inwards, on the 
hardware, software, and systems of traditional computation.2 Of-
ten, the computer science curriculum in particular amounts to a 
history of our artifacts—the machines, the system components, 
the applications—rather than an explication of the key ideas at the 
core of our discipline (see, e.g., [7]). 

Some of the controversy that inevitably arises from these sorts of 
discussions comes from the fact that computers—the artifacts our 
discipline enables, uses, and in some cases studies—are uniquely 
compelling devices. In some cases, what is taught as computer 
science is actually computer use or computer literacy; this is par-
ticularly prevalent among pre-college curricula [18]. Even when 
the broad range of computing disciplines at the post-secondary 
level is considered, it can sometimes be easy to fall into the trap of 
believing that computing is about electronic computers. 

Yet another confusion is the result of beginning with an assump-
tion that computing must be either mathematics, or science, or 
engineering. This is unsurprising because it is easy to draw those 
connections. Like mathematics, we build models; unlike mathe-
matics’, our models are active and effect-making: they cause 
things to happen. Like science, we study a system that exists in 
nature; however, like engineering, our systems are artificial tech-
nology and subject to complex trade-offs in implementation. 
Computing also bears resemblance to the arts—the creation of 
artifacts—to humanities—the study of texts—and to the social 
sciences—the study of humans and societies. 

A number of curricular reforms have tried to confront these chal-
lenges. At Georgia Tech, the Threads curriculum has identified 
eight overlapping ways of being a computationalist; each student 
follows at least two of these paths, but no student completes all 

                                                                    
2 The two fields with “information” in their names are the least 

prone to this inward-focused tendency and, perhaps as a result, 
the ones most likely to be omitted from conversations about 
computing. Their inclusion in the computing core is a first step 
in the direction for which we wish to argue. 
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eight during an undergraduate career [12]. Olin’s “small foot-
print” curriculum for computing creates a reduced core focused on 
the key approaches and concepts necessary to learn the rest of 
computing [9]. Union College, Georgia Tech, and The College of 
New Jersey are among the institutions offering both departmental 
introductions and follow-on programs in digital media computa-
tion [13], [20], and computation is increasingly being understood 
as critical to scientists [21]. 

Universities have also begun to reorganize themselves around 
notions of computing as a discipline by creating academic units of 
computing at the same level corresponding to academic units of 
engineering or science. The Bren School at UC Irvine has three 
overlapping degrees representing three different approaches to 
computing and is housed in a unit reporting directly to their Pro-
vost; Georgia Tech has a College of Computing offering multiple 
computing degrees with a Dean that also reports to their Provost. 
University of Michigan has an Information School with a Dean 
reporting directly to their chief academic officer. 

Even so, we are still faced with a difficult problem of understand-
ing how to convey the core of computing in a variety of different 
contexts and with limited time. We will suggest below that the 
curriculum of existing courses be revisited to inculcate what we 
call computationalist thinking—specifcally, core competencies in 
modeling, scales and limits, simulation, abstraction, and 
automation. In some cases, this may require the design of 
completely new courses; in other cases, the organizational 
structure of existing courses can be adapted. But first, we begin by 
examining several existing visions of what that core might be. 

4. Visions of Computing 
In saying that computing is a singular discipline, we are suggest-
ing that there are certain ways of thinking that are characteristic of 
all computationalists, including those whose primary concerns are 
the marriage of computational disciplines with other fields. These 
ways of thinking are shared by members of the five subdisciplines 
identified by CC2005 as well as by computational media practi-
tioners, bioinformaticists, quantitative social scientists, and others 
we call contextualized computationalists. We believe that the 
most basic principles of this mindset should also be shared by all 
educated persons. 

Wing [19] takes a similar stance, calling this way of thinking 
computational thinking.3 Wing suggests that it includes: seeking 
algorithmic approaches to problem domains; a readiness to move 
between differing levels of abstraction and representation; and 
familiarity with decomposition, separation of concerns and modu-
larity. We find much to like in Wing’s approach but would shift 
emphasis from algorithm to interaction—less about finding an-
swers and more about providing services, interfaces, behaviors—
and would highlight our fusion of models, languages, and ma-
chines in what we call computationalist thinking. In particular, we 
will advocate below for a more central role for the activity of 
modeling and would consequently add: a readiness to adopt a 
                                                                    
3 In this document, we have used the terms computationalist 

mindset and computationalist thinking instead as a means of in-
dicating that we mean only the mindset or way of thinking of 
computationalists (that is, those who do computing) without 
commentary on other similar terms with their own specific 
meanings. 

deliberate modeling approach to phenomena where we identify 
features of a domain that are relevant to our interests, formulate 
relationships between those features and identify the relevant 
agencies that are sources of change in the domain.4  

Denning [8] takes a more pragmatic approach to the computa-
tional core, which he divides into mechanics, design, and prac-
tices. His interest is in the generalizable principles of each. Den-
ning’s notion of mechanics is inspired by that subdiscipline of 
physics and includes computation, communication, coordination, 
automation, and recollection. Each of these activities has a role to 
play in our world of computationalist thinking. Denning’s design 
principles include simplicity, performance, reliability, evolvabil-
ity, and security; several of these are a part of our notion of scale 
and limits. Computational practices, according to Denning, in-
clude programming, engineering systems, modeling and valida-
tion, innovating, and applying. Many computationalists engage in 
these practices while adhering to these design principles and ob-
serving these mechanics, as we acknowledge in section 6.1; how-
ever, our notion of the computationalist mindset is at a more ab-
stract level, less tied to the particular subsets of these lists that 
typify individual subdisciplines, and our vision of the shared 
computationalist core is correspondingly less tied to actual com-
puter systems. 

In Reflections from the Field [14], the Computer Science and 
Telecommunications Board describe the core activities of Com-
puter Science (rather than the broader field of computing). Ac-
cording to this report, “Computer Science involves the creation 
and manipulation of abstractions [and] the creation and study of 
algorithms, ... deals with artificial constructs notably unlimited by 
physical laws, ... exploits and addresses exponential growth, ... 
studies fundamental limits on what can be computed, and ... ad-
dresses the complex, analytic, rational action that is associated 
with human intelligence.” Again, we agree that many computa-
tionalists engage in these activities, but we seek a core mindset 
that is shared by different kinds of computationalists—not just 
computer scientists—and that further is of benefit to those whose 
computationalism may be more contextualized or even a matter of 
basic literacy. 

The report of the Northeast Workshop on Integrative Computing 
Education and Research [3] specifically addresses the role of 
mindset, especially for contextualized computation: 

Our greatest contribution to integrating computer sci-
ence with other disciplines will be our unique mindset: 
our conceptual base, our style of reasoning, and our val-
ues... Computational paradigms have changed the core 
of many disciplines and enabled new kinds of questions. 

That is, it is the way that computationalists think—how we ap-
proach the world—that underlies our greatest contributions to 
neighboring disciplines. While this mindset produced the compu-
tational artifacts that are changing our world, it should not be 
confused with them. In the future, our artifacts will be different, 
but the core computationalist mindset that we lay out below 
should remain. 

There are, of course, many other visions of computing and its 
                                                                    
4 Terms like algorithmic thinking might then be viewed as a spe-

cial case of computationalist thinking and modeling where we 
focus attention on certain reliable patterns of execution. 
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related disciplines. Abelson and Sussman [1] famously state that 
computer science is neither about computers nor a science. In-
stead, they argue that it is “no more (and no less) than the disci-
pline of constructing appropriate descriptive languages.” Foley 
[11] builds on this notion to suggest that computer science marries 
this process knowledge—“how to”—with a concern for organiza-
tion. Felleisen and Krishnamurthy [10], in contrast, argue that 
what is crucial about computing—at least for broad literacy—is a 
kind of “imaginative programming” that closely aligns with 
mathematics, bringing it to life. According to Felleisen and Krish-
namurthy, programming “is our field's single most valuable skill.”  

In the next sections, we will articulate and detail our own particu-
lar vision of what computing is. It is not the same as the visions 
expressed above, but we believe our vision shares much in com-
mon with many of them and, in particular, is a reasonable effort at 
trying to capture something both fundamental and broad about 
computationalist thinking. 

5. Models, Languages, and Machines 
In our view, computing is fundamentally a modeling activity. Any 
modeler must establish a correspondence between one domain and 
another. For the computational modeler, one domain is typically a 
phenomenon in the world or in our imagination while the other is 
typically a computing machine, whether abstract or physical. The 
computing machine or artifact is typically manipulated through 
some language that provides a combination of symbolic represen-
tation of the features, objects, and states of interest as well as a 
visualization of transformations and interactions that can be di-
rectly compared and aligned with those in the world. The central-
ity of the machine makes computing models inherently executable 
or automatically manipulable and, in part, distinguishes comput-
ing from mathematics. Therefore, the computationalist acts as an 
intermediary between models, machines, and languages and pre-
scribes objects, states, and processes. 

These three words—model, language, and machine—will mean 
different things to different readers, so we should take a moment 
to explain further the ways in which we use these terms. 

We have a liberal view of machines. Those who study human-
centered computing, for example, include humans as a crucial part 

of the machine system. In our view, a machine is simply a physi-
cal entity capable of carrying out work (including computa-
tional work) in the world.  

When we say model, all that we mean is a representation of some 
information, physical reality, or a virtual entity in a manner that 
can then be interpreted, manipulated, and transformed. A model 
allows one to manipulate and simulate in a way that is easier than 
the phenomenon modeled—or at least has useful additional affor-
dances—while still retaining crucial predictive or causal powers. 
In particular, a computational model:  

• provides the ability to manipulate and simulate, while 
spanning volume, distance, and time, and allowing hy-
potheticals;  

• retains the ability to cause change in the actual world of the 
things being modeled;  

• and hides details and aspects that are not critical to the 
problem at hand. 

A language allows us to describe in a formal way the process that 
manipulates our models and transforms them into new models or 
enables the interpretation of some model in a new way. The lan-
guage may be Turing complete or a small language or even a sim-
ple protocol. Increasingly, computationalists work with “little 
languages”, domain-specific constructs that fit the conceptual 
space within which they work. What is important about a lan-
guage is that it enables our reasoning and manipulation of the 
model. 

To close the loop, a machine is any artifact that is capable of ac-
cessing these models and performing the transformation processes 
that are defined in the languages. The machine may be real or it 
may be virtual or abstract. The key is that a computational ma-
chine allows us to execute our models. 

In other words, in computing, our models are languages which are 
themselves machines; that is, a computational model is manipula-
ble and executable automatically. It can act or can be acted upon. 
Our languages are models. Our models are executable. Our ma-
chines are languages that can themselves be manipulated. It’s 
turtles all the way down. 

6. Computing 
We can now define computing as: any purposeful activity that 
marries the representation of some dynamic domain with the 
representation of some dynamic machine that provides theoreti-
cal, empirical or practical understanding of that domain or that 
machine. Often but not always, computationalists then further 
actualize those representations by executing them on a physical 
computing artifact (see Figure 2).  

In this way, the practitioners we often call computer scientists and 
those we often call information scientists are both engaging in 
computing. In fact, our definition might well encompass parts of 
operations research, business processes, and even sociology or 
ethnography, provided that the results are automatable or auto-
matically manipulable models. 

Some computationalists build running models, or machines. Oth-
ers construct intellectual models that are more abstract than con-
crete. Some computationalists focus more on understanding the 
machines, others on the domains. In any case, every computation-

 
Figure 1. The Tight Coupling of Models, Languages 
and Machines. The computationalist is a modeler 
who uses languages to specify machines. 
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alist’s intellectual toolkit includes both the activity of automation 
and the ways of thinking—disassembling domains, carving them 
at their joints—that make this automation possible. Computation-
alists often build models of processes including concurrent, dis-
tributed, and human processes. 

Much of the benefit of the computationalist mindset comes from 
this activity of fitting the model and the language to the needs of 
the domain. When computationalist thinking met biology, the 
transformation changed the language that biologists use to de-
scribe their own artifacts. Computationalist thinking requires a 
precision and a disambiguation that is clarifying for the domain to 
be modeled. Computationalists become proficient in crafting intel-
lectual segmentations of domains that themselves can be signifi-
cant contributions. But the full impact of computationalist ap-
proaches comes when the automation power of our artifacts can 
be combined with our intellectual tools. 

6.1 The Practice of Computing 
We know that computing is not only a set of professions but also a 
single coherent discipline. Just as importantly, it is a widespread 
practice and a general way of thinking. Computationalists have a 
systematic body of knowledge they learn and from which they 
draw; a set of skills and tools they use to practice and apply their 
knowledge; and a way of thinking and seeing problems that allow 
them to extend the larger body of knowledge and add value. 

Computationalists deal with some or all of the following: 

• The computer itself as a technology or technological arti-
fact, as well as a wide range of computing devices 

• The problems that computing devices can solve in the ab-
stract unmoored to a specific domain 

• The techniques and technologies that enable computational 
solutions, including the practices that best support these so-
lutions 

• The relationship of these tools, techniques, technologies to 
domains or users, in general 

• The study of all of the above using computational tools and 
mindsets. 

• The construction (the science of the construction, the best 
practices of the construction, the science of the practice of 
the construction, and so on) of systems using all of the 
above 

• The historical artifacts that have been crucial in the devel-
opment of these tools and technologies and the future im-
provement of those artifacts. 

It is difficult to characterize precisely the extent of the computing 
disciplines. Clearly, the core disciplines identified in CC2005 are 
included within computing. There is also significant overlap 
among these and with emerging disciplines containing the word 
computational in their titles (computational biology, chemistry, 
and physics; computational mathematics; computational media or 
sometimes digital media; bioinformatics; information science; 
quantitative social sciences). What characterizes all of these disci-
plines? What unifies them as computational? We assert that here 
are two key aspects of these disciplines that makes them computa-
tional, and we further suggest that the emphasis is typically placed 
on the wrong one: 

• Computation as device—the machine—changes the scale, 
scope, and reach of every discipline it touches. 

• Computation as mindset causes a reconceptualization of 
the discipline. The most common symptom of this is what 
are sometimes called “little languages” [5], special purpose 
(domain-specific) languages that allow automated manipu-
lation of the domain. The computationalist brings an ability 
to identify the appropriate abstractions, hide the unneces-
sary details, and get at the heart of a key process within the 
domain. 

It follows from our theme of computing as a modeling activity 
that the skills and tools associated with the entirety of computing 
should be those useful for the construction and management of 
models. These will include all the familiar skills and tools used in, 
for example, programming in all its styles, such as integrated de-
velopment environments, versioning and testing tools, but also 
include some of those skills and tools used more widely in other 
modeling disciplines. 

6.2 When One Discipline Meets Another 
To understand the impact of this thinking and this practice, it is 
useful to consider a simple case study. For example when comput-
ing meets biology it is transformative: one can create a simple 
model that captures key aspects of behavior (DNA coding, possi-
ble manipulations, etc.) and then create a language that describes 
the interactions and processes possible. Because computational 
models are executable, computationalist disciplines can scale 
dramatically, operating on data sets heretofore unimaginable. 
Because computataionlist disciplines can manipulate huge 
datasets, the kinds of questions that can be asked are also dramati-
cally transformed. The entire field of precision medicine follows 
from computation’s meeting with biology. Computation’s contri-
bution to biology is not so much the processing of large volumes 
but the two dramatic shifts in thinking that the meeting of these 
fields created: the reconceptualization that enables automated 
processing and the reconceptualization which that processing in 
turn enables. 

 

 
Figure 2. Computationalists Create Automatable 
Models. Computationalists build models that cap-
ture processes. Those process are in turn automat-
able and automatically manipulable. The computa-
tionalist need not engage in each step of this dia-
gram, but the computationalist is engaged in an en-
terprise that makes each step applicable and possi-
ble. 
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Computationalists can use non-computers to do computing. Stick-
ing with Biology, for example, the computationalist understands 
that one can do computing with a vial of saline solution and the 
components of DNA. In early 1994, Adelman [2] solved a travel-
ing salesman problem by: creating sequenced DNA strands repre-
senting cities and complementary strands representing particular 
streets connecting pairs of cities; placing a few grams of every 
DNA city and street into a test tube; allowing the natural bonding 
tendencies of the DNA building blocks to occur; and eliminating 
strands that could not be valid solutions. Adelman acted as a true 
computational modeler, creating a representation of cities and 
streets and creating a correspondence to a representation of the 
properties of DNA and the processes of chemistry. Finally, he 
actualized those representations by executing them on the physical 
realization of his model. 

The biologist performing an experiment with DNA in a test tube 
is not necessarily doing computing; however, the computationalist 
who sees chemistry as a process manipulating the representation 
that is DNA can do computing. At the same time, computational-
ist thinking also allows the biologist to think of cells as machines 
performing computation, to see certain protein interactions as 
executing if-then statements or storing and retrieving state. Thus, 
computing can both use physical processes as tools to do general 
computing and explain natural processes as doing a specific set of 
computations, transforming our understanding of what those proc-
esses are doing as well as what they can do. Such thinking brings 
us not only DNA as computing, but manipulable music, participa-
tory art, and other fundamental rethinking of other domains. 

7. Who Should Learn Computing and What 
Should They Learn? 

In the process of (re)defining computing, we define three distinct 
audiences of students. Within each group, our objective is to iden-
tify specific and appropriate learning outcomes through the articu-
lation of computing curricula. Figure 3 captures the overlapping 
nature of the three audiences and their relationship to the entire 
field of computing. 

Our first group contains the pure or core computationalists. These 
students specialize either in fields such as computer science, soft-
ware engineering, computer engineering, information science, and 
information technology, or in disciplines such as multimedia 
computation where computing is a central focus. While individu-
als in this group may have some domain-specific knowledge be-
yond what we might think of as central computing, their overall 
goal is the deep study of computing rather than the study of any 
particular domain. 

Our second group contains contextualized computationalists. 
These are students who require in-depth knowledge and under-
standing of particular aspects of computing, but only as they apply 
to a particular domain. Examples include students of bioinformat-
ics, computational economics, and technical management. In each 
case, the core field of study is not computing but rather a non-
computing discipline strongly shaped and influenced by comput-
ing principles. 

Our last group includes everyone else. There has been a tradi-
tional core curriculum in schools that has existed for a long time. 
Existing disciplines have expanded and reduced along with soci-
ety’s needs and attitudes. For example in the study of literature, 
new classics have emerged and in Biology new discoveries have 

been made; however, we have not universally made room within 
this core for an entirely new discipline such as computing, even 
though computers and computerized gadgets and machinery are 
ubiquitous. We assert that a broad overview of computing knowl-
edge is a fundamental component of being an educated person in 
the 21st century. Every person will have to interface with comput-
ing in many areas of their lives and would, we assert, have a more 
fulfilling, competent, knowledgeable and self reliant adult life 
with a good foundation of computing knowledge and skills, Our 
goal is not to instill specific computing proficiency, but to provide 
a core computing context for all students. We see this as analo-
gous to the idea that every student should have an understanding 
of basic scientific principles, have historical perspective, and have 
read some part of the basic canon of literature.  

In fact, each of these groups actually lies on the same spectrum. 
Conceptually, we are all contextualized computationalists. Many 
core computationalists tend to be near one side of the spectrum, 
where the context is a computing machine (or abstraction thereof) 
itself. As we move slightly along the spectrum we pick up more 
subareas of computing, for example those who begin to contextu-
alize their efforts more and more by focusing on humans or hu-
man processes as a part of the system. Some subareas of human-
centered computing, machine learning, artificial intelligence and 
information science are here, but are no less computing for their 
broadened interest. Eventually we move far enough along that we 
begin to start thinking of the focus as being as much about the 

 
Figure 3. Computing Knowledge Needed by Dif-
ferent Audiences. We believe that everyone 
should have some working knowledge of com-
putationalist ideas. Contextualized computa-
tionalists will generally need to know much 
more. Note that there are several different kinds 
of contextualized computationalists who will 
need more or less computing knowledge and 
will focus or more or less non-computing 
knowledge. Computationalists themselves will 
typically know the most, but the field of com-
puting itself is much too broad for any particu-
lar computationalist to be facile in all of its 
knowledge and tools; nonetheless, there are sev-
eral core ideas that most computationalists 
should know. 
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domain as it is computational. Some computational X areas such 
as computational biology begin to appear. Eventually, the domain 
begins to dominate; we begin to see biologists who use computing 
devices centrally in their work and may apply the results of com-
putationalist thinking, but do not necessarily try to innovate by 
finding new ways to apply that thinking. Eventually, we find our-
selves at just computer users and then everyone else.  

In any case, everyone along the spectrum is well-served by be-
coming computationalist thinkers or at least being compurate5. In 
fact, we argue that being compurate is as important as being nu-
merate and literate; being illiterate, innumerate, or incompurate is 
simply not an option in today’s world (see Figure 4). 

7.1 What We Can Know about Computing 
It is beyond the scope of this document to address a full set of 
learning objectives or outcomes for each audience we have identi-
fied above. Still it is worth articulating some of the key ideas that 
make up computing and identifying how those key ideas are im-
portant to each of our groups. 

The ideas and thinking involved in fruitfully pursuing these activi-
ties more subtle and wide-ranging, and lie at the core of comput-
ing. At the very least, computationalist thinking is focused on: 

• Models: What can computational models afford (make 
easy)? What do they hide? How do these models relate to 
specific problems in which the computationalist is en-
gaged? How can such models be manipulated and under-
stood? 

• Abstraction: How does one effectively distinguish the im-
portant aspects of a domain, and for what purpose? How 
are these aspects realized in a model and executed? 

• Interpretation: What is the data a particular system ma-
nipulates? How does it interpret that data? What is the lan-
guage of manipulation? For example, the same bit pattern 
can mean 65 or “A” or true. It is in the model and the in-
terpretation that we know the answer.  

                                                                    
5 Pronounced COM-pure-et (or kɑmpjʊrәt in IPA), meaning hav-
ing the ability to understand computationalist thinking and having 
facility with computing, as literate and numerate are for read-
ing/writing and numbers, respectively. 

• Scales and Limits: How are classes of problems related to 
one another by their complexity? How can we usefully dis-
tinguish between them? Where does the dependence on in-
puts lie? What are the tradeoffs of space and time? Why 
are some problems hard? What cannot be solved exactly? 
What can be approximated? What can be solved in theory, 
but not in practice, and why not? 

• Simulation: How does one use an automated or automat-
able model to predict or understand the behavior of some 
domain or system? Once abstracted how can one explore 
hypotheticals and generalizations of the original domain or 
problem space? 

• Automation: What properties allow some kinds of models 
to be manipulated by a program and to be automatically 
executed? How do these special models connect us to cer-
tain real domains? 

For core computationalists for whom the typical computing 
curriculum centers on the machine, we propose that courses also 
include a focus on models and languages—the intellectual 
frameworks of computationalist thinking. For the contextualized 
computationalists, curricula grounded in principles of 
computationalist thinking tailored to domain-specific needs has 
the potential to be transformative, not only by encouraging 
innovation within a domain but also by creating entirely new 
disciplines. Lastly, at both the secondary and post-secondary 
levels, we urge that a minimal level of computationalist literacy 
be required of all students. 

7.2 What Everyone Should Know 
Learning outcomes for every student should include an exposure 
to the ideas of modeling, abstraction, and automation as discussed 
above. The exposure provides insight into the tight relationship 
between models, languages and machines. Students should be 
exposed to different levels of abstraction and representation, un-
derstanding how to create symbolic, graphical or numerical repre-
sentations of relationships and data; and understand how this can 
be used to clarify comprehension of complex sets of information. 

Every student should understand enough of the issues of scales 
and limits to appreciate that some problems are easier than others 
and some notion that there are good systematic reasons for this. 
We expect that notion of computational models are stand-ins for 
real processes will expose the student to the idea of simulation 
and help her appreciate that simulation is occurring in common 
every day uses of their computing devices. 

In addition, there is a wide range of practical skills that involve 
computing. Although we support as laudable educating students 
so as to demystify their computing devices, to expose them to 
ethical implications of using such devices, and to allow them to 
best use computers as tools, a thorough discussion is beyond the 
scope of this document. 

7.3 What Contextualized Computationalists 
Should Know 

Practitioners in other fields often build expressive and descriptive 
models of physical, human, or abstract systems. Contextualized 
computationalists build and compute with those models. Sociolo-
gists employ sophisticated graph-theoretic techniques for the 

 

Figure 4. The importance of Being Compurate. 
At this point, being compurate—having the 
ability to understand computationalist think-
ing—is as important as being literate or numer-
ate. Being on the left side of the dividing line is 
increasingly necessary for the educated person 
to participate fully in the economic life of most 
modern societies. 
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modeling and analysis of social networks; however, a computa-
tional sociologist is able to develop and apply these models to 
larger scale problems allowing for more complex link analysis. 
Systems biologists discover the emergent properties from the 
complex interactions of biological systems. A computational bi-
ologist can take a population’s DNA microarray data and mine 
that data to gain fundamental insights into the genetic and envi-
ronmental causes of diseases. Economists model financial transac-
tions at the micro and macro levels. A computational economist 
can model millions of individual agents in the economy to vali-
date or refute macroeconomic theories. 

Effective modeling requires that one be able to (1) state a problem 
clearly and precisely, (2) develop and understand a model, (3) 
compute with that model, and (4) understand and present the re-
sults. In step 1, one needs to determine what are the questions 
worth asking and which ones are practical to answer. Step 2 re-
quires that one properly characterize inputs (e.g., symbolic vs. 
numeric, discrete vs. continuous, understood and complete vs. 
uncertain with missing data, and so on) and consider the expected 
properties of the transformations over the model. In Step 3, a stu-
dent needs to recognize and use a broad repertoire of approaches. 
Step 4 requires some consideration of the larger system that in-
cludes end users, including interface design, visualization, and so 
on. 

Computing provides the methods and tools necessary to manage 
huge amounts of data, share this data with a global community, 
and use algorithmic approaches to extract meaning from this 
data. Given a problem, one needs to be able to describe the rela-
tionship between problem size and the resources necessary. Com-
puting enables the processing of data at many different scales, but 
a contextualized practitioner must recognize the pragmatic and 
theoretic limits of computation. 

Thus, the contextualized computationalist must understand in 
more depth models, scales and limits, and abstraction, particularly 
as it applies to her domain. For many contextualized computation-
alists, further facility in simulation is necessary, particularly for 
the purposes of prediction and exploring hypotheticals. She is 
more than a user of systems, however, because she must be able to 
extend and modify simulations.  

Because the contextualized computationalist is still a non-
computing professional, she needs to understand the limitations of 
her knowledge and skills and know when and how to approach a 
dedicated computationalist. For more fruitful collaboration, she 
must be able to communicate in the same language as the dedi-
cated computationalist as well as in her own domain speciality. 

Finally, a contextualized computationalist must understand how to 
use a computing device responsibly and consider the implications 
of data misuse. She should appreciate the impact of computing in 
enabling the products she uses everyday. 

7.4 What Computationalists Should Know 
We emphasize that computing is a broad field. There are several 
specialized sub-disciplines within it. Here, we seek only to outline 
a core set of knowledge that most computationalists should share 
in order to understand the field and to work effectively within 
their chosen discipline. 

The starting point for this shared understanding is the comprehen-
sion of themselves as computational modelers who use abstract 

languages to transform states and processes through a computa-
tional machine. It is not clear that we currently emphasize this 
view in any of our typical programs, and we should.  

There is a large body of knowledge that is beyond the scope of 
this document to enumerate further than we have above, but must 
be understood by computationalists. Each sub-discipline will re-
quire differing levels of depth in these areas and will also have 
their own specific additional topics. As modeling is a key charac-
teristic of computationalists they must understand the mathemati-
cal foundations of computational modeling and how to create, 
analyze and critique models. 

Computationalists do not need a complete understanding of hard-
ware architecture any more they need to have a complete under-
standing of larger computing systems that take into account hu-
mans as well as their computational devices; however, they must 
have a clear understanding of how computing devices work as an 
abstract machine. The level of abstraction and depth of knowledge 
will depend on their specialist area of computing. Computational-
ists must also understand the issues of distributed modeling—as 
in, for example, parallel and distributed processing, or networked 
systems—and the benefits and complexities these add to computa-
tional systems.  

Computationalists create models to solve problems. Consequently 
they must understand the general principles of developing such 
models. In some disciplines this involves systems development 
processes and in others less so; regardless, computationalist must 
be able in varying degrees to: 

• analyze a problem to understand the context and require-
ments; 

• design a solution to that problem and implement that solu-
tion using appropriate tools and techniques; 

• verify that the solution--which may or may not be a com-
puter program--behaves correctly; validate that it meets its 
intended requirements; 

• identify erroneous components and correct the problems in 
those components; 

• document the solution's development to enable others to 
understand the rationale for decisions made during devel-
opment; and 

• manage the development process, including being able to 
make informed estimates on the difficulty of development.  

Note that many of these can apply to computer programs but need 
not be understood solely in that context. 

As professionals practicing in the field, computationalists must 
understand the issues of monitoring their processes and practices 
to ensure the quality of the result being produced. They must also 
understand the issues involved in system evolution in order to be 
able to make appropriate decisions about trade-offs. Designing 
and implementing a solution requires that computationalists know 
the performance constraints of their computing environment in 
order to make informed decisions about the feasibility of a solu-
tion or how to best structure it.  

Of course, not all computationalists produce artifacts in the same 
way. For example, those focused on theoretical pursuits may do 
little in the way of system development and deployment. For 
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those computationalists, the meaning of managing processes may 
be different than described above, or emphasized in a different 
way. Therefore, the reader should not take these requirements to 
imply that computationalists must be able to apply a software 
engineering methodology or be able to use a traditional third-
generation programming language. 

Finally, it should be understood that a key characteristic of com-
puting is that it enables those in other domains to be more effec-
tive and to solve problems of a scale previously impossible to 
consider; a computationalist’s role is to facilitate others’ activities, 
which requires good communication and negotiation skills and the 
ability to quickly gain insights into other domains. Insofar as the 
computationalist will solve problems in a domain outside of the 
field of computing, it is important that computationalists are 
aware of the impact that their activities will have on those do-
mains and the ethical implications of their actions. This requires a 
general understanding of the evolution of computing and its im-
pact on society. 

7.5 Conveying What We Should Know 
It is beyond the scope of this paper to provide a detailed map of 
the many ways in which the ideas described above might be em-
bodied in curriculum. In this section, we briefly visit sample cur-
ricula that capture some aspects of this approach. These are nei-
ther the only ways in which computationalist thinking might be 
embedded in curriculum nor necessarily the best ways. We hope 
that they will help to make possible approaches concrete and to 
serve as food for thought as further possibilities are explored. 

In Section 3, we noted a number of efforts at curricular reforms 
driven by the same needs that inspired our group. In particular, we 
identified Georgia Tech’s Threads curriculum, Olin’s “small foot-
print” curriculum for computing, several programs on digital me-
dia computation, and on applications of computing to science. 

Olin’s small footprint curriculum is built around a three-course 
core that refactors the material traditionally covered in program 
design, theoretical computer science (including algorithms and 
programming languages), and software systems. This refactoring 
underscores connections and themes such as those described in 
section 7.1. Students encounter each of the six key ideas described 
above in each of these classes. For example, in software design 
they select appropriate models out of which to construct pro-
grams; in foundations of computer science they describe tradeoffs 
among programming languages, data structures, and formal repre-
sentations; and in software systems they encounter the different 
ways various models provide analyze and evaluate system proper-
ties. 

The small footprint curriculum shifts focus from specific artifacts 
and technologies to the key ideas of computationalist thinking. It 
affords the opportunity to demonstrate connections among topics 
that are not always clear in a conventional curriculum. For exam-
ple, trees—with their logarithmic/exponential structure—underlie 
phenomena as diverse as parsing, NP-completeness, searching and 
sorting, and declarative programming. At the same time, a small 
footprint curriculum forces decisions about what to omit. Olin’s 
curriculum does not aim to teach students everything they might 
need to know (“just in case” learning); instead, it provides what 
they need to know in order to learn the rest (“just in time”). 

The Thread curriculum developed at Georgia Tech takes a differ-

ent approach to the problem of computationalist thinking. Threads 
are partial paths through a computing degree. Each embodies a 
flexible set of technical skills both within and outside of comput-
ing that (1) serve as a context for interpreting the courses in a 
curriculum and (2) suggest a coordinated path through courses so 
that the end result is expertise in the area of the thread. Every 
student constructs her own personalized computing degree by 
weaving two threads. Each Thread is about 2/3 of a degree, but 
any pair of threads yields a complete degree. The Threads model 
represents extending the application of contextualization from 
courses to an entire undergraduate computing degree. Each thread 
defines its own set of courses and so provides an opportunity for 
each to define its own basic core. Thus, each thread can define a 
context for creating specific models consistent with the areas it 
touches. The Intelligence thread can concentrate on modeling 
intelligent behavior, the People thread on modeling the cognitive 
and physical capabilities of humans using computer systems, and 
so on. 

In Threads, the curriculum designer seeks to avoid the problem of 
defining a core set of knowledge for all computationalists by al-
lowing each thread to define its own while still requiring that 
every pair of threads is compatible. At Georgia Tech this has 
worked well. Although Georgia Tech’s CS degree has no core, the 
intersection of threads essentially defines a small common set of 
beginning courses (a natural consequence of the 2/3+2/3=1 rule 
and the fact that each Thread is still about computing). From there 
the basic computationalist core of the sort we have described in 
7.4 can be explored no matter what the combination of threads 
taken by the student. 

Computational media and computational science curricula are two 
curricular families that occupy the space directly addressed in 
section 7.3: contextualized computation. Although focused on 
specific problems in media, science or engineering, such curricula 
must explicitly expose students to the computational aspects of 
the models in their domains of interest, emphasizing scales, limits, 
and abstraction. This exposure is sometimes done purely through 
the practice of programming, perhaps in the most popular lan-
guages of the field. To be truly effective, however, we would 
argue that the computational scientist (or computational media 
expert) must be able to explicitly connect those languages to ab-
stract and executable models in their own domains. These connec-
tions need not be made explicit early in the curriculum, but must 
be made explicit eventually. For example, Georgia Tech’s compu-
tational media degree looks remarkably like one of the CS threads 
(the Media thread) combined with a set of advanced courses 
drawn from the CS degree and from the School of Literature, 
Communication and Culture. Thus, such students have exposure 
to the same core and ideas as CS majors but this core is explicitly 
framed in terms of media, models of media processes, and repre-
sentations that capture those processes. 

These approaches are hardly exhaustive of the ways in which 
computationalist thinking might inform a curriculum. Exploring 
this broader space—explicitly building from the principles we 
outline here, starting anew to define the curricula that result—is a 
next step in the task of (re)defining computing curricula. 

8. Where Should We Go From Here? 
Adrion et al. suggest [3] that: 

In identifying the bare essentials and enduring funda-
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mentals of any discipline, one needs to understand (i) 
the kinds of questions it cares about, (ii) the kinds of re-
sults it accepts as answers, (iii) the methods it prefers to 
seek the results, and (iv) the kinds of evidence it accepts 
to validate the results. 

This paper has begun to address the questions that computational-
ists ask and the ways that we approach them. Our efforts are, of 
course, only a beginning. Specific curricula and courses need to 
be defined; explicit organizations of knowledge should be argued 
and proposed; and mechanisms for assessment must be developed. 

This conversation must be continued among a wider group of 
stakeholders. These include not only computing educators, but 
also educators in other disciplines, computing professionals, 
secondary school teachers, professional organizations, and policy 
makers. While we recognize that there may be disagreement over 
particular terminology, starting from the idea that being 
computationally literate is one of the hallmarks of an educated 
society will help to bridge differences in semantics. 

At a minimum, the curriculum of existing courses should be 
revisited to inculcate computationalist thinking—specifcally, core 
competencies in modeling, scales and limits, simulation, 
abstraction, and automation. To truly embrace the focus on 
models, languages, and machines as a single computationalist 
idea, we will in most cases need to radically rethink curricula to 
better reflect this way of organizing and articulating the topics in 
our field. 

One exercise that this working group undertook was to examine 
ACM’s CC2005 recommendation [15]. There is no doubt, as in 
any other field, that the definition of the core knowledge varies 
among educators, education programs, institutes, and regions; 
nevertheless, CC2005 provides one standard reference for 
structuring (and debating) computing curricula. Our group 
examined CC2005’s suggested set of distinguished computing 
areas for all (see Table 3.2 in CC2005), and an additional set for 
computing professionals (see Table 3.1 in CC2005). In both cases, 
we found the tables significantly lacking in topics that are crucial 
to our vision of computing.6  

The exercise proved fruitful (and unsurprisingly, not entirely un-
controversial); however, the discussion revealed a larger issue. 
Given our emphasis on modeling, it would make sense that topics 
involving modeling, humans, and so on should be reflected in 
such a table. More to point, our emphasis on modeling suggest a 
completely different organization of those areas. The current or-
ganization tends to be centered more about machines and engi-
neering of those machines rather than around models and the de-
velopment and applications of those models. We expect that reor-
ganizing those in that way would lead to a completely different 
perspective and organization of even the more traditional comput-
ing topics. 

Finally, we need to be able to communicate the importance of 
computationalist thinking to a wide range of audiences who may 
or may not be computing professionals. To this end, we have 
provided a first draft at a position paper aimed specifically at 
policy-makers (rather than educational specialists). We invite the 

                                                                    
6 Although we do not reproduce them here, our exercise resulted 
in over a hundred additional knowledge areas not covered by 
these two tables. 

creation of other similar documents—for example, to stakeholders 
in other non-computing domains—that will help influence and 
shape the discussion. 
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Appendix A 
A Preliminary Policy Document 

Based on the Report 
 

What is Computing? 
Computing is fundamentally about creating and 
using models to simulate and explore actual or 
theoretical phenomena. Through the design, ma-
nipulation, and interpretation of these models, 
computing not only facilitates a better under-
standing of the processes and data represented, 
but is also transformative by its very nature. It 
provides a context for innovation in a wide range 
of other disciplines and often serves as the basis 
for the creation of entirely new fields. 
 

Computing is interesting, engaging, and relevant 
to students. Continuous research and advance-
ments in pedagogy and the applicability of com-
puting to the real world provide a compelling and 
motivating environment for students to learn. 
Furthermore, the typical project-based teaching 
methodology used strengthens both higher-order 
thinking skills such as abstraction, critical think-
ing, and algorithmic problem-solving, as well as 
soft skills such as project organization, time man-
agement, teamwork, and collaboration. In all 
cases, computationalist thinking helps to create a 
more well-prepared student who will have in-
creased success in either higher education or the 
workforce. 
 

Computing is not the use of a computer. While 
students must certainly acquire the skills neces-
sary to use the technology that surrounds them, 
students must also gain a fundamental knowledge 
and understanding of models and representations 
and a computationalist way of thinking about 
them.  

  
 

Computing in Crisis 
Yet despite a clear need for computationalist 
thinking, an exponential proliferation of comput-
ers, and a continually increasing reliance on tech-
nology, the study of computing is in crisis. 
  

Although computing-centered occupations com-
prise three of the top six fastest growing occupa-
tions and provide above-average salaries, there is 
a significant lack of qualified candidates for these 
jobs due to long-term declining enrollments in 
computing programs and concerns about job 
outsourcing. Even in fields where a significant 
knowledge of computing is essential, a narrow 
belief that computing is only about the computer 
creates a misinformed perception among students 
that computing is both uninteresting and irrele-
vant. 

  
In secondary education, the lack of core credit 
and an almost single-minded focus on program-
ming discourages students from the study of 
computing. Since 2002, the number of students 
taking the Advanced Placement Computer Sci-
ence exam decreased by 12.5% while the students 
taking AP Latin increased by 28.2%. In 2008, 
eighteen times as many students took AP Calcu-
lus and six times as many took AP Psychology as 
AP Computer Science. In 2005, the NCAA 
eliminated computer science as an acceptable 
course for determining initial eligibility of stu-
dent-athletes. When they exist at all, computing 
classes are often relegated to a less academic 
business or vocational track. 

  
At all levels, diversity and equity remain signifi-
cant challenges. Participation rates of women and 
underrepresented minorities in computing are not 
only extremely low but have decreased more 
quickly than for the general population. 
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Three Distinct Audiences 
The educational needs of students differ accord-
ing to their field of study and level of schooling. 
Each audience requires an individual set of com-
putationalist competencies in order to meet their 
specific needs. 

  
The first audience consists of the core computa-
tionalists. These post-secondary students special-
ize either in traditional computing fields such as 
computer science, software engineering, com-
puter engineering, information science, and in-
formation technology or in disciplines where 
computing is a central focus such as multimedia 
computation. Individuals in this group often work 
as theorists, researchers, practitioners, or devel-
opers of cutting-edge technologies in both aca-
demia and industry.  

  
The second audience contains the contextualized 
computationalists. These are typically post-
secondary students who require more in-depth 
knowledge and understanding of particular as-
pects of computing, but only as they apply to 
their particular domain. Examples include stu-
dents of bioinformatics, computational econom-
ics, and technical management. In each case, the 
students’ core field of study is not computing but 
rather a non-computing discipline strongly 
shaped and heavily influenced by computing 
principles. 
  

The final audience includes the remaining post-
secondary students and all secondary school stu-
dents. A broad overview of computing knowl-
edge is a fundamental component of being an 
educated person in the 21st century. The goal is 
not to instill technical proficiency, but to provide 
a basic computing context and an intellectual 
toolset for all students. Just as every educated 
student should understand basic scientific princi-
ples, have an historical perspective, be familiar 
with the basic canon of literature, and be able to 

communicate effectively, every student should 
also be able to think computationally. 

  
A National Imperative 
In order to adapt to the dynamic nature of tech-
nology and the rapid pace of technological 
change, it is essential that today’s students have a 
broad understanding of computation, computa-
tional thinking, and algorithmic problem solving 
rather than be schooled in any particular techno-
logical skill set. 
 

It is imperative that computationalist thinking be 
treated as a critical skill and knowledge set for 
students of the 21st century. Computing should 
be considered one of the new core disciplines on 
a level with reading, writing, math, and science. 
Education research funding should be focused on 
revising curricula and providing professional de-
velopment for teachers at both the secondary and 
post-secondary levels to address the individual 
educational needs of each group of students. 
Cross-disciplinary interactions should be facili-
tated and curricular partnerships encouraged. Lo-
cal and national leaders in education policy must 
set the direction and communicate the urgency of 
this imperative. 
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