
(Re)Defining Computing Curricula by (Re)Defining Computing
Charles L. Isbell

Georgia Institute of
Technology

isbell@cc.gatech.edu

Lynn Andrea Stein
Olin College
las@olin.edu

Robb Cutler
Purdue University and

Computer Science
Teacher’s Association

robb.cutler@purdue.edu

Jeffrey Forbes
Duke University

forbes@cs.duke.edu

Linda Fraser
Waiariki Institute of

Technology
 Linda.Fraser@
waiariki.ac.nz

John Impagliazzo
Qatar University
John@qu.edu.qa

Viera Proulx
Northeastern University

vkp@ccs.neu.edu

Steve Russ
University of Warwick
sbr@dcs.warwick.ac.uk

Richard Thomas
Queensland University of

Technology
r.thomas@qut.edu.au

Yan Xu
Microsoft

yanxu@microsoft.com

ABSTRACT
What is the core of Computing? This paper defines the discipline
of computing as centered around the notion of modeling, espe-
cially those models that are automatable and automatically ma-
nipulable. We argue that this central idea crucially connects mod-
els with languages and machines rather than focusing on and
around computational artifacts, and that it admits a very broad set
of fields while still distinguishing the discipline from mathemat-
ics, engineering and science. The resulting computational curricu-
lum focuses on modeling, scales and limits, simulation, abstrac-
tion, and automation as key components of a computationalist
mindset.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Information
Science Education – curriculum.

General Terms
Standardization.

Keywords
Computing, Computationalist Mindset, Computational Thinking.

1. Introduction
In this paper, we present the carefully considered opinions of a
diverse group of academics, from the fields that comprise comput-
ing, on the question of our discipline’s core and on how aspects of
that core should be generally understood by informed citizens as
well as by those who practice computing in various ways.

We take the position that computing is a discipline unto itself—
neither math nor science nor engineering nor anything else,
though it overlaps with many of these—and that it is distinguished
by a mindset that we call computationalist thinking. Here, we use

the term computationalist merely to mean someone who does
computing, and nothing more nor less.1

As a discipline, computing brings together models, languages, and
machines to represent and generate processes. The heart of com-
puting is not the particular artifacts around which our curricula
often revolve. Instead, this key idea—that models, languages, and
machines are equivalent—is the fundamental core of computing.
Further, this idea admits a broad set of practices and specialities,
including computer science, information science, human-centered
computing, software engineering, and many others, as well as
what we will call more generally contextualized computing.

From this position, we also argue that the curricula of existing
courses should be revisited to inculcate the computationalist
mindset—specifically, core competencies in modeling, scales and
limits, simulation, abstraction, automation, and interpretation of
data. For core computationalists for whom the historical comput-
ing curriculum centers on understanding or using the machine, we
propose that courses also include a focus on models and lan-
guages—the intellectual frameworks of computationalist thinking.
For contextualized computationalists, curricula grounded in prin-
ciples of computationalist thinking tailored to domain-specific
needs has the potential to be transformative, not only by encour-
aging innovation within a domain but also by creating entirely
new disciplines. Lastly, at both the secondary and post-secondary
levels, we urge that a minimal level of computationalist literacy
be required of all students. In some cases, this may require the
design of completely new courses; in other cases, the organiza-
tional structure of existing courses can be adapted.

In the next sections, we provide background and context for this
report, motivating the need to address these issues now. We then
explain our notion of computing-in-the-large as bringing models,
languages, and machines together, carefully defining our terms at
that point. We next show how a variety of fields fit into our
definition before finally turning to curricula and discussing what
learning outcomes should be integrated into our educatioal sys-

1 We prefer our philosophical fights to be about computing itself,

not the word we use to denote those who do computing; how-
ever, we recognize that the term may generate controversy re-
gardless of our disclaimers, as would just about any term. We
hope that the reader will trust our intent, and try not to imbue
computationalist with any undue meaning or infer that we are
making a larger point by its use.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.
ITiCSE'09, July 6-9, 2009, Paris, France.
Copyright 2009 ACM, ISBN 978-1-60558-886-5, $10.00

inroads — SIGCSE Bulletin

- 213 -

Volume 41, Number 4 — 2009 December

- 195 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 195 -

tems for different audiences of learners. We conclude by making
recommendations for next steps in extending what we have pre-
sented here and in presenting these ideas to the larger community.

2. Background of this Report
This document reports on the activities and conclusions of a
Working Group convened at the Conference on Innovation and
Technology in Computer Science Education at the Université
Pierre et Marie Curie (Paris VI) during July, 2009 on the question
of our discipline’s core. It does not purport to be a consensus of
the discipline, representative of all constituencies or opinions, or a
strict work of scholarship. It is informed by scholarship—many of
the participants have engaged in various studies of the discipline,
of educational best practices, of industrial and academic needs—
and it is firmly grounded in our own experiences as well as an
emerging shared understanding of the changes that our field has
undergone. We offer it as a perspective for general consideration,
much in the spirit of Wing [19], Denning [8] and others.

The ten members of the working group came from around the
world (but largely from anglophone educational systems) and
included representation from large research universities and small
teaching colleges, liberal arts traditions and engineering-focused
institutions, as well as secondary education and the computer
industry. Most of us were trained in what are broadly considered
core computing fields, though many have worked at the interface
between computing and other disciplines. All have had a hand in
curriculum design, development, and reform; some began careers
with this focus, while others have come to these questions after
significant engagement in computational research or development
activities.

We came together motivated by a sense that computing as typi-
cally taught is too much about the computer and not enough about
what we have come to call the computationalist mindset; that the
kind of thinking that comes from this mindset—centered on a
particular kind of modeling that allows automation, simulation,
exploration, as well as clarification of the original problem do-
main—is critical to a variety of emerging fields; and that the edu-
cated person in our societies needs a basic facility with these intel-
lectual tools.

Our goals in making this report are straightforward: We want to
define a broad field of computing; understand the role of currently
recognized sub disciplines in that field; identify what is important
and should be generally understood by informed citizens and
those who will practice computing in various ways; and begin to
make recommendations on how to communicate these important
ideas to students. In particular, we want to articulate the funda-
mental properties of computing and the computationalist mindset,
in order to understand what computing curricula built around this
way of thinking might look like.

3. Why Worry About This Now?
We believe that computing education is in crisis. Curricula have
grown too large for many institutions and programs. Several ad-
joining disciplines—information science, software engineering,
computer engineering, information technology, and informatics—
as well as computer science make compelling claims on comput-
ing, incorporating different but equally voluminous material (such
as [15]). There is increasing interest in computational X degrees:

programs bridging computing and other disciplines such as biol-
ogy, social science, art, and economics [3]. Some suggest univer-
sal computing literacy in the form of computer programming [10];
others advocate a focus on our mechanics or on modes of thinking
[8], [19]. Computing has become an inter- and intra- disciplinary
field of intertwined concepts pervading not just most technical
fields, but society at large [1].

Much of this is to the good; however, it has become increasingly
difficult to understand how to teach computing. Unlike subjects
such as mathematics and reading, which benefit from a long his-
tory of pedagogical research into learning and assessment, com-
puting is a relatively young discipline and one with a reputation
for being poorly taught. Indeed, the field of computing is itself
struggling for an identity even as academic institutions are trying
to determine what should be taught, when and how. In order to
cause a dramatic change in computing education, we need to cre-
ate a model that clarifies what the field is, and why and how to
study it. We need to make those reasons clear to our students and
their parents, to professionals, and to ourselves.

The most recent US curricular standard recognizes five areas of
computing: computer engineering, computer science, information
systems, information technology, and software engineering [15].
These areas overlap but for the most part focus inwards, on the
hardware, software, and systems of traditional computation.2 Of-
ten, the computer science curriculum in particular amounts to a
history of our artifacts—the machines, the system components,
the applications—rather than an explication of the key ideas at the
core of our discipline (see, e.g., [7]).

Some of the controversy that inevitably arises from these sorts of
discussions comes from the fact that computers—the artifacts our
discipline enables, uses, and in some cases studies—are uniquely
compelling devices. In some cases, what is taught as computer
science is actually computer use or computer literacy; this is par-
ticularly prevalent among pre-college curricula [18]. Even when
the broad range of computing disciplines at the post-secondary
level is considered, it can sometimes be easy to fall into the trap of
believing that computing is about electronic computers.

Yet another confusion is the result of beginning with an assump-
tion that computing must be either mathematics, or science, or
engineering. This is unsurprising because it is easy to draw those
connections. Like mathematics, we build models; unlike mathe-
matics’, our models are active and effect-making: they cause
things to happen. Like science, we study a system that exists in
nature; however, like engineering, our systems are artificial tech-
nology and subject to complex trade-offs in implementation.
Computing also bears resemblance to the arts—the creation of
artifacts—to humanities—the study of texts—and to the social
sciences—the study of humans and societies.

A number of curricular reforms have tried to confront these chal-
lenges. At Georgia Tech, the Threads curriculum has identified
eight overlapping ways of being a computationalist; each student
follows at least two of these paths, but no student completes all

2 The two fields with “information” in their names are the least

prone to this inward-focused tendency and, perhaps as a result,
the ones most likely to be omitted from conversations about
computing. Their inclusion in the computing core is a first step
in the direction for which we wish to argue.

inroads — SIGCSE Bulletin

- 214 -

Volume 41, Number 4 — 2009 December

- 196 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 196 -

eight during an undergraduate career [12]. Olin’s “small foot-
print” curriculum for computing creates a reduced core focused on
the key approaches and concepts necessary to learn the rest of
computing [9]. Union College, Georgia Tech, and The College of
New Jersey are among the institutions offering both departmental
introductions and follow-on programs in digital media computa-
tion [13], [20], and computation is increasingly being understood
as critical to scientists [21].

Universities have also begun to reorganize themselves around
notions of computing as a discipline by creating academic units of
computing at the same level corresponding to academic units of
engineering or science. The Bren School at UC Irvine has three
overlapping degrees representing three different approaches to
computing and is housed in a unit reporting directly to their Pro-
vost; Georgia Tech has a College of Computing offering multiple
computing degrees with a Dean that also reports to their Provost.
University of Michigan has an Information School with a Dean
reporting directly to their chief academic officer.

Even so, we are still faced with a difficult problem of understand-
ing how to convey the core of computing in a variety of different
contexts and with limited time. We will suggest below that the
curriculum of existing courses be revisited to inculcate what we
call computationalist thinking—specifcally, core competencies in
modeling, scales and limits, simulation, abstraction, and
automation. In some cases, this may require the design of
completely new courses; in other cases, the organizational
structure of existing courses can be adapted. But first, we begin by
examining several existing visions of what that core might be.

4. Visions of Computing
In saying that computing is a singular discipline, we are suggest-
ing that there are certain ways of thinking that are characteristic of
all computationalists, including those whose primary concerns are
the marriage of computational disciplines with other fields. These
ways of thinking are shared by members of the five subdisciplines
identified by CC2005 as well as by computational media practi-
tioners, bioinformaticists, quantitative social scientists, and others
we call contextualized computationalists. We believe that the
most basic principles of this mindset should also be shared by all
educated persons.

Wing [19] takes a similar stance, calling this way of thinking
computational thinking.3 Wing suggests that it includes: seeking
algorithmic approaches to problem domains; a readiness to move
between differing levels of abstraction and representation; and
familiarity with decomposition, separation of concerns and modu-
larity. We find much to like in Wing’s approach but would shift
emphasis from algorithm to interaction—less about finding an-
swers and more about providing services, interfaces, behaviors—
and would highlight our fusion of models, languages, and ma-
chines in what we call computationalist thinking. In particular, we
will advocate below for a more central role for the activity of
modeling and would consequently add: a readiness to adopt a

3 In this document, we have used the terms computationalist

mindset and computationalist thinking instead as a means of in-
dicating that we mean only the mindset or way of thinking of
computationalists (that is, those who do computing) without
commentary on other similar terms with their own specific
meanings.

deliberate modeling approach to phenomena where we identify
features of a domain that are relevant to our interests, formulate
relationships between those features and identify the relevant
agencies that are sources of change in the domain.4

Denning [8] takes a more pragmatic approach to the computa-
tional core, which he divides into mechanics, design, and prac-
tices. His interest is in the generalizable principles of each. Den-
ning’s notion of mechanics is inspired by that subdiscipline of
physics and includes computation, communication, coordination,
automation, and recollection. Each of these activities has a role to
play in our world of computationalist thinking. Denning’s design
principles include simplicity, performance, reliability, evolvabil-
ity, and security; several of these are a part of our notion of scale
and limits. Computational practices, according to Denning, in-
clude programming, engineering systems, modeling and valida-
tion, innovating, and applying. Many computationalists engage in
these practices while adhering to these design principles and ob-
serving these mechanics, as we acknowledge in section 6.1; how-
ever, our notion of the computationalist mindset is at a more ab-
stract level, less tied to the particular subsets of these lists that
typify individual subdisciplines, and our vision of the shared
computationalist core is correspondingly less tied to actual com-
puter systems.

In Reflections from the Field [14], the Computer Science and
Telecommunications Board describe the core activities of Com-
puter Science (rather than the broader field of computing). Ac-
cording to this report, “Computer Science involves the creation
and manipulation of abstractions [and] the creation and study of
algorithms, ... deals with artificial constructs notably unlimited by
physical laws, ... exploits and addresses exponential growth, ...
studies fundamental limits on what can be computed, and ... ad-
dresses the complex, analytic, rational action that is associated
with human intelligence.” Again, we agree that many computa-
tionalists engage in these activities, but we seek a core mindset
that is shared by different kinds of computationalists—not just
computer scientists—and that further is of benefit to those whose
computationalism may be more contextualized or even a matter of
basic literacy.

The report of the Northeast Workshop on Integrative Computing
Education and Research [3] specifically addresses the role of
mindset, especially for contextualized computation:

Our greatest contribution to integrating computer sci-
ence with other disciplines will be our unique mindset:
our conceptual base, our style of reasoning, and our val-
ues... Computational paradigms have changed the core
of many disciplines and enabled new kinds of questions.

That is, it is the way that computationalists think—how we ap-
proach the world—that underlies our greatest contributions to
neighboring disciplines. While this mindset produced the compu-
tational artifacts that are changing our world, it should not be
confused with them. In the future, our artifacts will be different,
but the core computationalist mindset that we lay out below
should remain.

There are, of course, many other visions of computing and its

4 Terms like algorithmic thinking might then be viewed as a spe-

cial case of computationalist thinking and modeling where we
focus attention on certain reliable patterns of execution.

inroads — SIGCSE Bulletin

- 215 -

Volume 41, Number 4 — 2009 December

- 197 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 197 -

related disciplines. Abelson and Sussman [1] famously state that
computer science is neither about computers nor a science. In-
stead, they argue that it is “no more (and no less) than the disci-
pline of constructing appropriate descriptive languages.” Foley
[11] builds on this notion to suggest that computer science marries
this process knowledge—“how to”—with a concern for organiza-
tion. Felleisen and Krishnamurthy [10], in contrast, argue that
what is crucial about computing—at least for broad literacy—is a
kind of “imaginative programming” that closely aligns with
mathematics, bringing it to life. According to Felleisen and Krish-
namurthy, programming “is our field's single most valuable skill.”

In the next sections, we will articulate and detail our own particu-
lar vision of what computing is. It is not the same as the visions
expressed above, but we believe our vision shares much in com-
mon with many of them and, in particular, is a reasonable effort at
trying to capture something both fundamental and broad about
computationalist thinking.

5. Models, Languages, and Machines
In our view, computing is fundamentally a modeling activity. Any
modeler must establish a correspondence between one domain and
another. For the computational modeler, one domain is typically a
phenomenon in the world or in our imagination while the other is
typically a computing machine, whether abstract or physical. The
computing machine or artifact is typically manipulated through
some language that provides a combination of symbolic represen-
tation of the features, objects, and states of interest as well as a
visualization of transformations and interactions that can be di-
rectly compared and aligned with those in the world. The central-
ity of the machine makes computing models inherently executable
or automatically manipulable and, in part, distinguishes comput-
ing from mathematics. Therefore, the computationalist acts as an
intermediary between models, machines, and languages and pre-
scribes objects, states, and processes.

These three words—model, language, and machine—will mean
different things to different readers, so we should take a moment
to explain further the ways in which we use these terms.

We have a liberal view of machines. Those who study human-
centered computing, for example, include humans as a crucial part

of the machine system. In our view, a machine is simply a physi-
cal entity capable of carrying out work (including computa-
tional work) in the world.

When we say model, all that we mean is a representation of some
information, physical reality, or a virtual entity in a manner that
can then be interpreted, manipulated, and transformed. A model
allows one to manipulate and simulate in a way that is easier than
the phenomenon modeled—or at least has useful additional affor-
dances—while still retaining crucial predictive or causal powers.
In particular, a computational model:

• provides the ability to manipulate and simulate, while
spanning volume, distance, and time, and allowing hy-
potheticals;

• retains the ability to cause change in the actual world of the
things being modeled;

• and hides details and aspects that are not critical to the
problem at hand.

A language allows us to describe in a formal way the process that
manipulates our models and transforms them into new models or
enables the interpretation of some model in a new way. The lan-
guage may be Turing complete or a small language or even a sim-
ple protocol. Increasingly, computationalists work with “little
languages”, domain-specific constructs that fit the conceptual
space within which they work. What is important about a lan-
guage is that it enables our reasoning and manipulation of the
model.

To close the loop, a machine is any artifact that is capable of ac-
cessing these models and performing the transformation processes
that are defined in the languages. The machine may be real or it
may be virtual or abstract. The key is that a computational ma-
chine allows us to execute our models.

In other words, in computing, our models are languages which are
themselves machines; that is, a computational model is manipula-
ble and executable automatically. It can act or can be acted upon.
Our languages are models. Our models are executable. Our ma-
chines are languages that can themselves be manipulated. It’s
turtles all the way down.

6. Computing
We can now define computing as: any purposeful activity that
marries the representation of some dynamic domain with the
representation of some dynamic machine that provides theoreti-
cal, empirical or practical understanding of that domain or that
machine. Often but not always, computationalists then further
actualize those representations by executing them on a physical
computing artifact (see Figure 2).

In this way, the practitioners we often call computer scientists and
those we often call information scientists are both engaging in
computing. In fact, our definition might well encompass parts of
operations research, business processes, and even sociology or
ethnography, provided that the results are automatable or auto-
matically manipulable models.

Some computationalists build running models, or machines. Oth-
ers construct intellectual models that are more abstract than con-
crete. Some computationalists focus more on understanding the
machines, others on the domains. In any case, every computation-

Figure 1. The Tight Coupling of Models, Languages
and Machines. The computationalist is a modeler
who uses languages to specify machines.

inroads — SIGCSE Bulletin

- 216 -

Volume 41, Number 4 — 2009 December

- 198 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 198 -

alist’s intellectual toolkit includes both the activity of automation
and the ways of thinking—disassembling domains, carving them
at their joints—that make this automation possible. Computation-
alists often build models of processes including concurrent, dis-
tributed, and human processes.

Much of the benefit of the computationalist mindset comes from
this activity of fitting the model and the language to the needs of
the domain. When computationalist thinking met biology, the
transformation changed the language that biologists use to de-
scribe their own artifacts. Computationalist thinking requires a
precision and a disambiguation that is clarifying for the domain to
be modeled. Computationalists become proficient in crafting intel-
lectual segmentations of domains that themselves can be signifi-
cant contributions. But the full impact of computationalist ap-
proaches comes when the automation power of our artifacts can
be combined with our intellectual tools.

6.1 The Practice of Computing
We know that computing is not only a set of professions but also a
single coherent discipline. Just as importantly, it is a widespread
practice and a general way of thinking. Computationalists have a
systematic body of knowledge they learn and from which they
draw; a set of skills and tools they use to practice and apply their
knowledge; and a way of thinking and seeing problems that allow
them to extend the larger body of knowledge and add value.

Computationalists deal with some or all of the following:

• The computer itself as a technology or technological arti-
fact, as well as a wide range of computing devices

• The problems that computing devices can solve in the ab-
stract unmoored to a specific domain

• The techniques and technologies that enable computational
solutions, including the practices that best support these so-
lutions

• The relationship of these tools, techniques, technologies to
domains or users, in general

• The study of all of the above using computational tools and
mindsets.

• The construction (the science of the construction, the best
practices of the construction, the science of the practice of
the construction, and so on) of systems using all of the
above

• The historical artifacts that have been crucial in the devel-
opment of these tools and technologies and the future im-
provement of those artifacts.

It is difficult to characterize precisely the extent of the computing
disciplines. Clearly, the core disciplines identified in CC2005 are
included within computing. There is also significant overlap
among these and with emerging disciplines containing the word
computational in their titles (computational biology, chemistry,
and physics; computational mathematics; computational media or
sometimes digital media; bioinformatics; information science;
quantitative social sciences). What characterizes all of these disci-
plines? What unifies them as computational? We assert that here
are two key aspects of these disciplines that makes them computa-
tional, and we further suggest that the emphasis is typically placed
on the wrong one:

• Computation as device—the machine—changes the scale,
scope, and reach of every discipline it touches.

• Computation as mindset causes a reconceptualization of
the discipline. The most common symptom of this is what
are sometimes called “little languages” [5], special purpose
(domain-specific) languages that allow automated manipu-
lation of the domain. The computationalist brings an ability
to identify the appropriate abstractions, hide the unneces-
sary details, and get at the heart of a key process within the
domain.

It follows from our theme of computing as a modeling activity
that the skills and tools associated with the entirety of computing
should be those useful for the construction and management of
models. These will include all the familiar skills and tools used in,
for example, programming in all its styles, such as integrated de-
velopment environments, versioning and testing tools, but also
include some of those skills and tools used more widely in other
modeling disciplines.

6.2 When One Discipline Meets Another
To understand the impact of this thinking and this practice, it is
useful to consider a simple case study. For example when comput-
ing meets biology it is transformative: one can create a simple
model that captures key aspects of behavior (DNA coding, possi-
ble manipulations, etc.) and then create a language that describes
the interactions and processes possible. Because computational
models are executable, computationalist disciplines can scale
dramatically, operating on data sets heretofore unimaginable.
Because computataionlist disciplines can manipulate huge
datasets, the kinds of questions that can be asked are also dramati-
cally transformed. The entire field of precision medicine follows
from computation’s meeting with biology. Computation’s contri-
bution to biology is not so much the processing of large volumes
but the two dramatic shifts in thinking that the meeting of these
fields created: the reconceptualization that enables automated
processing and the reconceptualization which that processing in
turn enables.

Figure 2. Computationalists Create Automatable
Models. Computationalists build models that cap-
ture processes. Those process are in turn automat-
able and automatically manipulable. The computa-
tionalist need not engage in each step of this dia-
gram, but the computationalist is engaged in an en-
terprise that makes each step applicable and possi-
ble.

inroads — SIGCSE Bulletin

- 217 -

Volume 41, Number 4 — 2009 December

- 199 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 199 -

Computationalists can use non-computers to do computing. Stick-
ing with Biology, for example, the computationalist understands
that one can do computing with a vial of saline solution and the
components of DNA. In early 1994, Adelman [2] solved a travel-
ing salesman problem by: creating sequenced DNA strands repre-
senting cities and complementary strands representing particular
streets connecting pairs of cities; placing a few grams of every
DNA city and street into a test tube; allowing the natural bonding
tendencies of the DNA building blocks to occur; and eliminating
strands that could not be valid solutions. Adelman acted as a true
computational modeler, creating a representation of cities and
streets and creating a correspondence to a representation of the
properties of DNA and the processes of chemistry. Finally, he
actualized those representations by executing them on the physical
realization of his model.

The biologist performing an experiment with DNA in a test tube
is not necessarily doing computing; however, the computationalist
who sees chemistry as a process manipulating the representation
that is DNA can do computing. At the same time, computational-
ist thinking also allows the biologist to think of cells as machines
performing computation, to see certain protein interactions as
executing if-then statements or storing and retrieving state. Thus,
computing can both use physical processes as tools to do general
computing and explain natural processes as doing a specific set of
computations, transforming our understanding of what those proc-
esses are doing as well as what they can do. Such thinking brings
us not only DNA as computing, but manipulable music, participa-
tory art, and other fundamental rethinking of other domains.

7. Who Should Learn Computing and What
Should They Learn?

In the process of (re)defining computing, we define three distinct
audiences of students. Within each group, our objective is to iden-
tify specific and appropriate learning outcomes through the articu-
lation of computing curricula. Figure 3 captures the overlapping
nature of the three audiences and their relationship to the entire
field of computing.

Our first group contains the pure or core computationalists. These
students specialize either in fields such as computer science, soft-
ware engineering, computer engineering, information science, and
information technology, or in disciplines such as multimedia
computation where computing is a central focus. While individu-
als in this group may have some domain-specific knowledge be-
yond what we might think of as central computing, their overall
goal is the deep study of computing rather than the study of any
particular domain.

Our second group contains contextualized computationalists.
These are students who require in-depth knowledge and under-
standing of particular aspects of computing, but only as they apply
to a particular domain. Examples include students of bioinformat-
ics, computational economics, and technical management. In each
case, the core field of study is not computing but rather a non-
computing discipline strongly shaped and influenced by comput-
ing principles.

Our last group includes everyone else. There has been a tradi-
tional core curriculum in schools that has existed for a long time.
Existing disciplines have expanded and reduced along with soci-
ety’s needs and attitudes. For example in the study of literature,
new classics have emerged and in Biology new discoveries have

been made; however, we have not universally made room within
this core for an entirely new discipline such as computing, even
though computers and computerized gadgets and machinery are
ubiquitous. We assert that a broad overview of computing knowl-
edge is a fundamental component of being an educated person in
the 21st century. Every person will have to interface with comput-
ing in many areas of their lives and would, we assert, have a more
fulfilling, competent, knowledgeable and self reliant adult life
with a good foundation of computing knowledge and skills, Our
goal is not to instill specific computing proficiency, but to provide
a core computing context for all students. We see this as analo-
gous to the idea that every student should have an understanding
of basic scientific principles, have historical perspective, and have
read some part of the basic canon of literature.

In fact, each of these groups actually lies on the same spectrum.
Conceptually, we are all contextualized computationalists. Many
core computationalists tend to be near one side of the spectrum,
where the context is a computing machine (or abstraction thereof)
itself. As we move slightly along the spectrum we pick up more
subareas of computing, for example those who begin to contextu-
alize their efforts more and more by focusing on humans or hu-
man processes as a part of the system. Some subareas of human-
centered computing, machine learning, artificial intelligence and
information science are here, but are no less computing for their
broadened interest. Eventually we move far enough along that we
begin to start thinking of the focus as being as much about the

Figure 3. Computing Knowledge Needed by Dif-
ferent Audiences. We believe that everyone
should have some working knowledge of com-
putationalist ideas. Contextualized computa-
tionalists will generally need to know much
more. Note that there are several different kinds
of contextualized computationalists who will
need more or less computing knowledge and
will focus or more or less non-computing
knowledge. Computationalists themselves will
typically know the most, but the field of com-
puting itself is much too broad for any particu-
lar computationalist to be facile in all of its
knowledge and tools; nonetheless, there are sev-
eral core ideas that most computationalists
should know.

inroads — SIGCSE Bulletin

- 218 -

Volume 41, Number 4 — 2009 December

- 200 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 200 -

domain as it is computational. Some computational X areas such
as computational biology begin to appear. Eventually, the domain
begins to dominate; we begin to see biologists who use computing
devices centrally in their work and may apply the results of com-
putationalist thinking, but do not necessarily try to innovate by
finding new ways to apply that thinking. Eventually, we find our-
selves at just computer users and then everyone else.

In any case, everyone along the spectrum is well-served by be-
coming computationalist thinkers or at least being compurate5. In
fact, we argue that being compurate is as important as being nu-
merate and literate; being illiterate, innumerate, or incompurate is
simply not an option in today’s world (see Figure 4).

7.1 What We Can Know about Computing
It is beyond the scope of this document to address a full set of
learning objectives or outcomes for each audience we have identi-
fied above. Still it is worth articulating some of the key ideas that
make up computing and identifying how those key ideas are im-
portant to each of our groups.

The ideas and thinking involved in fruitfully pursuing these activi-
ties more subtle and wide-ranging, and lie at the core of comput-
ing. At the very least, computationalist thinking is focused on:

• Models: What can computational models afford (make
easy)? What do they hide? How do these models relate to
specific problems in which the computationalist is en-
gaged? How can such models be manipulated and under-
stood?

• Abstraction: How does one effectively distinguish the im-
portant aspects of a domain, and for what purpose? How
are these aspects realized in a model and executed?

• Interpretation: What is the data a particular system ma-
nipulates? How does it interpret that data? What is the lan-
guage of manipulation? For example, the same bit pattern
can mean 65 or “A” or true. It is in the model and the in-
terpretation that we know the answer.

5 Pronounced COM-pure-et (or kɑmpjʊrәt in IPA), meaning hav-
ing the ability to understand computationalist thinking and having
facility with computing, as literate and numerate are for read-
ing/writing and numbers, respectively.

• Scales and Limits: How are classes of problems related to
one another by their complexity? How can we usefully dis-
tinguish between them? Where does the dependence on in-
puts lie? What are the tradeoffs of space and time? Why
are some problems hard? What cannot be solved exactly?
What can be approximated? What can be solved in theory,
but not in practice, and why not?

• Simulation: How does one use an automated or automat-
able model to predict or understand the behavior of some
domain or system? Once abstracted how can one explore
hypotheticals and generalizations of the original domain or
problem space?

• Automation: What properties allow some kinds of models
to be manipulated by a program and to be automatically
executed? How do these special models connect us to cer-
tain real domains?

For core computationalists for whom the typical computing
curriculum centers on the machine, we propose that courses also
include a focus on models and languages—the intellectual
frameworks of computationalist thinking. For the contextualized
computationalists, curricula grounded in principles of
computationalist thinking tailored to domain-specific needs has
the potential to be transformative, not only by encouraging
innovation within a domain but also by creating entirely new
disciplines. Lastly, at both the secondary and post-secondary
levels, we urge that a minimal level of computationalist literacy
be required of all students.

7.2 What Everyone Should Know
Learning outcomes for every student should include an exposure
to the ideas of modeling, abstraction, and automation as discussed
above. The exposure provides insight into the tight relationship
between models, languages and machines. Students should be
exposed to different levels of abstraction and representation, un-
derstanding how to create symbolic, graphical or numerical repre-
sentations of relationships and data; and understand how this can
be used to clarify comprehension of complex sets of information.

Every student should understand enough of the issues of scales
and limits to appreciate that some problems are easier than others
and some notion that there are good systematic reasons for this.
We expect that notion of computational models are stand-ins for
real processes will expose the student to the idea of simulation
and help her appreciate that simulation is occurring in common
every day uses of their computing devices.

In addition, there is a wide range of practical skills that involve
computing. Although we support as laudable educating students
so as to demystify their computing devices, to expose them to
ethical implications of using such devices, and to allow them to
best use computers as tools, a thorough discussion is beyond the
scope of this document.

7.3 What Contextualized Computationalists
Should Know

Practitioners in other fields often build expressive and descriptive
models of physical, human, or abstract systems. Contextualized
computationalists build and compute with those models. Sociolo-
gists employ sophisticated graph-theoretic techniques for the

Figure 4. The importance of Being Compurate.
At this point, being compurate—having the
ability to understand computationalist think-
ing—is as important as being literate or numer-
ate. Being on the left side of the dividing line is
increasingly necessary for the educated person
to participate fully in the economic life of most
modern societies.

inroads — SIGCSE Bulletin

- 219 -

Volume 41, Number 4 — 2009 December

- 201 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 201 -

modeling and analysis of social networks; however, a computa-
tional sociologist is able to develop and apply these models to
larger scale problems allowing for more complex link analysis.
Systems biologists discover the emergent properties from the
complex interactions of biological systems. A computational bi-
ologist can take a population’s DNA microarray data and mine
that data to gain fundamental insights into the genetic and envi-
ronmental causes of diseases. Economists model financial transac-
tions at the micro and macro levels. A computational economist
can model millions of individual agents in the economy to vali-
date or refute macroeconomic theories.

Effective modeling requires that one be able to (1) state a problem
clearly and precisely, (2) develop and understand a model, (3)
compute with that model, and (4) understand and present the re-
sults. In step 1, one needs to determine what are the questions
worth asking and which ones are practical to answer. Step 2 re-
quires that one properly characterize inputs (e.g., symbolic vs.
numeric, discrete vs. continuous, understood and complete vs.
uncertain with missing data, and so on) and consider the expected
properties of the transformations over the model. In Step 3, a stu-
dent needs to recognize and use a broad repertoire of approaches.
Step 4 requires some consideration of the larger system that in-
cludes end users, including interface design, visualization, and so
on.

Computing provides the methods and tools necessary to manage
huge amounts of data, share this data with a global community,
and use algorithmic approaches to extract meaning from this
data. Given a problem, one needs to be able to describe the rela-
tionship between problem size and the resources necessary. Com-
puting enables the processing of data at many different scales, but
a contextualized practitioner must recognize the pragmatic and
theoretic limits of computation.

Thus, the contextualized computationalist must understand in
more depth models, scales and limits, and abstraction, particularly
as it applies to her domain. For many contextualized computation-
alists, further facility in simulation is necessary, particularly for
the purposes of prediction and exploring hypotheticals. She is
more than a user of systems, however, because she must be able to
extend and modify simulations.

Because the contextualized computationalist is still a non-
computing professional, she needs to understand the limitations of
her knowledge and skills and know when and how to approach a
dedicated computationalist. For more fruitful collaboration, she
must be able to communicate in the same language as the dedi-
cated computationalist as well as in her own domain speciality.

Finally, a contextualized computationalist must understand how to
use a computing device responsibly and consider the implications
of data misuse. She should appreciate the impact of computing in
enabling the products she uses everyday.

7.4 What Computationalists Should Know
We emphasize that computing is a broad field. There are several
specialized sub-disciplines within it. Here, we seek only to outline
a core set of knowledge that most computationalists should share
in order to understand the field and to work effectively within
their chosen discipline.

The starting point for this shared understanding is the comprehen-
sion of themselves as computational modelers who use abstract

languages to transform states and processes through a computa-
tional machine. It is not clear that we currently emphasize this
view in any of our typical programs, and we should.

There is a large body of knowledge that is beyond the scope of
this document to enumerate further than we have above, but must
be understood by computationalists. Each sub-discipline will re-
quire differing levels of depth in these areas and will also have
their own specific additional topics. As modeling is a key charac-
teristic of computationalists they must understand the mathemati-
cal foundations of computational modeling and how to create,
analyze and critique models.

Computationalists do not need a complete understanding of hard-
ware architecture any more they need to have a complete under-
standing of larger computing systems that take into account hu-
mans as well as their computational devices; however, they must
have a clear understanding of how computing devices work as an
abstract machine. The level of abstraction and depth of knowledge
will depend on their specialist area of computing. Computational-
ists must also understand the issues of distributed modeling—as
in, for example, parallel and distributed processing, or networked
systems—and the benefits and complexities these add to computa-
tional systems.

Computationalists create models to solve problems. Consequently
they must understand the general principles of developing such
models. In some disciplines this involves systems development
processes and in others less so; regardless, computationalist must
be able in varying degrees to:

• analyze a problem to understand the context and require-
ments;

• design a solution to that problem and implement that solu-
tion using appropriate tools and techniques;

• verify that the solution--which may or may not be a com-
puter program--behaves correctly; validate that it meets its
intended requirements;

• identify erroneous components and correct the problems in
those components;

• document the solution's development to enable others to
understand the rationale for decisions made during devel-
opment; and

• manage the development process, including being able to
make informed estimates on the difficulty of development.

Note that many of these can apply to computer programs but need
not be understood solely in that context.

As professionals practicing in the field, computationalists must
understand the issues of monitoring their processes and practices
to ensure the quality of the result being produced. They must also
understand the issues involved in system evolution in order to be
able to make appropriate decisions about trade-offs. Designing
and implementing a solution requires that computationalists know
the performance constraints of their computing environment in
order to make informed decisions about the feasibility of a solu-
tion or how to best structure it.

Of course, not all computationalists produce artifacts in the same
way. For example, those focused on theoretical pursuits may do
little in the way of system development and deployment. For

inroads — SIGCSE Bulletin

- 220 -

Volume 41, Number 4 — 2009 December

- 202 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 202 -

those computationalists, the meaning of managing processes may
be different than described above, or emphasized in a different
way. Therefore, the reader should not take these requirements to
imply that computationalists must be able to apply a software
engineering methodology or be able to use a traditional third-
generation programming language.

Finally, it should be understood that a key characteristic of com-
puting is that it enables those in other domains to be more effec-
tive and to solve problems of a scale previously impossible to
consider; a computationalist’s role is to facilitate others’ activities,
which requires good communication and negotiation skills and the
ability to quickly gain insights into other domains. Insofar as the
computationalist will solve problems in a domain outside of the
field of computing, it is important that computationalists are
aware of the impact that their activities will have on those do-
mains and the ethical implications of their actions. This requires a
general understanding of the evolution of computing and its im-
pact on society.

7.5 Conveying What We Should Know
It is beyond the scope of this paper to provide a detailed map of
the many ways in which the ideas described above might be em-
bodied in curriculum. In this section, we briefly visit sample cur-
ricula that capture some aspects of this approach. These are nei-
ther the only ways in which computationalist thinking might be
embedded in curriculum nor necessarily the best ways. We hope
that they will help to make possible approaches concrete and to
serve as food for thought as further possibilities are explored.

In Section 3, we noted a number of efforts at curricular reforms
driven by the same needs that inspired our group. In particular, we
identified Georgia Tech’s Threads curriculum, Olin’s “small foot-
print” curriculum for computing, several programs on digital me-
dia computation, and on applications of computing to science.

Olin’s small footprint curriculum is built around a three-course
core that refactors the material traditionally covered in program
design, theoretical computer science (including algorithms and
programming languages), and software systems. This refactoring
underscores connections and themes such as those described in
section 7.1. Students encounter each of the six key ideas described
above in each of these classes. For example, in software design
they select appropriate models out of which to construct pro-
grams; in foundations of computer science they describe tradeoffs
among programming languages, data structures, and formal repre-
sentations; and in software systems they encounter the different
ways various models provide analyze and evaluate system proper-
ties.

The small footprint curriculum shifts focus from specific artifacts
and technologies to the key ideas of computationalist thinking. It
affords the opportunity to demonstrate connections among topics
that are not always clear in a conventional curriculum. For exam-
ple, trees—with their logarithmic/exponential structure—underlie
phenomena as diverse as parsing, NP-completeness, searching and
sorting, and declarative programming. At the same time, a small
footprint curriculum forces decisions about what to omit. Olin’s
curriculum does not aim to teach students everything they might
need to know (“just in case” learning); instead, it provides what
they need to know in order to learn the rest (“just in time”).

The Thread curriculum developed at Georgia Tech takes a differ-

ent approach to the problem of computationalist thinking. Threads
are partial paths through a computing degree. Each embodies a
flexible set of technical skills both within and outside of comput-
ing that (1) serve as a context for interpreting the courses in a
curriculum and (2) suggest a coordinated path through courses so
that the end result is expertise in the area of the thread. Every
student constructs her own personalized computing degree by
weaving two threads. Each Thread is about 2/3 of a degree, but
any pair of threads yields a complete degree. The Threads model
represents extending the application of contextualization from
courses to an entire undergraduate computing degree. Each thread
defines its own set of courses and so provides an opportunity for
each to define its own basic core. Thus, each thread can define a
context for creating specific models consistent with the areas it
touches. The Intelligence thread can concentrate on modeling
intelligent behavior, the People thread on modeling the cognitive
and physical capabilities of humans using computer systems, and
so on.

In Threads, the curriculum designer seeks to avoid the problem of
defining a core set of knowledge for all computationalists by al-
lowing each thread to define its own while still requiring that
every pair of threads is compatible. At Georgia Tech this has
worked well. Although Georgia Tech’s CS degree has no core, the
intersection of threads essentially defines a small common set of
beginning courses (a natural consequence of the 2/3+2/3=1 rule
and the fact that each Thread is still about computing). From there
the basic computationalist core of the sort we have described in
7.4 can be explored no matter what the combination of threads
taken by the student.

Computational media and computational science curricula are two
curricular families that occupy the space directly addressed in
section 7.3: contextualized computation. Although focused on
specific problems in media, science or engineering, such curricula
must explicitly expose students to the computational aspects of
the models in their domains of interest, emphasizing scales, limits,
and abstraction. This exposure is sometimes done purely through
the practice of programming, perhaps in the most popular lan-
guages of the field. To be truly effective, however, we would
argue that the computational scientist (or computational media
expert) must be able to explicitly connect those languages to ab-
stract and executable models in their own domains. These connec-
tions need not be made explicit early in the curriculum, but must
be made explicit eventually. For example, Georgia Tech’s compu-
tational media degree looks remarkably like one of the CS threads
(the Media thread) combined with a set of advanced courses
drawn from the CS degree and from the School of Literature,
Communication and Culture. Thus, such students have exposure
to the same core and ideas as CS majors but this core is explicitly
framed in terms of media, models of media processes, and repre-
sentations that capture those processes.

These approaches are hardly exhaustive of the ways in which
computationalist thinking might inform a curriculum. Exploring
this broader space—explicitly building from the principles we
outline here, starting anew to define the curricula that result—is a
next step in the task of (re)defining computing curricula.

8. Where Should We Go From Here?
Adrion et al. suggest [3] that:

In identifying the bare essentials and enduring funda-

inroads — SIGCSE Bulletin

- 221 -

Volume 41, Number 4 — 2009 December

- 203 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 203 -

mentals of any discipline, one needs to understand (i)
the kinds of questions it cares about, (ii) the kinds of re-
sults it accepts as answers, (iii) the methods it prefers to
seek the results, and (iv) the kinds of evidence it accepts
to validate the results.

This paper has begun to address the questions that computational-
ists ask and the ways that we approach them. Our efforts are, of
course, only a beginning. Specific curricula and courses need to
be defined; explicit organizations of knowledge should be argued
and proposed; and mechanisms for assessment must be developed.

This conversation must be continued among a wider group of
stakeholders. These include not only computing educators, but
also educators in other disciplines, computing professionals,
secondary school teachers, professional organizations, and policy
makers. While we recognize that there may be disagreement over
particular terminology, starting from the idea that being
computationally literate is one of the hallmarks of an educated
society will help to bridge differences in semantics.

At a minimum, the curriculum of existing courses should be
revisited to inculcate computationalist thinking—specifcally, core
competencies in modeling, scales and limits, simulation,
abstraction, and automation. To truly embrace the focus on
models, languages, and machines as a single computationalist
idea, we will in most cases need to radically rethink curricula to
better reflect this way of organizing and articulating the topics in
our field.

One exercise that this working group undertook was to examine
ACM’s CC2005 recommendation [15]. There is no doubt, as in
any other field, that the definition of the core knowledge varies
among educators, education programs, institutes, and regions;
nevertheless, CC2005 provides one standard reference for
structuring (and debating) computing curricula. Our group
examined CC2005’s suggested set of distinguished computing
areas for all (see Table 3.2 in CC2005), and an additional set for
computing professionals (see Table 3.1 in CC2005). In both cases,
we found the tables significantly lacking in topics that are crucial
to our vision of computing.6

The exercise proved fruitful (and unsurprisingly, not entirely un-
controversial); however, the discussion revealed a larger issue.
Given our emphasis on modeling, it would make sense that topics
involving modeling, humans, and so on should be reflected in
such a table. More to point, our emphasis on modeling suggest a
completely different organization of those areas. The current or-
ganization tends to be centered more about machines and engi-
neering of those machines rather than around models and the de-
velopment and applications of those models. We expect that reor-
ganizing those in that way would lead to a completely different
perspective and organization of even the more traditional comput-
ing topics.

Finally, we need to be able to communicate the importance of
computationalist thinking to a wide range of audiences who may
or may not be computing professionals. To this end, we have
provided a first draft at a position paper aimed specifically at
policy-makers (rather than educational specialists). We invite the

6 Although we do not reproduce them here, our exercise resulted
in over a hundred additional knowledge areas not covered by
these two tables.

creation of other similar documents—for example, to stakeholders
in other non-computing domains—that will help influence and
shape the discussion.

9. Acknowledgements
This effort is based in part upon work supported by the National
Science Foundation under Grant Number IIS-0946665. Any opin-
ions, findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

The authors would also like to acknowledge Michael Littman for
engaging the group in early conversations on this topic and Mark
Nelson for explaining IPA pronunciation and for the discussion
that led to coining “compurate”.

10. REFERENCES
[1] Abelson, H., and Sussman, G. J. 1985. Structure and

Interpretation of Computer Programs. MIT Press,
Cambridge, Mass.

[2] Adelman, L. 1994. Molecular computation of solutions to
combinatorial problems. Science 266, 1021-1024.

[3] Adrion, R., Aiken, B., Bernat, A., Brown, J., Cooper, S.,
Dunn, M., Finlay, M., Giles, R., Gries,R., Kelemen, C.,
Krishnamurthy, S., Kumar, D., Kurose, J., Lawrence, A.,
Masi, L., McCracken, D., Merritt, S., Murtaugh, T., Plotkin,
J., Prey, J., Ryder, B., Siraj, R., Stein, L., Tao, L., Teller, V.,
Thomas, J., Topi, H., Sutner, K., Shaw, M., and Wolz, U.
2006. Report of the NSF Workshop on Integrative
Computing Education and Research (Northeast Workshop).
Cambridge, Massachusetts, November 2005/January 2006.

[4] Bareiss, C., Powers, K., Thede, S., Meredith, M., Shannon,
C., and Williams, J. 2004. The Computer Science Small De-
partment Initiative (CS_SDI) Report. SIGCSE Bull. 36(1),
332-333.

[5] Bentley, J. 1986. Little Languages. Communications of the
ACM, 29(8), 711-21.

[6] Brady, A., Bruce, K., Noonan, R., Tucker, A., and Walker,
H. 2004. The 2003 model curriculum for a liberal arts degree
in computer science: preliminary report. In Proceedings of
the 35th SIGCSE Technical Symposium on Computer Science
Education, 282-283.

[7] ACM/IEEE-CS Joint Curriculum Task Force. Computing
Curricula 2001: Computer Science Volume. 2001. Journal
on Educational Resources in Computing 1(3).

[8] Denning, P. 2003. Great principles of Computing.
Communications of the ACM, 46(11), 15-20.

[9] Downey, A., and Stein, L. 2006. A Small Footprint
Curriculum for Computing. Frontiers in Education, San
Diego, California, October 2006.

[10] Felleisen, M. , and Krishnamurthi, S. 2009. Why Computer
Science Doesn't Matter. Communications of the ACM 52(7),
37-39.

[11] Foley, J. 2002. Computing > Computer Science. Computing
Research News 14(4).

inroads — SIGCSE Bulletin

- 222 -

Volume 41, Number 4 — 2009 December

- 204 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 204 -

[12] Furst, M., Isbell, C., and Guzdial, M. 2007. Threads: How to
Restructure a Computer Science Curriculum for a Flat
World. In Proceedings of the Thirty-Eighth Technical Sym-
posium on Computer Science Education.

[13] Guzdial, M. 2003. A Media Computation Course for Non-
Majors. In Proceedings of the 6th Annual Conference on In-
novation, and Technology in Computer Science, 104-108.

[14] NRC. 2004. Computer Science: Reflections on the Field,
Reflections from the Field. Committee on the Fundamentals
of Computer Science: Challenges and Opportunities, Com-
puter Science and Telecommunications Board, National Re-
search Council, National Academies Press 2004.

[15] Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies,
G., Kamali, R., Cross, J., Impagliazzo, J., LeBlanc, R., and
Lunt, B. 2006. Computing Curricula 2005: The Overview
Report. SIGCSE Bull. 38(1), 456-457.

[16] Stein, L. A. 1999. Challenging the Computational Metaphor:
Implications for How We Think. Cybernetics and Systems
30(6), 473-507.

[17] Stein, L. A. 1999. What We Swept Under the Rug: Radically
Rethinking CS1. Computer Science Education, 8(2), 118-
129.

[18] Tucker, A. Deek, F., Jones, J., McCowan, D., Stephenson,
C., and Verno. A. 2003. A Model Curriculum for K–12
Computer Science: Final Report of the ACM K–12 Task
Force Curriculum Committee.

[19] Wing, Jeannette. 2006. Computational Thinking.
Communications of the ACM 49(3), 33-35.

[20] Wolz, U., Domen, D., and McAuliffe, M. 1997. Multi-Media
Integrated into CS 2: an Interactive Children's Story as a
Unifying Class Project. SIGCSE Bull. 29(3), 103-110.

[21] Xu, Y, editor. 2009. Transform Science: Computational
Education for Scientists. Microsoft Research 2009.
DOI=http://research.microsoft.com/transformscience/CEfS.p
df

inroads — SIGCSE Bulletin

- 223 -

Volume 41, Number 4 — 2009 December

- 205 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 205 -

Appendix A
A Preliminary Policy Document

Based on the Report

What is Computing?
Computing is fundamentally about creating and
using models to simulate and explore actual or
theoretical phenomena. Through the design, ma-
nipulation, and interpretation of these models,
computing not only facilitates a better under-
standing of the processes and data represented,
but is also transformative by its very nature. It
provides a context for innovation in a wide range
of other disciplines and often serves as the basis
for the creation of entirely new fields.

Computing is interesting, engaging, and relevant
to students. Continuous research and advance-
ments in pedagogy and the applicability of com-
puting to the real world provide a compelling and
motivating environment for students to learn.
Furthermore, the typical project-based teaching
methodology used strengthens both higher-order
thinking skills such as abstraction, critical think-
ing, and algorithmic problem-solving, as well as
soft skills such as project organization, time man-
agement, teamwork, and collaboration. In all
cases, computationalist thinking helps to create a
more well-prepared student who will have in-
creased success in either higher education or the
workforce.

Computing is not the use of a computer. While
students must certainly acquire the skills neces-
sary to use the technology that surrounds them,
students must also gain a fundamental knowledge
and understanding of models and representations
and a computationalist way of thinking about
them.

Computing in Crisis
Yet despite a clear need for computationalist
thinking, an exponential proliferation of comput-
ers, and a continually increasing reliance on tech-
nology, the study of computing is in crisis.

Although computing-centered occupations com-
prise three of the top six fastest growing occupa-
tions and provide above-average salaries, there is
a significant lack of qualified candidates for these
jobs due to long-term declining enrollments in
computing programs and concerns about job
outsourcing. Even in fields where a significant
knowledge of computing is essential, a narrow
belief that computing is only about the computer
creates a misinformed perception among students
that computing is both uninteresting and irrele-
vant.

In secondary education, the lack of core credit
and an almost single-minded focus on program-
ming discourages students from the study of
computing. Since 2002, the number of students
taking the Advanced Placement Computer Sci-
ence exam decreased by 12.5% while the students
taking AP Latin increased by 28.2%. In 2008,
eighteen times as many students took AP Calcu-
lus and six times as many took AP Psychology as
AP Computer Science. In 2005, the NCAA
eliminated computer science as an acceptable
course for determining initial eligibility of stu-
dent-athletes. When they exist at all, computing
classes are often relegated to a less academic
business or vocational track.

At all levels, diversity and equity remain signifi-
cant challenges. Participation rates of women and
underrepresented minorities in computing are not
only extremely low but have decreased more
quickly than for the general population.

inroads — SIGCSE Bulletin

- 224 -

Volume 41, Number 4 — 2009 December

- 206 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 206 -

Three Distinct Audiences
The educational needs of students differ accord-
ing to their field of study and level of schooling.
Each audience requires an individual set of com-
putationalist competencies in order to meet their
specific needs.

The first audience consists of the core computa-
tionalists. These post-secondary students special-
ize either in traditional computing fields such as
computer science, software engineering, com-
puter engineering, information science, and in-
formation technology or in disciplines where
computing is a central focus such as multimedia
computation. Individuals in this group often work
as theorists, researchers, practitioners, or devel-
opers of cutting-edge technologies in both aca-
demia and industry.

The second audience contains the contextualized
computationalists. These are typically post-
secondary students who require more in-depth
knowledge and understanding of particular as-
pects of computing, but only as they apply to
their particular domain. Examples include stu-
dents of bioinformatics, computational econom-
ics, and technical management. In each case, the
students’ core field of study is not computing but
rather a non-computing discipline strongly
shaped and heavily influenced by computing
principles.

The final audience includes the remaining post-
secondary students and all secondary school stu-
dents. A broad overview of computing knowl-
edge is a fundamental component of being an
educated person in the 21st century. The goal is
not to instill technical proficiency, but to provide
a basic computing context and an intellectual
toolset for all students. Just as every educated
student should understand basic scientific princi-
ples, have an historical perspective, be familiar
with the basic canon of literature, and be able to

communicate effectively, every student should
also be able to think computationally.

A National Imperative
In order to adapt to the dynamic nature of tech-
nology and the rapid pace of technological
change, it is essential that today’s students have a
broad understanding of computation, computa-
tional thinking, and algorithmic problem solving
rather than be schooled in any particular techno-
logical skill set.

It is imperative that computationalist thinking be
treated as a critical skill and knowledge set for
students of the 21st century. Computing should
be considered one of the new core disciplines on
a level with reading, writing, math, and science.
Education research funding should be focused on
revising curricula and providing professional de-
velopment for teachers at both the secondary and
post-secondary levels to address the individual
educational needs of each group of students.
Cross-disciplinary interactions should be facili-
tated and curricular partnerships encouraged. Lo-
cal and national leaders in education policy must
set the direction and communicate the urgency of
this imperative.

inroads — SIGCSE Bulletin

- 225 -

Volume 41, Number 4 — 2009 December

- 207 -inroads — SIGCSE Bulletin Volume 41, Number 4 — 2009 December- 207 -

