

Chapter 2

2 Information Retrieval

In this chapter we review relevant work done in information retrieval. In particular, we intro-

duce the Vector Space Model (VSM), one of the most widely used representations for docu-

ments. We then introduce and discuss several variations and extensions to basic VSM. We also

describe several techniques for improving performance and metrics for measuring these

improvements. Finally, we describe several tasks in information retrieval and identify those

that most interest us in this work.

This review is not meant to be comprehensive; however, we believe that this chapter

provides the background necessary to understand the contribution of this work to information

retrieval. The reader who wishes either a deeper or broader discussion is referred first to

[Frakes and Baeza-Yates, 1992]. Finally, this chapter assumes easy familiarity with linear

algebra and eigenproblems. The reader for whom this is unfamiliar should feel free to refer to

Appendix A for a discussion of the relevant concepts.

26 Information Retrieval

2.1 Issues in Information Retrieval

In Information Retrieval (IR) our basic task is to find the subset of a collection of elements

that is relevant to a query. In Text Retrieval—the focus of this work—a query is an ordered set

of English words and a collection is a set of natural language English documents.

Any text retrieval system must overcome the fundamental difficulty that the presence

or absence of a word is insufficient to determine relevance. This is due to two intrinsic prob-

lems of natural language:

synonymy

 and

polysemy

. Synonymy refers to the fact that a single

underlying concept or idea can be represented by many different terms or combinations of

terms (e.g. “car” and “automobile” often refer to the same class of objects). Polysemy refers to

the fact that a single term can refer to more than one underlying concept or idea (e.g. “car”

may be an automobile or the head of a LISP cons cell). Because of synonymy, it is difficult to

realize that two documents describe the same topic when they use different vocabulary, lead-

ing to relevant documents being rejected (false negatives). Because of polysemy, it is difficult

to realize that two documents that use some of the same terms describe different topics, lead-

ing to the retrieval of unwanted documents (false positives).

A variety of approaches have been developed to attack IR tasks in the face of these

problems. We will focus on the popular Vector Space Model [Salton, 1971] representation for

documents and queries. We will also focus on variations of latent semantic indexing [Deer-

wester

et al

, 1990], one technique designed to address synonymy and polysemy in the VSM

framework and similar in flavor to the approach that we will derive.

2.2 The Vector Space Model

In the Vector Space Model (VSM), a document is a vector (see F

IGURE

2-1). Each dimension

represents a count of occurrences for a different word [Salton, 1971]. Queries are similarly

represented, making queries no different from documents. A

collection

 of documents is a

matrix,

D

, where each column is a document vector

d

i

. Thus,

D

ij

 is the weight of word

i

 in

document

j

. Classically, the

similarity

between a document and a query,

q

, is defined to be the

inner product of their vectors,

d

T

q

. This approach may seem bizarre; however, the inner prod-

uct is just a weighted match between the overlapping terms of two documents. Although

expressed as linear algebra, it is essentially the same approach used by many search engines,

§2.2 The Vector Space Model 27

from the library systems commonly available in universities to the wildly popular Alta Vista

web search engine.

There are several advantages to this approach beyond its mathematical simplicity.

Above all, it is computationally efficient to compute a histogram and requires very little space

to store it. Notice that although document vectors live in a very high-dimensional space, the

document matrix will be sparsely populated, made up mostly of zeroes. This is true because in

general most documents will not contain most of the possible words. Thus algorithms for

manipulating the matrix only require space and time proportional to the average number of

different words that appear in a document, a number likely to be much smaller than the full

dimensionality of the document matrix. Similarly, comparing a query to all the documents in a

collection is efficient (in practice, it is done with an inverted term index). These are key advan-

tages when collections may require gigabytes to store.

2.2.1 Similarity Measures and Term Reweighting

As we have noted before, the similarity between a VSM document

d

,

and a VSM query

q

, is

defined to be their inner product,

d

T

q

. Because documents in a collection may be of varying

FIGURE 2-1. The Vector Space Model.
In the Vector Space Model, documents and queries are transformed into
histograms of word counts. A collection of documents is a matrix.

28 Information Retrieval

lengths, one common extension is to normalize the document and query vectors, so that rele-

vance becomes . This is the cosine of the angle between two points in an

n

-dimen-

sional space.

Many extensions to similarity measures derive their power by finding a data-driven

weighting

 for words. Each word of each document is re-scaled according to this weighting

before the dot product or cosine measure is used to determine similarity. That is, if is the

count of the

i

th

word in a document, and is the new weighting, .

Perhaps the most commonly used weighting technique is Inverse Document Fre-

quency (IDF) [Sparck-Jones 1972]:

,

(2.1)

dTq
d q

fi

wi di fi wi•=

FIGURE 2-2. Two Variations of Inverse Document Frequency.
IDF re-weights individual words so that words that occur infrequently are worth more than words
that occur frequently. This graph shows the IDF weighting value for a collection of 10,000
documents for total word counts ranging from 1 to 100.

0 10 20 30 40 50 60 70 80 90 100
6

7

8

9

10

11

12

13

14

15
Values for IDF Weighting over 10000 Documents

Count of Word in a Document

ID
F

 v
al

ue

[SparckJones 1972]
[Croft and Harper, 1979]

wi 1
N
ni
----log+=

§2.2 The Vector Space Model 29

and its variants [Sparck-Jones 1979] [Croft and Harper 1979]:

,

(2.2)

where

N

 is the total number of documents in the collection and

n

i

is the total number of occur-

rences of word

i

 in the collection. This is similar to dividing each word by its average fre-

quency:

.

(2.3)

The average frequency is likely to be very close to zero for most words, leading to

numerical instability. Among other things, IDF squashes the growth of the inverse natural fre-

quency as it approaches zero.

wi
N ni–

ni
---------------log=

FIGURE 2-3. Inverse Natural Word Frequency.
Dividing a word count by its average frequency leads to numerical instability. This graph
shows the weighting value for a collection of 10,000 documents for total word counts
ranging from 1 to 100.

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Count of Word in a Document

In
ve

rs
e

N
at

ur
al

 F
re

qu
en

cy
 v

al
ue

Values for Inverse Natural Frequency Weighting over 10000 Documents

wi
N
ni
----=

30 Information Retrieval

Ultimately, these techniques reduce the weight of words that appear very frequently

while greatly increasing the weight of words that appear very infrequently. Intuitively, this is

desirable if there is more discriminating power in rare words than in highly used words, such

as “the.” As an empirical matter, IDF and its variations rarely hurt performance and almost

always improve it.

Another commonly used technique is based on so-called probabilistic models. This

scheme usually involves pseudo-relevance feedback, which we will discuss in § 2.4. Another

useful technique requires specially rescaling queries. Each word that is present in a query is

first multiplied by its average frequency in those documents in which it appears [Kwok, 1996].

This brings the word frequencies of a query more in line with those of the collection. This

works well for short unstructured queries, a topic we shall explore in detail in Chapter 6.

2.2.2 Adding Features

There are several possible additions to the word features that make up the basic VSM histo-

gram. It is common to include components that count the occurrence of known compound

words [Kwok, 1996; Sparck-Jones and Willett]. Similarly, commonly used noun phrases may

also be added.

A related technique is

query expansion

. With this technique, a query is preprocessed so

that the query includes not only all of its words, but their synonyms as well. The additional

words are usually given a smaller weighting than they would otherwise. Query expansion is

also used with relevance and pseudo-relevance feedback (see § 2.4).

2.3 Latent Semantic Indexing

VSM gains its computational advantages by sacrificing a great deal of document structure that

may disambiguate meaning. Many techniques have been developed to improve the perfor-

mance of VSM while retaining as much of its computational advantages as possible.

Latent semantic indexing (LSI) [Deerwester,

et al

, 1990] is one such technique. We

mention it here because it has a machine learning flavor. LSI attempts to overcome the prob-

lems that hinder VSM by constructing a small matrix that retains only the most “important”

§2.3 Latent Semantic Indexing 31

information from the original document matrix. In particular, LSI uses the singular value

decomposition (SVD) to construct this matrix. Briefly, the SVD of a matrix,

D

, is:

,

where

U

contains orthonormal vectors,

V

 contains orthonormal vectors and

S

 is diagonal (see

§ A.5 for further discussion of properties and algorithms).

A natural interpretation of

U

 is as the eigenvectors of the co-occurrence matrix. The

co-occurrence matrix of

D

 is:

.

The co-occurrence matrix of

D

 is a measure of the correlation between pairs of terms. It is

similar to the covariance matrix (where mean values are first removed). The SVD of the co-

occurrence matrix is:

.

So, if

D

 is the term-document matrix of a collection,

 U

 contains the eigenvectors of the co-

occurrence matrix while each diagonal element of

S

 is the square root of the corresponding

eigenvalue. Each eigenvalue represents the contribution of its eigenvector to the variation of

the data; higher values indicate more contribution. Thus, we can remove the

least

 important

factors by simply removing the eigenvectors with the smallest eigenvalues, creating a new set

of matrices,

and . We can then use

and as a new basis for

D

, projecting it into a

lower dimensional space:

.

This operation results in a matrix of smaller size that provably represents the most

variation in the original matrix. That is, if we project the smaller matrix back into the original

space, the squared difference between the new matrix and the original will be minimized.

Queries are projected into the same low dimensional space and then compared using

the cosine of the angle between the vectors in the new space. Other variations for LSI include

D USVT
=

DDT()ij dkidkj
k
∑=

DDT US2UT
=

Ŝ Û Ŝ Û

D̂ Ŝ
1–
Û

T
D=

32 Information Retrieval

using the covariance matrix instead of the co-occurrence matrix using or instead of

to project documents and queries.

Though it has resisted a formal justification, experiments have shown that some scaled

projection onto does sometimes improve retrieval performance. Hypotheses abound,

including: 1) LSI removes noise from the document set, thus overcoming the problem of poly-

semy; 2) LSI finds synonyms or other meaningful underlying “topics” that are present in the

collection, thus overcoming the problem of synonymy; and 3) LSI finds true clusters of docu-

ments (see [Hull, 1991] and [Deerwester, et al, 1990] for an extended discussion).

There is a strong similarity between LSI and principal components analysis (PCA), a

dimensionality reduction technique that has been applied in a variety of settings (see

FIGURE 2-4). In many tasks where PCA has been used, such as object recognition, it is used

Ŝ Ŝ
2

Ŝ
1–

Û

FIGURE 2-4. An Example of Principal Components Analysis.
Principal Components Analysis, a technique strongly related to latent semantic indexing,
finds orthonormal projections. The first projection is the axis of maximum variation. The
second projection is the axis of maximum variation orthogonal to the first, and so on.
Here, the dashed axes represent the first two principal axes.

§2.4 Relevance Feedback 33

mainly to reduce computational complexity. In text retrieval, it is more often justified as a

means to improve performance. We shall return to LSI in Chapter 4.

2.4 Relevance Feedback

Generally, information retrieval is an unsupervised process. We are given a set of documents

and a query and we have to retrieve the best documents. We might imagine that performance

could be improved if we had some indication of relevant and irrelevant items to use in ranking

documents. It is sometimes possible to accomplish this by soliciting advice from users on-the-

fly using relevance feedback [Salton and Buckley, 1990]. Relevance feedback adds extra itera-

tions to the retrieval process. A query is presented to the system. The system returns the docu-

ments that it thinks matches the query. The user is then allowed to mark some of the

documents as relevant and/or irrelevant. Those newly marked documents are then used to

achieve better performance.

Some systems use the documents that are now known to be good as new queries into

the database. Other documents that are relevant to these good documents are then returned. A

more sophisticated approach is the Rocchio algorithm [Salton, 1971]. Here, a new query is

constructed:

(2.4)

where R is the set of known relevant documents and S the set of known non-relevant docu-

ments. The query points towards the components the separate the relevant documents from

the non-relevant documents. In practice, the negative components are removed from . Fur-

ther, performance is improved by re-centering the new vector around the original, :

(2.5)

[Singhal, 1997] introduces an extension called query zoning, where only the most

egregiously misclassified elements of S are used. This tends to improve retrieval performance

further.

qr

qr
1
R
------- Di

Di R∈
∑

1
S
------ Di

Di S∈
∑–=

qr

qr

qo

qr αqr βqo+=

34 Information Retrieval

So-called probabilistic models use relevance feedback to re-weight words in the origi-

nal query (original work was done by [Maron and Kuhns 1960], but modern models are more

strongly related to [Robertson and Sparck-Jones 1976]). There are various schemes for this re-

weighting. Here is a standard one:

(2.6)

where N is the number of documents in the collection, R is the number of relevant documents

for the query, ni the number of documents with word i, and ri is the number of relevant docu-

ments with word i.

It is sometimes the case that user feedback is not feasible or desirable. It is possible to

use pseudo-relevance feedback. In this case, it is assumed that the top few documents returned

by the system are definitely relevant and the bottom few (or perhaps a few in the middle) are

definitely irrelevant. The systems treats these as examples generated by a virtual user and pro-

ceeds from there. Pseudo-relevance feedback have enjoyed some success recently; however, it

is not yet clear how well this technique works in general. In particular, it is important that the

first few documents returned are relevant. If even a few bad documents are returned with high

score, poor performance may result.

2.5 Tasks in Information Retrieval

The field of Information Retrieval is broad. There are several subareas within which research-

ers have focused their efforts. We have focused on the task where a system is given a set of

documents, and whenever a user specifies a query, those documents are ranked by relevance.

This is known as the ad hoc retrieval task. Here the goal is to find the best ranking method

possible by whatever means. Documents are known beforehand and collections usually

remain relatively unchanged.

In the routing and filtering tasks, a user has a set of standing information requests.

New documents arrive regularly. The system receives a new document and decides whether it

meets the criteria of those information requests and, if so, presents the document to the user.

wi

ri

R ri–
-------------- 
 

ni ri–

N ni– R– ri+
------------------------------------ 
 
---log=

§2.6 Machine Learning and Information Retrieval 35

For example, imagine that a user is subscribed to an AP news service, but is only interested in

news items that are about natural disasters or events affecting Atlanta, GA. A good filtering

system should pass along articles about earthquakes or the 1996 Olympics, but not about unre-

lated articles on the Chicago Bulls (unless, of course, the Atlanta Hawks defeat them). This

task is strongly related to text classification, where one has a set of predefined classes and,

given a new document, wants to determine class membership. Generally, classification (and

recognition) algorithms are strongly supervised; that is, a system has access to many labelled

examples beforehand and learns a model of class membership based on those labels. By con-

trast, the ad hoc task is often unsupervised.

There are other specific tasks of interest to the IR community. For example, how

should one deal with data that are believed to be highly noisy and filled with many errors, such

as text scanned in from faxes? There are other interesting special issues that arise from work-

ing with extremely large corpora, such as that on the size of the World Wide Web. In some

domains, the collection is constantly changing, so algorithms that can efficiently update their

data structures are of as much importance as algorithms that score documents accurately.

There is increasing interest in cross-language retrieval, where queries may be given in one lan-

guage, but are expected to retrieve documents in another language.

Finally, there are interesting retrieval issues in domains that do not include text at all,

such as image retrieval, or sound classification. Although the tasks are similar, the structure of

the data and the queries are often quite different. Each domain brings different challenges.

In this work, we are mostly concerned with issues that arise from text retrieval. Fur-

ther, we are particularly interested in ad hoc retrieval tasks involving short queries.

2.6 Machine Learning and Information Retrieval

Machine learning has probably been applied most often in filtering and text classification. For

example, [Lewis, 1992], [Lewis and Gale, 1994], [Cohen and Singer, 1996], [Lewis, et al,

1996], and [Schapire, Singer, and Singhal, 1998] all use machine learning to improve classifi-

cation performance. Machine learning research has focused on classification tasks in general,

so such techniques seem well-suited for these particular tasks.

36 Information Retrieval

Within the specific realm of ad hoc retrieval, machine learning has been applied less

often. Although there has been some effort to apply machine learning to learn word weighting

functions, the IR community has already expended a great deal of research effort over many

decades in developing robust text-specific schemes, as we have seen in this chapter. The same

can be said for reweighting schemes used in relevance feedback.

Latent semantic indexing can be seen as one attempt to use techniques that have found

use in machine learning and apply them to text retrieval. What is of particular interest to us is

that LSI is being used to “learn” not just a model of word importance for distinguishing

between classes, but to learn a model that specifies general regularities about specific text col-

lections.

2.7 Performance Measures

Determining how well a system performs is difficult. In this section we discuss several stan-

dard evaluation metrics and provide some examples of how they interact.

2.7.1 Precision and Recall

Many measures of retrieval performance have been proposed. The most commonly used are

precision and recall. Precision is the ratio of relevant documents retrieved to the total number

of documents retrieved. Recall is the ratio of relevant documents retrieved to the total number

of relevant documents contained within the collection. Because systems provide an ordering

on all documents for a given query, we can calculate precision and recall for the top n docu-

ments, with n ranging over the total number of documents in the collection. For example, in

FIGURE 2-5 we have a collection made up of ten documents. For a particular query, five are

relevant and five are not. If we examine only the first document returned, we can see that we

have perfect precision (1.0) with recall equal to 0.2. Looking at the first four documents

returned, we can see that three are relevant, resulting in a precision of 0.75 and a recall of

0.60. Precision and recall can be calculated for a single query as we have in our example, or

averaged over many queries.

One usually wishes to measure performance in terms of both precision and recall. This

is commonly done using a precision-recall graph. Precision is on the y-axis and recall on the

§2.7 Performance Measures 37

x-axis. For our experiments, when several documents have the same score, precision and recall

are calculated for all possible orderings of that subset and their average retained.

Generally speaking, precision and recall are inversely related. That is, as precision

goes up, recall goes down and vice-versa. Thus, precision-recall curves have a slope of

approximately -1, and one IR system is considered to have performed better than another

when its precision-recall curve is above and to the right of the other. Naturally, a precision-

recall graph only provides a qualitative measure of performance; however, the graph is often

sufficient to determine at least whether one system is systematically outperforming another.

In any case, it is useful to have a single number to measure performance. Many have

been suggested, including average precision, precision at a low number of documents and pre-

cision at a certain recall value. In average precision, precision is measured at every recall point

and the average returned. This value is larger when relevant documents are ranked earlier and

can lead to cases where a system with low recall outperforms a system with high recall

because the former gets the first few documents right. Precision at a certain number of docu-

ments also favors systems that return good initial documents but does not focus on overall per-

formance. Precision at a certain recall value is a measure of false positives; that is, how many

documents one has to see before finding a certain number of relevant ones.

Other evaluation measures have been proposed to combine precision and recall into a

single number. For example, [van Rijsbergen, 1979] suggests:

FIGURE 2-5. Precision and Recall.
Imagine a collection consisting of ten documents. For a particular query, five are relevant
(solid) and five are irrelevant (outline). We can calculate the precision and recall when
considering just the first document returned by the system, just the first two returned, first
three, and so on.

38 Information Retrieval

(2.7)

where P is precision, R is recall, and b is the ratio of the importance of recall to precision.

When b=10, recall is ten times more important than precision, but when b=0.1, recall is only a

tenth as important as precision.

Let us build some intuition for some of these measures. Imagine three retrieval pack-

ages, System-1, System-2 and System-3. On our set of queries, System-1 always

returns relevant documents first, but then begins returning many bad ones before finally

returning the remaining relevant documents. System-2, like System-1, returns the relevant

E 1
1 b

2
+()PR

b
2
P R+

---------------------------–=

FIGURE 2-6. Precision-Recall Curves for Three Systems
Precision-Recall curves give a qualitative view of overall system performance.
System 3 appears to have the worst overall performance while System 1 appears
to have the best. See the text for more discussion.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Precision-Recall Curves

System 1
System 2
System 3

�

P
re

ci
si

o
n

Recall

§2.7 Performance Measures 39

documents early on about half the queries but performs poorly on the other half of the queries.

System-3 returns some relevant documents among the first third of the documents it returns,

but in a random order. It then returns all the rest of the relevant documents so that only irrele-

vant documents are ranked the least relevant. FIGURE 2-6 and TABLE 2-1 show how these sys-

tems compare on some of the measures we have discussed.

The precision-recall curves reflect the specific biases of the systems. System-1 does

well at low points of recall, which in this case reflects that we are only considering the first

few documents. On the other hand, because it returns several relevant documents only near the

end, its performance dips quite a bit. While System-2 has some similar behavior, the fact

that it does not always return a relevant document first has devastating effects on the shape of

its precision-recall curve. On some single-number measures, System-1’s advantages are not

as clear. System-1 and System-2 have identical average precision scores, for example. In

fact, System-2 does better by some measures. Because it doesn’t always give low scores to

some relevant documents, it returns most of the relevant documents earlier than System-1.

These examples are somewhat atypical. The curves for System-2 and System-3

are rather unusual, resulting from the fact that these examples are hand-crafted. On the other

hand, this does point out that various measures reveal different biases. In evaluating a system,

it is important to know what features are most important. In this work, we will use many of

System 1 System 2 System 3

Precision at 13% of documents 0.75 0.50 0.25

Precision at 33% of documents 0.80 0.80 0.60

Precision at 66% of documents 0.50 0.65 0.65

Average Precision 0.67 0.67 0.60

Precision once 50% of relevant
documents have been returned

0.56 0.71 0.62

Percentage of documents
returned to achieve 50% recall

0.60 0.47 0.53

TABLE 2-1. Performance According to Different Measures.
Different measures reveal different behavior. System 3 is consistently worse on
almost all measures than System 1 and 2; however, System 1 and 2 have very
similar performance by several measures. See the text for more discussion.

40 Information Retrieval

these measures. We will focus on precision-recall curves; however, we will use one of the

other criteria when we wish to highlight some particularly interesting systemic feature.

2.7.2 Real-Word Evaluation

Evaluating precision and recall can be difficult. Recall, in particular, requires manually deter-

mining for every query whether each document is relevant. The text retrieval community has

developed several instrumented collections, containing not only documents, but sets of queries

with appropriate relevance judgements. Unfortunately, accurate precision and recall values

depend heavily upon the mechanism used to determine whether a document is actually rele-

vant to a query. For extremely large collections, it is not even possible to pre-evaluate the rele-

vance of all documents to all queries. In reality, a system might actually return the “true”

documents, and still appear to perform poorly. In short, the process for determining relevance

is necessarily noisy and flawed. By using the relevance metrics discussed in the previous sec-

tion to measure a technique’s performance, we are essentially trying to emulate that flawed

process.

There are other issues as well. For example, queries might be biased towards certain

kinds of results that do not exercise a system’s strengths. Also, the notion of relevance is not

really binary, as it is treated in the field. Clearly, some documents are more relevant than oth-

ers and should be more highly valued.

In the end, a system has to be evaluated on whether it has done “the reasonable thing.”

Does Altavista really work? Certainly, one is able to find documents that one is interested in,

but sometimes the number of false negatives is scandalously high. Does this even matter,

given that there are probably several thousand relevant documents when only two are desired?

“The reasonable thing” is difficult to quantify even if we are very specific about our goals.

Nonetheless, it is the only real performance metric that matters. Recognizing this, we will

sometimes include examples of what kinds of documents various techniques consider good

without direct reference to their predetermined relevance.

§2.8 Natural Language Understanding 41

2.8 Natural Language Understanding

Because we are dealing with natural language documents, it seems reasonable to apply tech-

niques from natural language understanding and processing (NLU) to text retrieval. In fact,

during the mid-1960s, IR and NLU were seen as part of the same field [Sparck-Jones and Wil-

lett, 1997]. The subfields grew apart during the 1970s in part because of the success of purely

statistical techniques in IR.

Nevertheless, NLU techniques have not been ignored by IR researchers. For example,

question parsing techniques have been used to better extract meaningful cues from queries in

order to improve retrieval [Saracevic, et al, 1997], and natural language parsing has been used

to build text summaries [Marsh, Hamburger and Grishman, 1997; Rau, 1997].

NLU techniques have also been used to build representations of documents that are

very different than the vector space model. Some systems build graph-like models of text that

capture both syntactic and semantic relationships [Rau and Jacobs, 1988; Mallery, 1991].

Unfortunately, techniques such as [Rau and Jacobs, 1988] are currently limited to con-

strained domains and relatively small texts. It is not clear that it is possible to incorporate into

standard IR machinery those NLP techniques that either require domain-specific knowledge to

be fully effective or carry a large computational burden.

Nevertheless, we might consider graph representations. Imagine that the nodes of a

graph represent words and edges denote relationships between those words. Relationships

might include common membership in a noun phrase, ownership, or may indicate subject-

object interaction via a verb. For example, the sentence “Charles takes Parry’s basketball,”

42 Information Retrieval

might generate a graph like the one in FIGURE 2-7. With such a representation, we could treat

retrieval as a form of graph matching.

We might expect that because the representation is richer, we would enjoy better per-

formance. On the other hand, the Vector Space Model does capture a great deal of the graph’s

structure. For example, nodes are much like the standard components of the vector representa-

tion. If “important” compound words are known or can be discovered, new “words” can be

created to capture this relationship (for example, as described in § 2.2.2). By the same argu-

ment, objects that frequently act upon one another, such as “Charles” and “Parry’s basketball,”

may also be combined and then treated simply as new words. In short, we can capture some of

the graphs structure by treating graph nodes as vector components and edges as a kind of con-

catenation operator that creates new words.

Unfortunately, such a transformation may not reveal all the structure we are interested

in or make certain operations as accurate or useful; however, the truth is that VSM is compact

and easily manipulated by standard mathematical techniques. The latter is theoretically pleas-

ing, but the former is equally as important, as we argue in the next section.

FIGURE 2-7. A Graph of “Charles takes Parry’s basketball”.
In this graph-based representation, a node indicates the presence of a word, while
an arrow denotes an interaction of some kind, such as co-membership in a now
phrase or a subject-object relationship via a transitive verb, such as “take.”.

Charles

Parry basketball

take

take

§2.9 Computational Issues in Real-World Information Retrieval 43

2.9 Computational Issues in Real-World Information Retrieval

The data sets used in text retrieval are large. Although real-world data sets may contain only

1000 documents consisting of about 10,000 different words, it is often the case that we are

more interested in 100,000 or even 1,000,000 documents consisting of hundreds of thousands

of distinct words. Even the smallest data sets are beyond the feasible reach of many machine

learning algorithms.

There are several engineering challenges that must be addressed. First, simply storing

and manipulating such data efficiently can be difficult. Fast algorithms are absolutely essen-

tial. Even algorithms polynomial in the size of the data are infeasible on serial machines. Fur-

ther, bringing to bear statistical and machine learning techniques introduces more complexity.

Such algorithms are usually at least polynomial in the size of the data to be learned, so even

the smallest collections are beyond the reach of many machine learning algorithms. Clearly, a

fully working retrieval system for something as large as the World Wide Web requires a sys-

tems-level engineering approach.

2.10 The Scope of This Work

There are several major issues and areas of interest in Information Retrieval. We have identi-

fied some of those in this chapter. In this work, we are concerned mainly with ad hoc retrieval.

In particular, we are interested in systems—like many World Wide Web Search Engines—that

will be faced with queries that mainly consist of a few words, as opposed to complete struc-

tured documents.

We are also explicitly not interested in addressing the filtering, routing and text classi-

fication tasks in this work. Further, we will not directly address how additional relevance feed-

back might affect our approach. Finally, while we will describe a parallel implementation that

allows us to explore large collections in an interactive setting, we are not interested in building

a robust user interface and addressing human-computer interaction issues. A user interface has

been designed, but it is purely in the service of making experimentation easier and for demon-

strating results. We acknowledge that these issues are both interesting and important; however,

they remain beyond the primary goals of this work.

44 Information Retrieval

