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1 Introduction

Advances in data collection and storage capabilities during the past decades have led to an information
overload in most sciences. Researchers working in domains as diverse as engineering, astronomy, biology,
remote sensing, economics, and consumer transactions, face larger and larger observations and simulations
on a daily basis. Such datasets, in contrast with smaller, more traditional datasets that have been studied
extensively in the past, present new challenges in data analysis. Traditional statistical methods break down
partly because of the increase in the number of observations, but mostly because of the increase in the
number of variables associated with each observation. The dimension of the data is the number of variables
that are measured on each observation.

High-dimensional datasets present many mathematical challenges as well as some opportunities, and are
bound to give rise to new theoretical developments [11]. One of the problems with high-dimensional datasets
is that, in many cases, not all the measured variables are “important” for understanding the underlying
phenomena of interest. While certain computationally expensive novel methods [4] can construct predictive
models with high accuracy from high-dimensional data, it is still of interest in many applications to reduce
the dimension of the original data prior to any modeling of the data.

In mathematical terms, the problem we investigate can be stated as follows: given the p-dimensional
random variable x = (x1, . . . , xp)

T , find a lower dimensional representation of it, s = (s1, . . . , sk)
T with

k ≤ p, that captures the content in the original data, according to some criterion. The components of s are
sometimes called the hidden components. Different fields use different names for the p multivariate vectors:
the term “variable” is mostly used in statistics, while “feature” and “attribute” are alternatives commonly
used in the computer science and machine learning literature.

Throughout this paper, we assume that we have n observations, each being a realization of the p-
dimensional random variable x = (x1, . . . , xp)

T with mean E(x) = µ = (µ1, . . . , µp)
T and covariance matrix

E{(x − µ)(x− µ)T } = Σp×p. We denote such an observation matrix by X = {xi,j : 1 ≤ i ≤ p, 1 ≤ j ≤ n}.
If µi and σi =

√

Σ(i,i) denote the mean and the standard deviation of the ith random variable, respectively,
then we will often standardize the observations xi,j by (xi,j − µ̂i)/σ̂i, where µ̂i = x̄i = 1/n

∑n
j=1 xi,j , and

σ̂i = 1/n
∑n

j=1(xi,j − x̄i)
2.

We distinguish two major types of dimension reduction methods: linear and non-linear. Linear techniques
result in each of the k ≤ p components of the new variable being a linear combination of the original variables:

si = wi,1x1 + . . . wi,pxp, for i = 1, . . . , k, or (1)

s = Wx, (2)

where Wk×p is the linear transformation weight matrix. Expressing the same relationship as

x = As, (3)
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with Ap×k, we note that the new variables s are also called the hidden or the latent variables. In terms of
an n× p observation matrix X, we have

Si,j = wi,1X1,j + . . . wi,pXp,j , for i = 1, . . . , k, and j = 1, . . . , n, (4)

where j indicates the jth realization, or, equivalently,

Sk×n = Wk×pXp×n, (5)

Xp×n = Ap×kSk×n. (6)

Such linear techniques are simpler and easier to implement than more recent methods considering non-linear
transforms.

In this paper, we review traditional and current state-of-the-art dimension reduction methods published
in the statistics, signal processing and machine learning literature. There are numerous books and articles
[41, 17, 5, 14, 19, 46, 13] in the statistical literature on techniques for analyzing multivariate datasets.
Advances in computer science, machine learning [43, 50, 44, 2]. Earlier survey papers. [7] reviews several
methods, including principal components analysis, projection pursuit, principal curves, self-organizing maps,
as well as provides neural network implementations of some of the reviewed statistical models. [22] surveys
recent results in independent component analysis, in the context of other dimension reduction methods.

This survey is organized as follows. Sections 2 and 3 review principal component analysis and factor
analysis, respectively, the two most widely used linear dimension reduction methods based on second-order
statistics. For normal variables (with mean zero), the covariance matrix contains all the information about
the data. Second-order methods are relatively simple to code, as they require classical matrix manipulations.
However, many datasets of interest are not realizations from Gaussian distributions. For those cases, higher-
order dimension reduction methods, using information not contained in the covariance matrix, are more
appropriate. Such a linear higher-order method, projection pursuit is reviewed in Section 4. Section 5
summarizes another higher-order linear method called independent component analysis. Although non-
linear principal component analysis can be considered as a special case of independent component analysis,
Section 5.1.4, it is reviewed separately in Section 6. It uses non-linear objective functions to determine the
optimal weights, but the resulting components are still linear combinations of the original variables. Section 7
explains the method of random projections. Section 8 presents some extensions and non-linear dimension
reduction techniques.

2 Principal component analysis

Principal component analysis (PCA) is the best, in the mean-square error sense, linear dimension reduction
technique [25, 28]. Being based on the covariance matrix of the variables, it is a second-order method. In
various fields, it is also known as the singular value decomposition (SVD), the Karhunen-Loève transform,
the Hotelling transform, and the empirical orthogonal function (EOF) method.

In essence, PCA seeks to reduce the dimension of the data by finding a few orthogonal linear combinations
(the PCs) of the original variables with the largest variance. The first PC, s1, is the linear combination with
the largest variance. We have s1 = xTw1, where the p-dimensional coefficient vector w1 = (w1,1, . . . , w1,p)

T

solves
w1 = arg max||w=1||Var{x

Tw}. (7)

The second PC is the linear combination with the second largest variance and orthogonal to the first PC, and
so on. There are as many PCs as the number of the original variables. For many datasets, the first several
PCs explain most of the variance, so that the rest can be disregarded with minimal loss of information.

Since the variance depends on the scale of the variables, it is customary to first standardize each variable
to have mean zero and standard deviation one. After the standardization, the original variables with possibly
different units of measurement are all in comparable units. Assuming a standardized data with the empirical
covariance matrix

Σp×p =
1

n
XXT , (8)
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we can use the spectral decomposition theorem to write Σ as

Σ = UΛUT , (9)

where Λ = diag(λ1, . . . , λp) is the diagonal matrix of the ordered eigenvalues λ1 ≤ . . . ≤ λp, and U is a p× p
orthogonal matrix containing the eigenvectors. It can be shown [41] that the PCs are given by the p rows of
the p× n matrix S, where

S = UTX. (10)

Comparing (10) to (5), we see that the weight matrix W is given by UT . It can be shown [41] that the
subspace spanned by the first k eigenvectors has the smallest mean square deviation from X among all
subspaces of dimension k.

As briefly indicated in Section 8.5, PCs can also be obtained by using neural networks with specific
architectures and learning algorithms.

Another property of the eigenvalue decomposition is that the total variation is equal to the sum of the
eigenvalues of the covariance matrix,

p
∑

i=1

Var(PCi) =

p
∑

i=1

λi =

p
∑

i=1

trace(Σ), (11)

and that the fraction
k
∑

i=1

λi/trace(Σ) (12)

gives the cumulative proportion of the variance explained by the first k PCs. By plotting the cumulative
proportions in (12) as a function of k, one can select the appropriate number of PCs to keep in order to
explain a given percentage of the overall variation. Such plots are called scree diagram plots in the statistical
literature [53]. The number of PCs to keep can also be determined by first fixing a threshold λ0, then only
keeping the eigenvectors such that their corresponding eigenvalues are greater than λ0. This latter method
was found preferable in [26, 27], where the author also suggested keeping at least four variables.

The interpretation of the PCs can be difficult at times. Although they are uncorrelated variables con-
structed as linear combinations of the original variables, and have some desirable properties, they do not
necessarily correspond to meaningful physical quantities. In some cases, such loss of interpretability is not
satisfactory to the domain scientists.

An alternative way to reduce the dimension of a dataset using PCA is suggested in [41]. Instead of using
the PCs as the new variables, this method uses the information in the PCs to find important variables in the
original dataset. As before, one first calculates the PCs, then studies the scree plot to determine the number
k of important variables to keep. Next, one considers the eigenvector corresponding to the smallest eigenvalue
(the least important PC), and discards the variable that has the largest (absolute value) coefficient in that
vector. Then, one considers the eigenvector corresponding to the second smallest eigenvalue, and discards
the variable contributing the largest (absolute value) coefficient to that eigenvector, among the variables not
discarded earlier. The process is repeated until only k variables remain.

3 Factor analysis

This section follows [41]. Like PCA, factor analysis (FA) is also a linear method, based on the second-order
data summaries. First suggested by psychologists, FA assumes that the measured variables depend on some
unknown, and often unmeasurable, common factors. Typical examples include variables defined as various
test scores of individuals, as such scores are thought to be related to a common “intelligence” factor. The
goal of FA is to uncover such relations, and thus can be used to reduce the dimension of datasets following
the factor model.

The zero-mean p-dimensional random vector xp×1 with covariance matrix Σ satisfies the k-factor model
if

x = Λf + u, (13)
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where Λp×k is a matrix of constants, and fk×1 and up×1 are the random common factors and specific factors,
respectively. In addition, the factors are all uncorrelated and the common factors are standardized to have
variance one:

E(f) = 0, Var(f) = I, (14)

E(u) = 0, Cov(ui, uj) = 0 for i 6= j, (15)

Cov(f ,u) = 0. (16)

Under these assumptions, the diagonal covariance matrix of u can be written as Cov(u) = Ψ = diag(ψ11, · · · , ψpp).
If the data covariance matrix can be decomposed as

Σ = ΛΛT +Ψ, (17)

then it can be shown that the k-factor model holds. Since xi can be written as

xi =
k
∑

j=1

λijfj + ui, i = 1, . . . , p, (18)

its variance may be decomposed as

σii =

k
∑

j=1

λ2
ij + ψii, (19)

where the first part h2
i =

∑k
j=1 λ

2
ij is called the communality and represents the variance of xi common to

all variables, while the second part ψii is called the specific or unique variance and it is the contribution in
the variability of xi due to its specific ui part, not shared by the other variables. The term λ2

ij measures the
magnitude of the dependence of xi on the common factor fj . If several variables xi have high loadings λij
on a given factor fj , the implication is that those variables measure the same unobservable quantity, and
are therefore redundant.

Unlike PCA, the factor model does not depend on the scale of the variables. However, the factor model
also holds for orthogonal rotations of the factors. Given the orthogonal matrix G, given the model (13), the
new model

x = (ΛG)(GT f) + u, (20)

also holds, with new factors GT f and corresponding loadings ΛG. Therefore, the factors are generally
rotated to satisfy some additional constraints, such as

ΛTΨ−1Λ is diagonal, or (21)

ΛTD−1Λ is diagonal, D = diag(σ11, . . . , σpp), (22)

where the diagonal elements are in decreasing order. There are techniques, such as the varimax method,
to rotate the factors to obtain a parsimonious representation with few significantly non-zero loadings (i.e.
sparse matrix Λ). As explained in [13], ICA (see Section 5) can be thought of as another factor rotation
method, where the goal is to find rotations that maximize certain independence criteria.

In many cases, a k-order factor model in (17) provides a better explanation for the data than the
alternative full covariance model Var(x) = Σ. In such cases, it is possible to derive parameter estimates Λ̂
and Ψ̂.

Let x̄, R, and S denote the sample mean, covariance matrix, and correlation matrix, respectively, of the
observed data matrix X. Then, starting with

σ̂ii = sii, i = 1, . . . , p, (23)

and using
Σ̂ = Λ̂Λ̂T + Ψ̂, (24)
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we obtain

σ̂ii =

k
∑

j=1

λ̂2
ij + ψ̂ii. (25)

Two different possibilities to derive estimates Λ̂ and Ψ̂ for the model parameters in (13)-(16) are detailed
in Sections 3.1 and 3.2.

3.1 Principal factor analysis

Suppose the data is standardized, so that its covariance matrix is equal to the correlation matrix. To obtain
estimates Λ̂ and Ψ̂ for the standardized variables, first estimate ĥ2

i for i = 1, . . . , p. Common estimates

ĥ2
i include the square of the multiple correlation coefficients of the ith variable with all the other variables,

and the largest correlation coefficient between the ith variable and one of the other variables. Next, form
the reduced correlation matrix R− Ψ̂, where the diagonal elements of 1 in R are replaced by the elements
ĥ2
i = 1− ψ̂ii. Then, decompose the reduced correlation matrix in terms of the eigenvalues a1 ≥ . . . ≥ ap and

orthonormal eigenvectors γ(1), . . . , γ(p) as

R− Ψ̂ =

p
∑

i=1

aiγ(i)γ
T
(i) (26)

If the first k eigenvalues are positive, estimate the ith column of Λ by

λ̂(i) = a
1/2
i γ(i), i = 1, . . . , k. (27)

Equivalently,

Λ̂ = Γ1A
1/2
1 , (28)

where Γ1 = (γ(i), . . . , γ(k)), and A1 = diag(a1, . . . , ak). The eigenvectors are orthogonal, so the constraint
in (22) holds.

Finally, the specific variance estimates are updated as

ψ̂ii = 1−
k
∑

i=1

λ̂2
ij , i = 1, . . . , p. (29)

The k-factor model is permissible if all the p terms in (29) are non-negative.
In practice, the number of factors may be determined by looking at the eigenvalues ai of the reduced

correlation matrix, and choosing k as the index where there is a sharp drop in the eigenvalue magnitudes.
As its name suggests, principal factor analysis (PFA) is related to principal component analysis. When

the specific variances are all zero, Ψ = 0, comparing Equations (17) and (26) to Section 2 indicates that
PFA is equivalent to PCA.

3.2 Maximum likelihood factor analysis

If, in addition to the factor model specified in (13)-(16), we also assume that the factors f and u are distributed
as multivariate normal variables, then parameters of the model can also be estimated by maximizing the
likelihood. In such cases, one can also test the hypothesis that the k-factor model describes the data more
accurately than the unconstrained variance model.

The log-likelihood function can be written as

l = −
1

2
n log|2πΣ| −

1

2
n trΣ−1S, (30)

and the goal is to maximize it with respect to the parameters Λ and Ψ, subject to the constraint in (22) on
Λ. Under the factor model, Σ = ΛΛT +Ψ.
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The optimization is carried out by noting that the function

F (Λ,Ψ) = F (Λ,Ψ;S) = trΣ−1S− log|Σ−1S| − p (31)

is a linear function of the log-likelihood l, with a maximum in l corresponding to a minimum in F . Also, in
terms of the arithmetic mean a and the geometric mean g of the eigenvalues of Σ−1S, we have

F = p(a− logg − 1). (32)

Minimizing F (Λ,Ψ) proceeds in two stages: first, the minimization over Λ for a fixed Ψ has an analytical
solution, then, the minimization over Ψ is carried out numerically.

4 Projection pursuit

Projection pursuit (PP) is a linear method that, unlike PCA and FA, can incorporate higher than second-
order information, and thus is useful for non-Gaussian datasets. It is more computationally intensive than
second-order methods.

Given a projection index that defines the “interestingness” of a direction, PP looks for the directions
that optimize that index. As the Gaussian distribution is the least interesting distribution (having the least
structure), projection indices usually measure some aspect of non-Gaussianity. If, however, one uses the
second-order maximum variance, subject that the projections be orthogonal, as the projection index, PP
yields the familiar PCA. Writing the optimization criterion as

Q(x,w) = Var{xTw}, (33)

according to (7), the direction w1 of the first PC solves arg max||w=1||Q(x,w), and the corresponding first

PC is s1 = xTw1.
A commonly used higher-order projection index is based on the negative Shannon entropy [20]. Given

the random variable x with probability distribution f , its negative entropy is defined as

Q(x) =

∫

f(x)logf(x)d(x). (34)

The Gaussian distribution minimizes this measure, so it makes sense to find directions w that maximize the
entropy of the projected data Q(x,w) with respect to w, subject to having constant variance of xTw.

Other projection indices include indices based on higher-order cumulants and on the Fisher information
[7, 22]. However, all of these measures depend on the unknown probability distribution of xTw, which
can be difficult to estimate. Alternative indices based on approximations, and on different measures of
non-normality have also been proposed in the literature [22].

The FastICA algorithm for independent components in Section 5.3 can also be used to find projection
pursuit directions.

5 Independent component analysis

This section is based on [22], a recent survey on independent component analysis (ICA). More information
(and software) on this currently very popular method can be found at various websites, including [6, 24, 49].
Books summarizing the recent advances in the theory and application of ICA include [1, 48, 15, 38].

ICA is a higher-order method that seeks linear projections, not necessarily orthogonal to each other, that
are as nearly statistically independent as possible. Statistical independence is a much stronger condition
than uncorrelatdness. While the latter only involves the second-order statistics, the former depends on
all the higher-order statistics. Formally, the random variables x = {x1, . . . , xp} are uncorrelated, if for
∀i 6= j, 1 ≤ i, j ≤ p, we have

Cov(xi, xj) = E{(xi − µi)(xj − µj)} = E(xixj)− E(xi)E(xj) = 0. (35)
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In contrast, independence requires that the multivariate probability density function factorizes, and can be
written as

f(x1, . . . , xp) = f1(x1) . . . fp(xp). (36)

Independence always implies uncorrelatedness, but not vice versa in general. Only if the distribution
f(x1, . . . , xp) is multivariate normal, are the two equivalent. For Gaussian distributions, the PCs are inde-
pendent components. Following [22], the noise-free ICA model for the p-dimensional random vector x seeks
to estimate the components of the k-dimensional vector s and the p× k full column rank mixing matrix A

in (3),
(x1, . . . , xp)

T = Ap×k(s1, . . . , sk)
T (37)

such that the components of s are as independent as possible, according to some definition of independence.
At least one of the hidden independent components si has to be non-Gaussian to ensure the identifiability
of the model [22]. The noisy ICA contains an additive random noise component,

(x1, . . . , xp)
T = Ap×k(s1, . . . , sk)

T + (u1, . . . , up)
T (38)

but estimation of such models is still an open research issue [22]. In this survey, we only consider the noiseless
model as specified in (37).

There are overcomplete versions of ICA, where the number k of ICs is larger than the number of original
variables p [22]. In this paper, we will assume that there are as many independent components as there are
original variables, i.e. k = p. In contrast with PCA, the goal of ICA is not necessarily dimension reduction.
To find k < p independent components, one needs to first reduce the dimension of the original data p to k,
by a method such as PCA.

As the problem is stated, there is no order among the ICs. Once they are estimated, they can be ordered
according to the norms of the columns of the mixing matrix (similar to the ordering in PCA), or according
to some non-Gaussianity measure (similar to ordering in PP).

ICA can be considered a generalization of the PCA and the PP concepts. While PCA seeks uncorrelated
variables, ICA seeks independent variables. The noise-free ICA is a special case of PP, with independence
being the “interestingness” in the projection pursuit index definition. The noisy ICA model is equivalent to
the FA model in (13) assuming non-Gaussian data.

ICA has been applied to many different problems, including exploratory data analysis, blind source
separation, blind deconvolution, and feature extraction. In the feature extraction context, the columns of
the matrix A represent features in the data, and the components si give the coefficient of the ith feature in
the data. Several authors used ICA to extract meaningful features from natural images [22].

Estimation of the model in (37) consists of two steps: specifying the objective function (also called
the contrast, the loss function, the cost function), and the algorithm to optimize the objective function.
Objective functions can be categorized into two groups: “multi-unit” contrast functions that estimate all
p independent components at once, and “one-unit” contrast functions that estimate a single independent
component at a time [22]. They are detailed in Section 5.1 and in Section 5.2, respectively. Section 5.3 lists
several optimization algorithms.

5.1 Multi-unit objective functions

There are many different ways to specify objective functions. This section lists several possibilities. It has
been shown, that despite their different formulations, they all closely related, and under certain conditions,
some are equivalent [22].

Under certain conditions (the distribution of the independent components is known with sufficient accu-
racy), the mutual information method is essentially equivalent to maximum likelihood principle, and so is
the non-linear PCA method. Under the same conditions, cumulant-based methods are approximations to
the mutual information.

Cumulant and general contrast-based methods, however, can be used for any non-Gaussian data, without
knowing the underlying distributions.
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5.1.1 Maximum likelihood and network entropy

This method specifies the likelihood of the noise-free ICA model, and uses the maximum likelihood principle
to estimate the parameters. Under some conditions, it is equivalent to the “infomax” network entropy
maximization concept in the neural network literature.

The advantages of this method include the asymptotic efficiency of maximum likelihood estimates under
regularity conditions. However, it requires knowledge of the distribution of the independent components,
it is sensitive to outliers, and it is computationally intensive, which make it undesirable in many practical
situations.

5.1.2 Mutual information and Kullback-Leibler divergence

Mutual information I measures the dependence among m random variables yi as

I(y1, . . . , ym) =

m
∑

i=1

H(yi)−H(y), (39)

where H is the differential entropy, H(y) = −Q(y) in (34). The mutual information is always non-negative,
and is zero if and only if the variables are statistically independent. It therefore makes sense to find the
variables that minimize the mutual information among the components.

Mutual information is also equal to the Kullback-Leibler divergence

δ(f1, f2) =

∫

f1(y)log
f1(y)

f2(y)
dy (40)

between the joint density f(y) and the factorized f̃(y) = f1(y1) . . . fm(ym). The Kullback-Leibler divergence
measures a “closeness” of two distributions. If the components are independent, the actual density f(y)
factorizes just like f̃(y), and results in zero divergence.

Mutual information is hard to estimate, imposing difficulties on using it as an objective function. As
summarized in [22], several approximations, based on polynomials, on higher-order cumulants, and on the
maximum entropy principle, have been proposed.

5.1.3 Non-linear cross-correlations

This principle is based on canceling non-linear cross-correlations of the form E{g1(yi)g2(yj)}, where g1 and
g2 are non-linearities specified by the user. Assuming that yi and yj are independent, such cross-correlations
are zero. Oftentimes, there are no explicit objective functions associated with the chosen cross-correlation,
so that they are only implicitly specified.

5.1.4 Non-Linear PCA

This method indicates the strong connection between ICA and non-linear PCA. By introducing non-linearities
g based on the probability densities of the independent components into the PCA objective function in (7),
we obtain the ICA model

w1 = arg max||w=1||Var{g(x
Tw)}. (41)

As with the non-linear cross-correlation method, there might not exist explicit contrast functions.

5.1.5 Higher-order cumulant tensors

The ICA model can also be estimated by solving for the eigenvectors of eigenmatrices corresponding to the
linear operator T defined by the fourth-order cumulant as

T (Kij) =
∑

k,l

cum(xi, xj , xk, xl)Kkl. (42)

The linear operator T maps the space of k × k matrices to itself, and has k2 eigenvalues corresponding to
eigenmatrices. This procedure does not need to know the probability densities of the independent compo-
nents, but suffers from suboptimal statistical properties characteristic to cumulant-based estimators.
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5.2 One-unit objective functions

One-unit contrast functions seek a single vector w such that the linear combination xTw is equal to one of
the independent components si. It is desirable when not all the PCs are needed, it can be used iteratively
to find more PCs, and it tends to result in computationally simple solutions.

The contrast functions in this section are closely related. Both cumulants and general contrast functions
can be used to approximate the negentropy. The objective function based on the kurtosis (fourth-order
cumulant) is a special case of general contrast functions.

5.2.1 Negentropy

Differential entropy is not invariant under scale transformations. The negentropy, or negative normalized
entropy

J(y) = H(ygauss)−H(y) (43)

where H is the differential entropy, H(y) = −Q(y) in (34), and ygauss is a Gaussian random vector with
the same covariance matrix as y, is a linearly invariant version of the entropy. It is non-negative, and zero
if and only if y is Gaussian. Finding the direction of maximum negentropy is equivalent to finding the
representation with minimum mutual information. The directions that maximize the negentropy can also
be found by using differential entropy as a projection index in PP.

Negentropy is difficult to estimate. Approximations based on higher-order cumulants are explained in
5.2.2, and ones based on general contrast functions in 5.2.3.

5.2.2 Higher-order cumulants

One higher-order cumulant often used as a measure of non-Gaussianity is the fourth-order cumulant, also
called the kurtosis. By definition, the kurtosis kurt(x) of a random variable x is

kurt(x) = E(x4)− 3[E(x2)]2. (44)

The kurtosis is zero for a Gaussian variable, it is positive for heavy-tailed super-Gaussian distributions,
and it is negative for light-tailed sub-Gaussian distributions. Independent components can be derived by
maximizing the modulus of the kurtosis.

Cumulant-based estimators can be poor in terms of robustness and asymptotic variance. They only
consider the tails of the distribution, and are sensitive to outliers.

5.2.3 General contrast functions

In contrast with the contrast functions introduced earlier, general contrast functions are formulated to have
good statistical properties without requiring knowledge of the distributions, and to allow simple interpreta-
tion and algorithmic implementation. Such contrast functions J measure non-Gaussianity of the standard-
ized random variable y by comparing it to a standard Gaussian variable ν via a smooth non-quadratic even
function G by

JG(y) = |Ey[G(y)]− Eν [G(ν)]|
p
, (45)

where p is usually taken to be 1 or 2. Taking G(y) = y4, JG is simply the kurtosis. For suitable choices of
G, such as

G(y) = log cosh(a1u) or G(y) = exp(−a2u
2/2), (46)

with constants a1, a2 ≥ 1, estimators based on optimizing generalized contrast functions have superior
statistical properties than cumulant-based estimators. Being the log-density of a super-Gaussian distribution,
G1 is related to maximum likelihood estimation.
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5.3 Optimization algorithms

Most optimization algorithms either require that the data be sphered, or they converge better for sphered
data. Sphering is a linear transformation that maps x into a new variable v with unit covariance matrix:

v = Qx, E(vvT ) = I. (47)

In terms of v, the ICA model in (37) can be written as

v = Bs. (48)

Assuming unit-variance independent components, we have I = E(vvT ) = BE(ssT )BT = BBT , and therefore
B is orthogonal. The problem then translates to finding an appropriate orthogonal matrixB from the sphered
v. Once such a B is found, the independent components are obtained via

ŝ = BTv. (49)

Several algorithms have been proposed to estimate independent components. As [22] summarizes, there
are two major types: adaptive and batch-mode (block) algorithms.

Adaptive methods use stochastic gradient-type algorithms. Likelihood or other multi-unit contrast func-
tions are optimized using gradient ascent of the objective function. One-unit implementations use straight-
forward stochastic gradient methods that optimize negentropy or approximations of it.

Examples of adaptive algorithms include the Jutten-Herault algorithm, which is based on canceling
non-linear cross-correlations and converges only under harsh restrictions; other algorithms based on non-
linear decorrelations that are more stable and computationally tractable than the Jutten-Herault method;
algorithms for maximum likelihood estimation; non-linear PCA algorithms; neural one-unit learning rules;
and exploratory projection pursuit algorithms.

Batch-mode algorithms are much more computationally efficient than adaptive algorithms, and are more
desirable in many practical situations where there is no need for adaptation. The FastICA is such a batch-
mode algorithm using fixed-point iteration. It was introduced in [23] using the kurtosis, but was subsequently
extended to general contrast functions in [21]. A MATLAB implementation is available from [24]. It can
also be used for projection pursuit analysis described in Section 4.

6 Non-linear principal component analysis

Non-linear PCA introduces non-linearity in the objective function, but the resulting components are still
linear combinations of the original variables. This method can also be thought of as a special case of
independent component analysis, Section 5.1.4. As indicated in [31], there are different formulations of the
non-linear PCA.

A non-linear PCA criterion for the data vector x = (x1, . . . , xp)
T searches for the components s =

(s1, . . . , sp)
T in the form of s = WTx by minimizing

J(W) = E{||x−Wg(WTx)||2} (50)

with respect to the p× p weight matrix W [31], where g(y) denotes the component-wise application of the
non-linear function g() to the elements of the vector y. Commonly used such non-linear functions are odd
functions like g(y) = tanh(y) and g(y) = y3.

The optimization in (50) can be carried out either by the stochastic gradient descent algorithm with the
learning parameter c and the ∆W update matrix of W below,

∆W = c[x−Wg(WTx)]g(xTW), (51)

or by an approximate recursive least squares (RLS) algorithm [31]. The RLS method converges faster than
the corresponding gradient descent method, has good final accuracy, but slightly higher computational load.

Before applying the algorithms, the data needs to be pre-whitened by v = Vx, where E{vvT } = I. By
denoting

y = WTv = WTVx = Bx, (52)
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the optimization in (51) can be written as

∆W = c[v −Wg(y)]g(yT ), (53)

where, after convergence, y contains the sought s vector.
Assuming that the components of s all have variance equal to one, the final y estimates are standardized

to have E{yyT } = I, resulting in the matrix W being orthogonal (E{yyT } = WTE{vvT }W = I). Under
this condition, it can be shown [31] that

J(W) = E{||v −Wg(WTv)||2} = E{||y − g(y)||2} =

p
∑

i=1

E{[yi − g(yi)]
2}. (54)

As indicated in Section 8.5, [37] proposed a neural network architecture with non-linear activation func-
tions in the hidden layers to estimate non-linear PCAs.

7 Random projections

The method of random projections is a simple yet powerful dimension reduction technique that uses random
projection matrices to project the data into lower dimensional spaces [47, 32, 33, 35]. The original data
X ∈ Rp is transformed to the lower dimensional S ∈ Rk, with k ¿ p, via

S = RX, (55)

where the columns of R are realizations of independent and identically distributed (i.i.d.) zero-mean normal
variables, scaled to have unit length. The method was proposed in the context of clustering text documents,
where the initial dimension p can be on the order of 6000, and the final dimension k is still relatively large, on
the order of 100. Under such circumstances, even PCA, the simplest alternative linear dimension reduction
technique, can be computationally too expensive. Random projections are applied as a data pre-processing
step, then, the resulting lower dimensional data is clustered. It has been shown empirically that results with
the random projection method are comparable with results obtained with PCA, and take a fraction of the
time PCA requires [33, 35]. To reduce the computational burden of the random projection method, at a
slight loss in accuracy, the random normal projection matrix R may be replaced by thresholding its values
to -1 and +1, or by matrices whose rows have a fixed number of 1s (at random locations) and the rest 0s
[35].

If the similarity between two vectors is measured by their inner product (giving the cosine of their angle
for unit-length vectors), [33] showed that if the dimension of the reduced space d is large, random projection
matrices preserve the similarity measure: on the average, the distortion of the inner products is zero, and
its variance is at most the inverse of twice d.

8 Non-linear methods and extensions

8.1 Non-linear independent component analysis

Non-linear methods, such as principal curves, self organizing maps and topographic maps, can, in principle,
be incorporated into ICA.

Given the p-dimensional zero-mean non-Gaussian variable x, the non-linear ICA model replaces the linear
transformation in (3) by

(x1, . . . , xp)
T = f(s1, . . . , sk)

T , (56)

where f is an unknown real-valued p-component vector function. In general, k = p.
The identifiability and other properties of the general non-linear ICA model makes its estimation difficult.

A few publications considering special cases are mentioned in [22]. An overview of the problem, along with
a maximum likelihood and a Bayesian ensemble learning method for estimation can be found in [30].
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8.2 Principal curves

Principal curves are smooth curves that pass through the “middle” of multidimensional data sets [18, 40, 7].
Linear principal curves are in fact principal components, while non-linear principal curves generalize the
concept.

Given the p-dimensional random vector y = (y1, . . . , yp) with density g(y), and the smooth curve f(s) =
(f1(λ), . . . , fp(λ)) ∈ R

p parameterized by the real-valued λ, define the projection index λf (y) to be value of
λ corresponding to the point on f(s) that is closest (in Euclidean distance) to y. The set of principal curves
is defined in [18] as the curves that do not intersect themselves and are self-consistent with respect to the
data. By definition, a curve is self-consistent if each point f(λ) is the mean of all points in the support of g
that are projected on λ.

E[y|λf (y) = λ] = f(λ). (57)

It was shown in [18] that a curve f is a principal curve if and only if it solves

minf

N
∑

i=1

||yi − f(λf (yi)||
2, (58)

where yi is the ith instance of the p-dimensional vector, and the composition of functions f(λf (yi) gives the
p-dimensional coordinates of the projection of yi onto the curve f .

To estimate f and λ, [18] proposed an iterative algorithm. It starts with f(λ) = E(y) + dλ, where d is
the first eigenvector of the covariance matrix of y and λ = λf (y). Then it iterates the two steps

1. For a fixed λ, minimize E||y − f(λ)||2 by setting fj(λ) = E(yj |λf (y) = λ) for each j

2. Fix f and set λ = λf (y) for each y

until the change in E||y − fλ||
2 is less than a threshold.

An alternative formulation of the principal curves method, along with a generalized EM algorithm for
its estimation under Gaussian distribution of g(), is presented in [52].

In general, for the model y = f(λ) + ε, where f is smooth and E(ε) = 0, f is not necessarily a principal
curve. Except for a few special cases, it is not known in general for what type of distributions do principal
curves exist, how many principal curves there are, and what their properties are [7].

The concept of principal curves can be extended to higher dimensional principle surfaces, but the esti-
mation procedure gets more complicated.

8.3 Multidimensional scaling

Given n items in a p-dimensional space and an n × n matrix of proximity measures among the items,
multidimensional scaling (MDS) produces a k-dimensional, k ≤ p, representation of the items such that the
distances among the points in the new space reflect the proximities in the data [8, 7, 41]. The proximity
measures the (dis)similarities among the items, and in general, it is a distance measure: the more similar two
items are, the smaller their distance is. Popular distance measures include the Euclidean distance (L2 norm),
the manhattan distance (L1, absolute norm), and the maximum norm. Results of MDS are indeterminate
with respect to translation, rotation, and reflection.

MDS has been typically used to transform the data into two or three dimensions, and visualizing the
result to uncover hidden structure in the data. A rule of thumb to determine the maximum number of k, is
to ensure that there are at least twice as many pairs of items then the number of parameters to be estimated,
resulting in p ≥ 4k + 1 [7].

Given the n items {xi}
n
i=1 ∈ R

p and a symmetric distance matrix ∆ = {δij , i, j = 1, . . . , n}, the result
of a k-dimensional MDS will be the set of points {yi}

n
i=1 ∈ R

k such that the distances dij = d(yi,yj) are as
close as possible to a function f of the corresponding proximities f(δij).

In [41], MDS methods that incorporate the given distances δij into their calculations are called metric
methods, while the ones that only use the rank ordering of the distances are called non-metric methods.
In contrast, [7] states that depending on whether f is linear or non-linear, MDS is called either metric or
non-metric, correspondingly.
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Following [7], the steps for the most general estimation procedure are as follows. First, define the stress
as an objective function to be minimized by f

stressf (∆,X, f) =

√

∑

i,j [f(δij)− dij ]
2

scale factor
, (59)

where the scale factor is usually based on
∑

i,j [f(δij)]
2 or on

∑

i,j d
2
ij . Next, for a given X = {xi}

n
i=1, find

f̂ that minimizes (59),

stress(∆,X, f̂) = minf stressf (∆,X, f), (60)

then determine the optimal X̂ by

stress(∆, X̂, f̂) = minX stress(∆,X, f̂). (61)

The special case of using Euclidean distance and f as the identity in (59) leads to the principal coordinates
of X in k dimensions as the solution, which are equivalent to the first k principal components of X (without
re-scaling to correlations) [41].

An alternative to MDS is FastMap [12], a computationally efficient algorithm that maps high-dimensional
data into lower-dimensional spaces, while preserving distances between objects.

8.4 Topologically continuous maps

There are several methods based on finding a continuous map to transform a high-dimensional data into a
lower-dimensional lattice (latent) space of fixed dimension [7]. Such techniques could be called self-organizing
maps, but that name is most often associated with one particular such method, namely, Kohonen’s self-
organizing maps. To avoid confusion, we follow the review [7], and refer to these methods collectively as
methods that use topologically continuous maps.

8.4.1 Kohonen’s self-organizing maps

Given the data vector {tn}
N
n=1 ∈ R

D, Kohonen’s self-organizing maps (KSOM) [36] learn, in an unsuper-
vised way, a map between the data space and a 2-dimensional lattice. The method can be extended to
L-dimensional topological arrangements as well. Let dL and dD denote distances (typically Euclidean) in
the lattice and in the data space, respectively, and define a neighborhood function hij on the lattice space,
such that it is symmetric, has values in the [0, 1] interval, hii = 1 for any node i in the lattice, and the
further node j is from i in the lattice, the smaller hij is. The neighborhood of node i consists of the nodes
for which hij greater than a threshold. Typical neighborhood function is hij = exp(−d2

L(i, j)/2/σ
2), where

σ specifies the range of the neighborhood.
Kohonen’s rule uses an initially random set of reference vectors {µi}

m
i=1 in the data space Rp, then

updates them iteratively according to the data distribution such that the final reference vector will be dense
in regions of RD where the data is common. Kohonen’s rule iterates the following procedure over all the
data points until convergence occurs.

• For a given data tn, find the closest vector µi∗ to it in the lattice space:

i∗ = arg maxj∈latticedD(µj , tn), (62)

• Then, at iteration t and learning rate α(t) ∈ [0, 1], update the reference vector by moving it a distance

ρ = α(t)h
(t)
i∗i towards t:

µnew
i = µold

i + α(t)h
(t)
i∗i(tn − µ

old
i ) = (1− ρ)µold

i + ρtn. (63)

Although KSOMs are useful in many applications, they have several drawbacks: there is no implicit
criteria that they try to optimize, there are no rules to optimally select α(t) and h(t), and there is no proof
that they converge in general.
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8.4.2 Density networks

Density networks [7] assume a probability distribution for the data given the parameters, as well as prior
distributions for the parameters, then apply Bayesian learning techniques to model the data in terms of
latent variables.

Generative topographic mapping (GTM) is a special density network based on constrained Gaussian
mixtures that uses the expectation-maximization (EM) algorithm to estimate the parameters by maximizing
the likelihood function. It was introduced in [3], and, unlike the KSOMs in Section 8.4.1, it provides a
rigorous treatment of SOMs under certain assumptions.

8.5 Neural networks

Neural networks (NNs) model the set of output variables {yj}
d
j=1 in terms of the input variables x = {xi}

p
i=1

as
yj = yj(x,w), (64)

where the functions yj(x,w) specify the network architecture, and the weights w are determined by training
(learning) the NN using a set of known examples and an error function [2]. Many, traditional and more
recent, linear and non-linear, dimension reduction techniques can be implemented using neural networks
with different architectures and learning algorithms [2, 46, 40, 51, 7].

The simplest NN has three layers: the input layer, one hidden (bottleneck) layer, and the output layer.
First, to obtain the data at node h of the hidden layer, the inputs xi are combined through weights wih

along with a threshold (bias) term αh, then they are passed through the corresponding activation function
φh. In the second step, the output is obtained in a similar way from the data on the hidden nodes, using
the weights whj , the threshold αj , and a possibly different output function φo:

yj = φo

(

αj +
∑

h

whjφh(αh +
∑

i

wihxi)

)

. (65)

The first part of the network reduces the input data into a lower-dimensional space, while the second
decodes the reduced data into the original domain. Frequently used activation and output functions include
the linear (identity) function, sigmoidal (S-shaped) functions such as the logistic function, and the Heaviside
thresholding function [2, 53]. NNs with a single hidden layer networks and the threshold activation function
are also called perceptrons. Networks that try to learn the identity mapping, i.e. the outputs yj are identical
to the inputs xi, are called auto-associative (auto-encoders, bottlenecks, p-k-p networks). Hetero-associative
neural nets have different number of input- and output layers, and are used, for example, in classification.

As summarized in [7], there are many types of NN architectures that can extract principal components.
More complete details can be found in [9]. For example, a linear, one hidden layer auto-associative perceptron
with p input units, k < p hidden units, and p output units, can be trained with back-propagation to find
a basis of the subspace spanned by the first k PCs, if the error metric used is the minimum squared sum
of differences between the input and the output units. Other networks, based on Oja’s rule and various
de-correlating devices can also be used to find principal components.

By adding two more hidden layers with nonlinear activation functions, one between the input and the
bottleneck, the other between the bottleneck and the output layer, the PCA network can be generalized
to obtain non-linear principal components. Starting from the feed-forward neural network implementation
of PCA [40, 7], [37] extended the idea to include non-linear activation functions in the hidden layers. In
this framework, the non-linear PCA network can be thought of as an auto-associative neural network with
five layers: input (1), hidden (2), bottleneck (3), hidden (4), and output (5). If λf : Rp → Rk denotes the
function modeled by layers (1), (2), and, (3), and f : Rk → Rp denotes the function modeled by layers (3),
(4), and (5), it can be shown [40] that the weights of the non-linear PCA network are determined such that

minf ,sf

N
∑

i=1

||xi − f(λf (xi)||
2, (66)
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where xi denotes the ith instance of the p-dimensional vector x. Note the close connection to principal
surfaces (58) in Section 8.2. Both lead to PCA in case of linear sf and f .

The thesis of [51] compares principle component analysis, vector quantization, and five layer neural
networks, for reducing the dimension of images. It also provides a C software package called NeuralCam
implementing those methods.

8.6 Vector quantization

As explained in [51], [29] introduced a hybrid non-linear dimension reduction technique based on combining
vector quantization for first clustering the data, then applying local PCA on the resulting Voronoi cell
clusters. On the image data set used in [51], both non-linear techniques (vector quantization, VQ, and non-
linear PCA using five layer neural network implementation, NLPCA) outperformed the linear PCA. Among
the non-linear techniques, VQ achieved better results than NLPCA.

8.7 Genetic and evolutionary algorithms

Genetic and evolutionary algorithms (GEAs) are optimization techniques based on Darwinian theory of
evolution that use natural selection and genetics to find the best solution among members of a competing
population [16]. There are many references describing how GEAs can be used in dimension reduction. In
essence, given a set of candidate solutions, an objective function to evaluate the fitness of candidates, and
the values for the parameters of the chosen algorithm, GEAs search the candidate space for the member with
the optimal fitness. For example, [45] use GAs in combination with a k-nearest neighbor (knn) classifier
to reduce the dimension of a feature set: starting with a population of random transformation matrices
{Wk×p}

(i), they use GAs to find the transformation Wk×p such that the knn classifier using the new
features Sk×n = Wk×pXp×n classifies the training data most accurately.

8.8 Regression

Regression methods can be used for dimension reduction when the goal is to model a response variable y
in terms of a set of xi variables. The regression function can be linear, or non-linear. Traditionally, the xi
variables have been called the independent, or explanatory variables in statistics, while y was the response,
or the dependent variable. In this regression context, it is generally assumed that the xis were carefully
selected, uncorrelated, and relevant to explaining the variation in y. In current data mining applications,
however, those assumptions rarely hold. Variable selection, or dimension reduction, is therefore needed for
such cases.

A well-known statistical variable selection method is step-wise regression, where different models are fit
using different subsets of the explanatory variables. The results are then compared by calculating various
goodness-of-fit measures, and the subset with the best measure is chosen as the explanatory variables with
the reduced dimension. A similar approach, selecting the most relevant features by evaluating random
subsets of the original features, is called the wrapper method in the machine learning community [34].

Dimension reduction methods related to regression include projection pursuit regression [20, 7], gener-
alized linear [42, 10] and additive [19] models, neural network models, and sliced inverse regression and
principal hessian directions [39].

9 Summary

In this paper, we described several dimension reduction methods.
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