Each question is worth 2 points. Write legibly. In your solutions, use points and vectors and the functions and operators discussed in the reading material and in class, such as $n(), U(), V(), R(),+,-\bullet \ldots$ or their mathematical equivalents.

1) Provide a "valid" expression for the point P at one third from A towards B ? $A+A B / 3$
2) Explain the terms "normal" and "norm" and give an example of their use in proper context?

The normal to a line is a direction orthogonal to it. A vector is normal to a line if it is orthogonal to it.
The norm of a vector is its length.
3) Let $<1,2>$ and $<4,3>$ be two vectors. What is their dot-product?
$4+6=10$
4) Provide the pseudo-code or geometric construction for testing whether the polygonal path $\{\mathrm{A}, \mathrm{B}, \mathrm{C}\}$ makes a right turn at B.
$\operatorname{dot}(R(V(A, B)), V(A, C))>0$. Also acceptable $R(A B) \bullet A C>0$ or $R(A B) \bullet B C>0 \ldots$
5) You are given two frames $\left[\mathrm{O}_{1}, \mathrm{I}_{1}, \mathrm{~J}_{1}\right]$ and $\left[\mathrm{O}_{2}, \mathrm{I}_{2}, \mathrm{~J}_{2}\right]$ and the local coordinates $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ of a point P in $\left[\mathrm{O}_{1}, \mathrm{I}_{1}, \mathrm{~J}_{1}\right]$. Provide the construction or expression for the local coordinates ($\mathrm{x}_{2}, \mathrm{y}_{2}$) of P in $\left[\mathrm{O}_{2}, \mathrm{I}_{2}, \mathrm{~J}_{2}\right]$.
$P=O 1+x 1 I 1+y 1 J ; x 2=O 2 P \bullet I 2 ; y 2=O 2 P \bullet J 2$;
6) Write a simple algorithm for computing the sum of the two largest values in an array A of n integers. Your algorithm does not need to be efficient. You may not use a call to sort the array. (For extra credit, if needed.)
float $s=A[0]+A[1] ;$ for (int $i=0 ; i<n-1 ; i++$) for (int $j=i+1 ; j<n ; j++$) $s=\max (s, A[i]+A[j])$;

