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Abstract

In this paper, we give a detailed explanation of how to animate a 2D scene with colliding disks that 
move in a constant (possibly null) velocity and are subject to elastic shocks. First, we explain the 
derivations of a few formulas that are used in implementations of collision detection techniques, 
including formulas for predicting the time to first collision, for checking for static interfaces, and for 
computing the new velocities after elastic shock. Using these formulas, we then describe the 
implementation of two different collision detection techniques, PIT (Periodic Interference Test) and 
PIC (Predicted Instant of Collision). The PIT technique checks which pairs of disks interfere at the end 
of each frame, computes new velocities for these pairs, sets the disks' velocities to the new velocities, 
and repeats for every frame. On the other hand, the PIC technique computes the time t of the first 
collision (if one occurs before the next frame), advances the animation to t, computes new velocities 
after the shock, and then repeats for every frame. After comparing these techniques, we present four 
clear cases where the PIT collision detection technique produces incorrect trajectories including delay, 
wrong direction, missed collisions, and incorrect handling of nearly simultaneous collisions. 
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I.  Derivations and Implementations of Formulas

The following section provides and explains the derivations and implementations of the formulas for 
predicting the time to first collision, for checking static interfaces, and for computing the new velocities 
after elastic shock.
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I.1  Predicting Time to First Collision

I.1.1  Derivation:

Here we will derive the formula for predicting the time to first collision. First, we set up the scenario 
for our derivation. We have two disks, the first with center C1, radius r1, and velocity vector V1, the 
second with center C2, radius r2, and velocity vector V2. The scenario can be seen below with the initial 
positions of the disks shown in red. 

There are eight steps in this derivation. 

Step 1: Find out where disks are at time t
 
The velocity vectors shown in the figure above indicate that the two disks are moving toward each 
other. We can see in the figure below, that the disks collide at time t in the positions shown in blue. The 
centers for the two disks at time t are at C1+t*V1 and C2+t*V2 for disks 1 and 2 respectively. 

Step 2: Write condition in English that says this is what happens in collision

The distance between the two centers at the time of collision will be the sum of the radii of the two 

4



disks, r1 and r2. So in English, the condition that says what happens in the collision is:

distance between centers = sum of the radii 

Step 3: Eliminate the square root

The distance formula is:
d = sqrt((x2-x1)2 + (y2-y1)2)

Square root operations are expensive, so we want to eliminate this use of this operation here. To do this, 
we square both sides of the equation from Step 2. The result is:

distance between centers2 = sum of the radii2

or
d2= (x2-x1)2 + (y2-y1)2

Step 4: Substitute new centers into the equation 

We found the new centers before as C1+ t*V1 (for disk 1) and C2+t*V2 (for disk 2) at time t of collision. 
Now the centers of the disks need to be substituted into the equation because the disk centers have 
moved:

((C2+t*V2) - (C1+t*V1))2 = (r1+r2)2

This gives the vector shown in the figure below in green.

Step 5: Use vectors

We want to use vectors to write our equation in a different way. C1C2 is a vector because it is two points 
together and V2-V1 are  two subtracted vectors which results in a vector. Our resulting equation 
incorporating the use of vectors is:

(C1C2 + t*(V2-V1))2 = (r1 + r2)2

Step 6: A vector squared equals the dot product 

Using the property for vectors that says a vector squared is equal to the dot product of the two vectors :

 V2 = V∙V = n(V)2 = Vx
2 + Vy

2
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our equation becomes:

(C1C2 + t*(V2-V1)) ∙ (C1C2 + t*(V2-V1)) = (r1 + r2)2

Step 7: Distribute dot product over vector addition

Now we distribute the dot product in our equation over vector addition:

C1C2 ∙ C1C2  +  2 * (C1C2 ∙ t*(V2-V1)) + (t*(V2-V1))2  = (r1 + r2)2

We can use the property of vectors again that says a vector squared is equal to the dot product of two 
vectors to obtain the formula:

[C1C2 ∙ C1C2]  +  [2*(C1C2 ∙ (V2-V1))]*t + [(V2-V1) ∙ (V2-V1)]*t2   = (r1 + r2)2

Step 8: Solve for t 

Now you can solve for t, you will get scalars for the dot products which will be coefficients for a 
quadratic equation over t. 

For the equation Ax2 + Bx + C = 0, The quadratic formula is:

(-B +- sqrt(B2 – 4AC))/ (2A)

We rearrange our formula to fit it into the quadratic formula:

[(V2-V1) ∙ (V2-V1)]*t2  + [2*(C1C2 ∙ (V2-V1))]*t + [C1C2 ∙ C1C2 - (r1 + r2)2] = 0

For our equation, the coefficients for the quadratic formula are:

[(V2-V1) ∙ (V2-V1)]*t2  + [2*(C1C2 ∙ (V2-V1))]*t + [C1C2 ∙ C1C2 - (r1 + r2)2] = 0
                                    A*t2           +               B*t                 +                   C                 = 0

A = (V2-V1) ∙ (V2-V1)
B = 2*(C1C2 ∙ (V2-V1))
C = C1C2 ∙ C1C2 - (r1 + r2)

We can then solve for t by finding the roots of the quadratic equation using the quadratic formula 
above. The least non-negative value of t that results from this formula is the time t of the first collision 
(because we want to smallest possible time that is non-negative).

I.1.2  Implementation:

Now that we have derived the formula for predicting the time to first collision we can now discuss its 
implementation. Below is the processing code function called “collision” that computes the collision 
time, t and returns it if t is between 0 and 1. If t is not between 0 and 1, the function returns the number 
2 to indicate that there is no collision.
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The function takes in BALL A and BALL B which are two ball objects that include the information of 
the center, the velocity, the radius, and the mass of a ball.

1 float collision(BALL A, BALL B) { 
2 vec W=M(-1,A.V,1,B.V); 
3 vec D=V(A.C,B.C); 
4 float a=dot(W,W); 
5 float b=2*dot(D,W); 
6 float c=dot(D,D)-sq(A.r+B.r); 
7 float d=sq(b)-4*a*c; 
8  if (d>=0) {
9 float t1=(-b-sqrt(d))/2/a; 
10 if(t1<0) {
11 t1=2; 
12 }
13 float t2=(-b+sqrt(d))/2/a; 
14 if(t2<0) {
15 t2=2; 
16 }
17 float m=min(t1,t2); 
18             if ((-0.02<=m)&&(m<=1.02)){
19 return m; 
20 }
21 }  
22 return 2; 
23 }

First, line 2 sets W = (V2-V1) from above and line 3 sets D = C1C2.  Then, lines 4, 5, and 6 set A, B, and 
C respectively according to the coefficient equations derived above and shown again below:

A = (V2-V1) ∙ (V2-V1)
B = 2*(C1C2 ∙ (V2-V1))
C = C1C2 ∙ C1C2 - (r1 + r2)

Then line 7 calculates the discriminant of the quadratic equation, or B2 – 4AC. Then line 8 checks if the 
discriminant is legal (greater than 0) and then in lines 9 through 20 the quadratic formula is 
implemented. First, in lines 9 through 12, the case of subtracting the discriminant is tried to obtain the 
first root of the quadratic equation:

(-B - sqrt(B2 – 4AC))/ (2A)

Then, in lines 13 through 16, the case of adding the discriminant is tried to obtain the second root of the 
quadratic equation:

(-B + sqrt(B2 – 4AC))/ (2A)

Finally, in remaining lines, we test a root between 0 and 1 has been found. If such a root or roots exist, 
the minimum non-negative root between 0 and 1 is returned. If not, the number 2 is returned by the 
function. 
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I.2  Checking Static Interferences

I.2.1  Derivation:

Here we will derive the formula for checking static interferences. We will derive a formula that can 
detect if two objects are intersecting or interfering at any given instant of the animation.  First, we set 
up the three scenarios for our derivation. In all three scenarios we have two disks, the first with center 
C1, radius r1, the second with center C2, radius r2. The scenarios can be seen below in the figure with the 
positions of the disks shown in red for scenario 1, shown in blue in scenario 2, and shown in green for 
scenario 3.

There are two steps to this derivation.

Step 1: Write condition in English that says if there is an interference

We know that the disks are interfering if the distance between the two centers of the disks is less than 
or equal to the sum of the radii of the two disks, r1 and r2. So in English, the condition that says if there 
is an interference is:

distance between centers < = sum of the radii 

We can verify this solution by examining the three scenarios presented in the figure above. In scenario 
1 (the red disks), the distance between the centers is greater than the sum of the radii, therefore this 
formula would say this scenario contains no interference which is correct. In scenario 2 (the blue 
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disks), the distance between the centers is equal to the sum of the radii, therefore this formula would 
say this scenario does contain an interference which is also correct. Lastly, in scenario 3 (the green 
disks), the distance between the centers is less than the sum of the radii, therefore this formula would 
say this scenario does contain an interference which is correct. We have verified our condition of 
interference and we can now move on.

Step 2: Give the equality a threshold

The equality we have formed needs some threshold for interference between the two disk. We can 
choose a threshold of 0.01 so that:

distance between centers < = sum of the radii + 0.01

Testing this inequality with information about the two disks at a given instant in the animation will tell 
us whether the two disks are interfering so this function therefore provides a way of checking for static 
interferences.

I.2.2  Implementation:

Now that we have derived the formula for checking static interferences we can now discuss its 
implementation. Below is the processing code function called “interfere” that computes whether two 
balls are interfering. If the two balls are interfering, the function returns the boolean 1, or true. 
Otherwise, if the two balls are not interfering, the function returns the boolean 0, or false.

The function takes in BALL A and BALL B which are two ball objects that include the information of 
the center, the velocity, the radius, and the mass of a ball.

1 boolean interfere(BALL A, BALL B) {
2 if(A.r>0) {
3 return d(A.C,B.C)<=A.r+B.r+0.01 ; 
4 }
5 else {
6 return d(A.C,B.C)>=-A.r-B.r-0.01 ; 
7 }
8 }  

First, line 2 tests if the radius in the ball object has been specified as positive or negative. If the radius 
is specified as positive, line 3 performs the interference check for positive radii. First, the distance 
between the two centers of the balls is calculated, then it is compared to the sum of the radii of the two 
ball plus a threshold of 0.01. This line implements the formula we derived above:

distance between centers < = sum of the radii + 0.01

If this inequality is true, the function returns 1 to indicate that the two balls interfere. Otherwise, the 
function returns 0 to indicate the two balls do not interfere.

If the radius of a ball object has been specified as negative, line 6 performs the interference check for 
negative radii.
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I.3  Computing the New Velocities After Elastic Shock

I.3.1  Derivation:

Here we will derive the formula for computing the new velocities after elastic shock where kinetic 
energy and moment of inertia are preserved. First, we set up the scenario for our derivation. We have 
two disks, the first with center C1, radius r1, velocity vector V1, and mass of m1 the second with center 
C2, radius r2, velocity vector V2,, and mass m2. The scenario can be seen below with the initial positions 
of the disks shown in red. 

There are 5 steps to this derivation.

Step 1: Find out where the disks are at time t

The velocity vectors shown in the figure above indicate that the two disks are moving toward each 
other. We can see in the figure below, that the disks collide at time t in the positions shown in blue. 
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The centers for the two disks at time t are at C1+t*V1 and C2+t*V2 for disks 1 and 2 respectively. We set 
these values equal to the variables:

C1' =  C1+t*V1

C2' =  C2+t*V2

Step 2: Compute normal vector

We compute the vector N, orthogonal to the plane of contact. This vector is the normal of the tangential 
contact plane of collision and can been seen in the figure below in red. N is equal to the unit vector of a 
vector created between the centers of the two disks at time t:

N = U(C1'C2')

Step 3: Compute  Δ

Now we want to create a vector in the normal direction with its magnitude related to the normal 
components of the initial velocities. First we compute the normal component of the relative velocities:

(V2-V1) ∙ N

Then we use this to compute vector Δ:
Δ = ((V2-V1) ∙ N) N

We only look at the normal component of the velocities because there is no change in velocity for 
velocity components not in the direction of the normal. This can be seen in the figure below:
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In the figure above, we can see that the final velocities of the two disks would not change as a result of 
this collision because there are no velocity components in the direction of the the normal of the 
tangential contact plane of collision.

Step 4: Compute fraction of Δ using ratio of masses

Next we find the ratio of masses that will be multiplied by Δ to get the fraction of Δ that contributes to 
the final velocity. The heaviness of the balls colliding will affect the final velocities of both balls if one 
takes into account the conservation of energy and momentum. The fraction of masses can be seen 
below:

 disk 1: m2/[(m2+m1)/2] *  Δ
 disk 2: m1/[(m2+m1)/2] *  Δ

Step 5: Write equations for final velocities

Finally, we can write the equations for the new velocities after elastic shock, V1' and V2', for disks 1 and 
2 respectively:

V1' = V1 + m2/[(m2+m1)/2] *  Δ
V2' = V2 + m1/[(m2+m1)/2] *  Δ

If disk 2 is much heavier than disk 1, the Δ term will dominate the final velocity of disk 1. If disk 2 is 
much lighter than disk 2, the Δ term will be eliminated in the final velocity of disk 1 because it doesn't 
matter how the other disk is moving, its mass is too small to affect disk 1's velocity.

I.3.2  Implementation:

Now that we have derived the formula for computing the new velocities after elastic shock where 
kinetic energy and moment of inertia are preserved, we can now discuss its implementation. Below is 
the processing code function called “shock” that computes new velocities for elastic shock. The 
function does not return the velocities, but instead modifies the velocities of the balls passed to it to 
equal the new, calculated velocities. 

The function takes in BALL A and BALL B which are two ball objects that include the information of 
the center, the velocity, the radius, and the mass of a ball.

1 void shock(BALL A, BALL B) {
2  vec N = U(V(A.C,B.C)); 
3 vec D=S(dot(M(-1,A.V,1,B.V),N),N); 
4 A.V.setTo(M(1,A.V,2*B.m/(A.m+B.m),D)); 
5 B.V.setTo(M(1,B.V,-2*A.m/(A.m+B.m),D));
6  } 

First, line 2 sets N, the normal of the tangential contact plane of collision, using the equation we 
derived above in Step 2: 

N = U(C1'C2')
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Then, line 3 sets Δ, a vector in the normal direction with its magnitude related to the normal 
components of the initial velocities, using the equation we derived above in Step 3:

Δ = ((V2-V1) ∙ N) N

The final velocities are computed and set in lines 4 and 5 of the function. The final velocities are 
computed using the final equations we derived above:

V1' = V1 + m2/[(m2+m1)/2] *  Δ
V2' = V2 + m1/[(m2+m1)/2] *  Δ

The function does not return the velocities, but instead modifies the velocities of the balls passed to it 
to equal the new, calculated velocities. 
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II.  PIT and PIC

The following section explains two animation techniques for collision detection, PIT and PIC. Then, 
these two techniques are compared so we may obtain a full understanding of their differing 
implementations.

An example setup of the scenario we will use to describe this technique is shown in the figure below. 
The scene holds three disks. All disks have the same radius. The blue and green disks can be moved to 
simulate collisions and each has a velocity vector indicating its direction and speed of movement. For 
the blue and green disks, the path of each disk's movement is shown using multiple copies of the disk 
spaced apart from each other in time. The closer the disks in a disk path are together, the faster the disk 
itself is moving. 

We simulate movement of either the blue or green disk by first selecting an initial position for the that 
disk. This is done by placing the first path disk on the scene where desired. Then, we can place the third 
disk in the disk path to select the direction and speed of that disk in the animation. The closer the third 
disk is place to the first disk in the disk path, the faster the disk itself is moving. 

The red disk is modeled as having a very high mass, therefore it can be used as a barrier for the other 
two disks to run into. The red disk can be moved around to different places in the scene but we cannot 
control its velocity. The red disk does not move when the other disks collide with it because its mass is 
so high. The red disk will not be used in this section to explain PIT and PIC, however, it will be used 
later in some further simulations of the two techniques.
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II.1  PIT

The first animation technique for collision detection that we will approach is the Periodic Interference 
Test, or PIT, technique. PIT detects collisions at the end of each frame, and computes new velocities for 
all pairs of interfering disks. Shown in the figure below is the collision detection of two disks using the 
PIT method. Note that this figure has the same initial configuration as the that of the figure that will be 
used when describing the PIC technique below in section II.2. Also note that the collision detection 
figures from the two techniques show different resulting disk velocities and configurations.

There are five steps in this technique. 

Step 1: Move every disk one frame 

Each disk in the scene is moved forward with its initial velocity for one full frame. The position of the 
disk at the end of this frame is then drawn in the scene. This can be seen in the figure above, the second 
disks in the paths of both the green and blue disks are drawn according to where they ends up after one 
frame. 

Step 2: Check for static interference

At the end of the frame, each pair of disks is compared to identify if there is any static interference 
between the disks. This is done using the “interfere” function described previously in section I.2.2 
which computes whether two disks are interfering.

Step 3: Calculate resulting velocities

If an interference is detected in Step 2, the “shock” function described previously in section 1.3.2 is 
used to calculate the new velocities that result from the collision. The shock function is called only at 
the end of the frame so it interprets the collision as happening at that moment in time at the end of the 
frame (the collision could have happened anytime within that time frame but the PIT method only 
looks for collisions at the end of frames).

Step 4: Change the velocities of the disks
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The “shock” function then sets the velocities of the disks to the new velocities calculated within the 
shock function that resulted from the collision. 

Step 5: Repeat for every frame 

This process is repeated every frame using the disk velocities from the previous frame until all 
movement in the scene is completed.

In summary, PIT checks which pairs of disks interfere at the end of each frame, computes new 
velocities for these pairs, sets the disks' velocities to the new velocities, and repeats for every frame 
until all movement is finished.

II.2  PIC

The second animation technique for collision detection that we will approach is the Predicted Instant of 
Collision, or PIC, technique. PIC simulates the animation between frames by computing the time t to 
the first collision (if any) between the frames, rolling the animation until time t, computing new 
velocities for the colliding pair, and iterating until the time for the next frame is reached. Shown in the 
figure below is the collision detection of two disks using the PIC method. Note that this figure has the 
same initial configuration as the that of the figure used when describing the PIT technique above in 
section II.1. Also note that the collision detection figures from the two techniques show different 
resulting disk velocities and configurations.

There are 6 steps in this technique.

Step 1: Check for collisions 

At beginning of each frame, before moving anything, we compare all disks to all other disks once to 
predict the earliest collision times of disk pairs in the scene. To do this, we use the method described in 
section I.1, “predicting the time to first collision,” that uses the “collision” function described in detail 
in section I.1.2 which takes in the initial velocities and positions of the disks to predict the earliest 
collision time between the two disks.
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Step 2: Advance all the disks 

The earliest collision prediction time was chosen in Step 1.  Now, the disks are moved to the positions 
they would occupy at that collision time. This can be seen in the figure above. The initial positions of 
the disks are shown as the first disks in the two paths. The disks are then advanced to their positions at 
the collision time. This is shown in the figure as two unfilled disks colliding just before the disks for 
the second time frame are drawn.

Step 3: Calculate the new velocities 

The “shock” function described previously in section 1.3.2 is used to calculate the new velocities that 
result from the collision at the collision time calculated in Steps 1 and 2. In this, the PIC, technique, the 
shock function can be called at any point within a time frame. We call the shock function on the exact , 
calculated time when the collision occurs so PIC interprets collisions as happening exactly at the actual 
time of collision, not just at the end of the time frame like the PIT technique.

Step 4: Repeat collision calculations for all collisions in time frame

In the PIC technique, unlike the PIT technique, a collision can occur at any time within a time frame. In 
Step 2, the disks were advanced to the time of the collision. This advanced time may be less than the 
time step, in which case the collision calculations need to be repeated  to make sure there are no other 
collisions in the time left in the time frame.

Step 5: Advance disks to end of time frame

If there are no more collisions in the time step, we advance the disks to the end of the time frame using 
the current velocities that have been calculated. In the figure above, this is when we draw the next disks 
in the disk paths.

Step 6: Repeat for every frame

This process is repeated every frame using the velocities from the previous frame until all movement in 
the scene is completed.

In summary, PIC computes the time t of first collision (if one occurs before the next frame), advances 
the animation to t, computes new velocities after the shock, and then does it again. If no collision 
occurs before the next frame, it advances the balls to the next frame. 

II.3  PIT vs PIC

The fundamental difference between PIT and PIC is when they perform their sampling of collisions in 
the animation. PIT only looks for collisions at the end of each time frame by searching for interference. 
So collisions can only be detected at the end of a time frame with PIT. If collisions occur during the 
time frame, they can only be detected if they result in interference that can be detected by PIT at the 
end of the frame. So PIT essentially takes all collisions occurring during a given time frame and gives 
them the collision time t of the end of the time frame (if it detects the collision that occurred at all since 
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there may be no interference at the end of the time frame). PIC, on the other hand, starts by computing 
the time t of the first collision within a time frame (if a collision exists within that frame) and 
advancing the disks to that collision time. So PIC can identify exact collision times within a time 
frame. Because PIC advances the disks to the detected collision time within the time frame and then 
continues to search for collisions within that frame, PIC can identify more than one collision per frame. 
PIT cannot identify more than one collision per frame, it only sees the collision that occurs by 
interference at the end of a particular frame.
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III.  Illustration and Explanation of Four Cases Using PIT   

The following section presents four clear cases where the PIT collision detection animation technique 
described in section II is wrong. For each case, images are provided that show the trajectory computed 
by PIT (the wrong trajectory) and then the expected trajectory for the situation computed by PIC (the 
correct trajectory). The cases presented here include: delay, wrong direction, missed collisions, and 
incorrect handling of nearly simultaneous collisions.
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III.1  Case 1 : Delay 

The first case presented here in which the PIT collision detection technique does not perform correctly 
and provides an incorrect output is “delay” An example of this case can be viewed in the figure below. 
Both simulations (PIT and PIC) have the same initial configuration. The wrong, PIT simulation output 
can be seen on the left side of the figure, the correct, PIC simulation output is shown on the right. 

PIT PIC

The PIT technique, shown on the left in the figure above, resulted in the blue disk moving to the right 
in the animation with a small delay on its movement when compared to the movement of the blue disk 
in the correct implementation shown on the right. To understand why this delay on the blue disk 
movement occurred in the PIT animation, we can study the two figures above. 

In the PIT output on the left, we can see that the collision between the stationary blue ball and the 
moving green ball was detected later than it was in the PIC collision on the right. Because the PIT 
technique waited until the end of the frame to check for collisions, it saw the collision between the two 
balls later than the actual collision time as can be seen by comparing the two outputs in the figure 
above. Because the stationary blue ball was not hit by the green ball until a later time, the blue disk did 
not begin to move until a later time. Because of this, the blue disk was delayed in its motion in the PIT 
animation.

The correct timing for this scenario can be seen on the right in the figure above. Here, the collision was 
detected right when the green disk first touched the blue disk so the blue disk began its movement 
precisely when the two disks collided and its motion was not delayed in the PIC animation.
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III.2  Case 2 : Wrong Direction 

The second case presented here in which the PIT collision detection technique does not perform 
correctly and provides an incorrect output is “wrong direction.” An example of this case can be viewed 
in the figure below. Both simulations (PIT and PIC) have the same initial configuration. The wrong, 
PIT simulation output can be seen on the left side of the figure, the correct, PIC simulation output is 
shown on the right. 

PIT PIC

The PIT technique resulted in the blue disk moving in the wrong direction after the collision with the 
red disk. This indicates that the new velocity value calculated by the shock function was incorrect. To 
understand why this happened, we can study the two figures above. 

In the PIT output on the left, we can see that the collision was detected later than it was in the PIC 
collision on the right. Because the PIT technique waited until the end of the frame to check for 
collisions, it saw the collision with the red ball at the time shown on the left in the figure above. PIT 
sent this time to the shock function and it calculated the final velocity for the collision as if it had 
occurred right at that point. So, this resulted in a final velocity in the wrong direction. 

The correct final velocity for this scenario can be seen on the right in the figure above. Here, the 
collision was detected right when the blue disk first touched the red disk. When this time of collision 
was sent to the shock function, the final velocity was correctly calculated.
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III.3  Case 3 : Missed Collisions 

The third case presented here in which the PIT collision detection technique does not perform correctly 
and provides an incorrect output is “missed collisions.” An example of this case can be viewed in the 
figure below. Both simulations (PIT and PIC) have the same initial configuration. The wrong, PIT 
simulation output can be seen on the left side of the figure, the correct, PIC simulation output is shown 
on the right. 

PIT PIC

The PIT technique resulted in the blue and green disks completely missing each other in the animation. 
This indicates that no collision was found by the interfere function. To understand why this happened, 
we can study the two figures above. 

In the PIC output on the right, we can see that the collision between the two disks occurred between the 
second and third time frames. We can tell this because the empty circles indicating the collision are 
present between the second and third disks on the disk paths for both the blue and green disks. In the 
PIT output on the left, we can see that the collision was completely missed because the PIT technique 
waited until the end of the frame to check for collisions. When PIT called the interfere function at the 
end of the second time frame (just before drawing the third disks in the blue and green disk paths), the 
function detected no interference between the green and blue disks because, as we can see on the left in 
the figure above, the two disks do not interfere at the end of the second frame.

The correct collision detection for this scenario can be seen on the right in the figure above. Here, the 
collision was correctly detected right when the blue disk touched the green disk at a time between the 
second and third frames. 
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III.4  Case 4 : Incorrect Handling of Nearly Simultaneous Collisions 

The last case presented here in which the PIT collision detection technique does not perform correctly 
and provides an incorrect output is “incorrect handling of nearly simultaneous collisions.” An example 
of this case can be viewed in the figure below. Both simulations (PIT and PIC) have the same initial 
configuration. The wrong, PIT simulation output can be seen on the left side of the figure, the correct, 
PIC simulation output is shown on the right. 

PIT PIC

In the figure above on the right, we can see that in the correct implementation: first the blue disk should 
collide with the green disk, then the green disk should immediately collide with the red disk. These two 
collisions should both occur between the second and third time frame. This is an example of nearly 
simultaneous collisions (multiple collisions between two frames). 

The PIT technique, shown on the left in the figure, did not properly handle the multiple collisions that 
happened between two frames.  To understand why this happened, we can study the two figures above. 
Instead of first detecting the collision between the green and blue disks and then subsequently detecting 
the green disk's collision with the red ball, as is correct, the PIT technique waited until the end of the 
second frame to check for collisions and therefore saw the all collisions at the same time, including an 
incorrect collision between the blue and red disks because the trajectory of the blue disk had not been 
altered from the first collision. 

So, PIT calculated the final velocities of the blue and green disks based on the assumption that all the 
collisions occurred at the end of the second time frame. This results in the wrong output shown on the 
left in the figure above.
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IV.  Conclusion

The two methods PIT and PIC are very different, and while it evident that for two-dimensional disks 
PIC is clearly superior, there are circumstances where it is not.  Further, even for simulations of 
colliding two-dimensional disks, there are certain circumstances where the resulting motion from the 
PIT method is reasonably close to the PIC method for all collisions.

PIT is acceptable to use when it is reasonable to assume that it will miss or mishandle very few of the 
collisions that should occur in a “perfect” system.  If this assumption can be made, then PIT can be 
chosen as the method of detecting collisions.  It remains to find the conditions under which such an 
assumption is reasonable, however.  We saw earlier four cases which can cause the PIT method to fail 
to accurately detect and resolve a collision.  In all cases this is caused by the static interference being 
detected “too late.”  If we can ensure that all the interferences are detected before the discs have passed 
each other, we can reasonably assume that PIT will behave reasonably in all situations.

This quality of the scenario can be calculated from the relationship of three parameters:
-The radius of the smallest disk in the simulation
-The maximum velocity of the simulation.
-The time step of the simulation.

If the discs are unable to move by a distance greater than the radius of the smallest disc in between 
static interference tests, then it is impossible for the centers of two discs to pass during that time.  

Let t = a fixed time step
Let r = radius of the smallest disc in the simulation

Let v = maximum expected velocity in the simulation
IF t*|v| < r/2 THEN PIT will accurately find nearly all collisions in the simulation.

If the velocities are low enough that even when the discs are both headed straight towards each other 
the will not pass each others' centers in a single step, then PIT will function reasonably well. 
Furthermore, given a scenario to simulate, we can adjust the time step t such that t*|v| < r/2 remains 
true, and do multiple sub-steps if we want to advance more quickly.  This only becomes infeasible 
when the discrepancy necessitates calculating very many sub-steps per frame.

Clearly, PIT is generally acceptable when the difference between the smallest object and fastest speed 
is not very large. There are some situations in which PIT is better suited than PIC, despite PIC being 
able to function well regardless of the relationship between object size, velocity, and time step.  The 
disc is a shape that is extremely simple to give an implicit formulation of, and this is crucial in the 
derivation of the formula used to predict the collision time.  Changing the shape would necessitate the 
re-derivation of an equation to solve, and a reimplementation of the collision functionality.  On the 
other hand, the PIT method would not be especially more complex for different shapes.  Because it is 
calculated by finding static interference, the collisions between various shapes would be much simpler 
to implement.

If the velocity were non-constant, we would need to model the motion using forces applied over the 
motion.  This would further complicate solving for collision times, we need to predict at what time the 
force has influenced the velocity which as influenced the position to cause a collision.  Compared to the 
changes to PIT to implement non-constant velocity, this is much more complicated.  Again, because 
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PIT is a sampling method, we simply update the positions by newton's equations and then check for 
static interference.

The third case in which it is difficult to use PIC, when compared to PIT, is if the objects are rotating. 
The trend in the first two instances continues here: now instead of just worry about position and 
velocity, we need to account for rotational position and velocity.  For example two boxes centered at 
some points x and y, may or may not be colliding at some time – it depends on their rotational position. 
And again, following the trend, this is an area where PIT is much simpler to implement.  We again only 
need to update the simulation without worrying about predicting, and then we check for static 
interference.
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