
Consistent Solid and Boundary Representations
from Arbitrary Polygonal Data

T. M. Murali” Thomas A. Funkhouser t

Brown University Bell Laboratories

Abstract

Consistent repreaentations of the boundary and interior
of thredimensional solid objects are required by appli-
cations ramging from interactive visualization to finite
element analysis. However, most commonly available
models of solid objects contain errors and inconsisten-
cies. We describe an algorithm that automatically con-
structs consistent representations of the solid objects
modeled by an arbitrary set of polygons. The key fea-
ture of our algorithm is that it first partitions space
into a set of polyhedral regions and then determines
which regions are solid based on region adjacency rela-
tionships. From the solid polyhedral regions, we are able
to output umsistent boundary and solid representations
in a variety of iile formats. Unlike previous approaches,
our solid-based approach is effective even when the in-
put polygons intersect, overlap, are wrongly-oriented,
have T-junctions, or are unconnected.

1 Introduction

We define a set of polygons in @ to be consistent if the
union of the polygons is a closed 2-manifold (see Hoff-
mann’s book [12]for a definition) in which each polygon
is oriented with its normal pointing away from the in-
terior of the volume enclosed by the manifold. We say
that a consistent set of polygons is a wrmct r-epwmra-
tation of a polyhedral solid object in ~ if the manifold
formed by the polygons is identical to the boundary of

“Addreaw Department of Computer Science, Bmr
90129, Duke University, Durham, NC 2770S-0129.
Email: tnax~cs. duke.adu. This work was done when
the author was visiting Bell Laboratories.

tBell LaboratOriee,713(3MOunt~n A_~e, 2A-202, Mur-
ray Hill, NJ 07974. Email: funMbell-lab6. corn

Permission to make digitallltsrd copies of ail or part of this material for
pemomd or classroom use is granted without fee provided that the copies
are not made or distibutcd for profit or commercial advantage, the copy-
right notice, the title of the publication and its date appear, and notice is
given that copyight is by permission of the ACM,inc. To copy otherwise,
to republish, to post on servers or to redistribute to lists. requires specitic
permission @or f~.
1997 Symposium on interactive 3D Graphics, providence RI lJSA
Copyright 1997 ACM O-89791-884-3/97/04 ..$3.50

the solid object. Intuitively, such a representation al-
lows the unambiguous classification of a point as lying
inside the object, outside the object, or on the surface
of the object.

Correct representations of three-dimensional objects
are useful in a number of applications. For instance,
back-face culling, a technique used to render complex
models quickly [6], requirea that the polygons in the
model be consistently and correctly oriented. More
sophisticated rendering algorithms perform visibility
culling by processing the interiors of the solid objects
in the model [19, 20, 27]. In the case of interactive
collision-detection, some algorithms first process “free”
space, i.e., the complement of the union of all the ob-
stacles in the environment [11]. Such algorithms re-
quire a correct representation of the boundary of the
obstacles so that they can effectively construct the free
space. Similarly, algorithms for lighting simulation pro-
cess meshes constructed on the boundaries of the objects
being lit or analysed [1]. If the boundaries have cracks,
the mesh is malformed, causing errors and artifacts like
spurious shadows in the result. “Bad” meshes can also
produce errors in finite element analysis. Further, ba-
sic CAD/CAM operations like computing the mass or
volume of an object, solid modeling techniques such as
Constructive Solid Geometry that perform set opera-
tions on solid objects [18, 21, 28], and rapid prototyp
kg [24], which is used to manufacture objects from CAD
designs, need models with continuous and closed bound-
mies, with no cracks or improper intersections. Finally,
systems that design and optimize wireless communica-
tion systems for a closed environment like a building
require descriptions of the boundaries of the obstacles
in the building [8, 14].

Unfortunately, moat commonly available models of
solid objects, whether created by hand or by using au-
tomatic tools, contain geometric and topological flaws.
Typical errors are:

● wrongly-oriented polygons,

● intersecting or overlapping polygons,

● missing polygons,

. cracks (edges that should be connected have dis-
tinct endpoints, faces that should be adjacent have
separated edges), and

155

● T-junctions (the endpoint of one edge lies in the

interior of another edge).

For example, in Figure 1, there is a crack between seg-
ments a and b; segments c and d intersect; and the right
endpoint of segment e lies in the interior of d, forming a
T-junction. Such errors may be caused by operational
mistakes made by the person creating the model, may
creep in when converting from one file format to sn-
other, or may occur because a particular modeler does
not support some features (e.g., a snap grid).

a

ltu

I
b

e

Figure 1: A non-manifold model

Motivated by the above applications and model im-
perfections, we consider the following solid reconstruc-
tion problem in this paper:

Ekom an arbitrary set of polygons in R3, re-
construct a correct representation of the soJid
objects modeled by the polygons.

We describe an automatic technique to solve the solid
reconstruction problem that works well on many realis-
tic models and is guaranteed to output a consistent set
of polygons.

The remainder of this paper is organized as follows:
In the next section, we discuss previous algorithms to
solve the above problem. In Section 3, we briefly out-
line our approach. We describe our solid reconstmction
algorithm in more detail Section 4. Section 5 contains
experimental results and a brief discussion of the advan-
tages and limitations of our approach. In Section 6, we
discuss techniques that we plan to implement to over-
come these limitations. The final section is a brief con-
clusion.

2 Previous Work

In the computational geometry and solid modeling com-
munities, there has been a lot of work on the related
problem of robust geometric computing [7, 12, 13, 23,
25, 26, 29, 31]. These techniques are not applicable to
our problem since they attempt to avoid errors caused
by numerical imprecision and cannot clean-up already
incorrect data.

It has been noted in the literature that there are cur-
rently no robust techniques to solve the solid reconstruc-
tion problem [10, 17]. Previous approaches can be di-
vided into two categories: boundary-baaed approaches
and solid-based approaches.

Boundary-baaed techniques determine how the input
polygons mesh together to form the boundaries of the
objects modeled by them. Typically, these algorithms
merge vertices and edges that are “close” or zip to-
gether the boundaries of two faces by merging pairs
of “nearby” vertices, where “close” and ‘nearby” are
defined in terms of a prespecified tolerance. Some
boundary-based methods assume that either all the in-
put polygons are consistently oriented or that the ori-
entation of a polygon can be determined from the order
of the verticwi on its boundary [1, 3]. Such an assump-
tion is often invalid since many dataaets contain incon-
sistently oriented polygons. Other algorithms require
(a lot of) user intervention [5, 15], are inherently two-
dimenaional [14, 16] or are limited to removing parts of
zero-volume (like internal walls) from CAD models [2].
Btihn and Wozny [3] fl cracks or holes by adding poly-
gons; their method can potentially add a lot of polygons
to the model. However, the most common deficiency of
many of the previous techniques is that they use scene-
relative tolertmces to “fill over” cracks and generate con-
nectivity information about the model [1, 4, 24]. Deter-
mining the right tolerance for a given model is a difficult
task, probably requirhg input from the user. Moreover,
such approaches do not work well when the size of some
error in the input is larger than the smallest feature
in the model. In this caae, no suitable tolerance can
be chosen that both fills the cracks and preserves small
features.

Solid-baaed algorithms partition R3 into regions and
determine which regions are solid. Thibault and Nay-
lor [28] classify a region as solid exactly when there is at
least one input polygon lying on the region’s boundary
whose normal is directed away from the interior of the
region, while Teller [27] declares a region to be solid only
if a majority of the polygons lying on the region’s bound-
ary have such normals. Both techniques assume that
the orientations of the input polygons are correct. As
we have pointed out earlier, this assumption is unwar-
ranted for many dataaets. Note that both algorithms
were developed as a means to represent polyhedr~ the
authors did not set out to explicitly solve the solid re-
construction problem.

3 Our Approach

We have adopted a novel solid-based approach that
uses region adjacency relationships to compute which
regions are solid and constructs a consistent set of poly-
gons from the solid regions. In contrast to previous
boundary-based approaches that attempt to stitch and
orient boundary polygons directly, we first focus on clas-
sifying spatial regions as solid or not and then derive a

156

boundary representation from the solid regions. Also,
in contrast to previous solid-based approaches that de-
termine whether regions are solid or not based only on
local input polygon orientations, we execute a global al-
gorithm that focuses on the opacities of boundaries be-
tween regions. As a result, unlike previous approaches,
our algorithm is: 1) effective for models containing in-
tersecting, overlapping, and unconnected polygons, 2)
independent of the input polygon orientations, and 3)
guaranteed to output a consistent set of polygons.

4 Reconstruction Algorithm

Our algorithm proceeds in three phases (as show in Fig-
ure 2): (a) spatiaJ subdivision, (b) determination of
solid regions, and (c) model output.

4.1 SpatialSubdivision

During the spatial subdivision phase, we partition Rs
into a set of polyhedral cells and build a graph that
explicitly represents the adjacencies between the cells of
the subdivision. Each cell in the spatial decomposition
is represented by a node in the graph. Two nodes have a
link between them if the corresponding cells are adjacent
(i.e., the cells share a planar boundary).

Note that any partition of R3 (e.g., a tetrahedral de-
composition) will satisfy our purposes, as long as the
input polygons lie in the faces of the decomposition. In
our current implementation, the cells correspond to the
leaves of a Binary Space Partition (BSP) [9, 22]. To
construct the BSP, we specify a list of splitting planes

3. Each plane inwith which we recursively partition R
the list contains one of the polygons in the input; we
create only one plane for a set of coplanar polygons.
For each plane, we count the total area of the polygons
lying in it. We process the planes in decreasing order of
area to split R3.

Construction of the cell adjacency graph is dove-
tailed with the constmction of the BSP. Each node in
the graph represents a convex polyhedron. Each link
represents a convex polygon, and ia augmented by lists
of polygons describing the link’s opaque portions (those
covered by some input polygon) and the link’s transpar-
ent portions (those not covered by any input polygon).
If a leaf in the BSP is split into two by a plane, we create
new nodes in the graph corresponding to the new leaves
in the BSP, and update the links of the split leaf’s neigh-
bors to reflect the new adjacencies. For each updated
link, we perform two more operations: (i) we subtract
from the transparent part of the link any input polygon
that is coplanar with the splitting plane and (ii) we add
that input polygon to the link’s opaque part.

Figure 3 shows an example spatial subdivision (in
the plane). The input “polygons” are shown in Fig-
ure 3(a) as thick line segments. The BSP leaf nodes

(a)

t
SpatiaJ Subdivision

.Z!Q”(..
1 \

(c)

t
Model Output

**

(d)

Figure 2: (a) Input model with incorrectly-oriented
polygons (b) Subdivision of space (edges of the subdivi-
sion drawn slightly shifted from the input edges for clar-
ity) (c) Solid regions (shaded) (d) Output model with
correct polygon orientations.

(regions labeled with letters) are constructed using split-
ting “planes” (dashed lines labeled with numbers) that
support input “polygons,” as shown in Figure 3(b). Fi-
nally, the cell adjacency graph for this example is shown
in Figure 3(c) with the opacity of each link indicated by
its line style (solid lines represent the opaque parts of a
link, while dashed lines represent the transparent parts).

4.2 Determination of Solid Regions

During the solid determination phase, we compute
whether each cell is solid or not, based on the properties

157

(a) Example input model with spatial subdivision.

(b) Binary space partition

o Q

YG\<-F-> ‘- - E
\ 0/ D !

‘,1

o 0c
B --—. ~/

(c) Cell adjacency graph

Figure 3: Spatial subdivision example

of its links and neighbors. This approach is motivated
by the following observations:

1.

2.

3.

if two adjacent cells share a mostly transparent
boundary, it is likely that they are both solid or
both non-solid,

if two adjacent cells share a mostly opaque bound-
ary, it is likely that one is solid and the other is
non-solid, and

unbounded cells (i.e., the ones on the “outside”
that contain points at infinity, like cell E in Fig-
ure 3(a)) are not solid.

We quantify “how solid” each cell Ci is by its solidit~,
~i, a real number that ranges between –1 and 1. We
use si = 1 to denote that Ci is solid (i.e., contained in
the interior of a solid object), sad si = – 1 to denote
that Ci is non-solid (i.e., lies in the exterior of all solid
objects). An sa value between -1 and 1 indicates that
we are not entirely sure whether Ci is solid or not.

Our solid determination algorithm proceeds as fol-
lows. First, we assign a solidity value of -1 to all
unbounded cells since they are in the exterior of all

solid objects. Then, we compute the solidity Si of each
bounded cell C~ based on the solidifies of its neighbor
cells and the opacities of its links.

Formally, let aa,j, oi,j, and ti,jrepresent the total
area, opaque area, and transparent area, respectively,
of the link Li,j between cells Ci and Cj. Note that
CZi,j = Oi,j = titi = O iff Ci and Cj are not adjacent
(do not share a planar boundary); otherwise, ai,j >0
and oi~, ti,j ~ 0. Let the total area of the boundary of
C: be denoted by Ai = ~j ai,j, where Cj ranges over
all neighbors of C~. NOW, we can write an expression
for the solidity of each bounded cell Ci in terms of the
solidifies of each other cell Cj:

(1)

This formulation for computing cell solidifies matches
our intuition. When the link LiJ between two cells Ci
and Cj is entirely transparent (tiJ= aitiand Oij = O),
sj, the solidity that Cj contributes to si, is scaled by
ai,j, the maximum possible (positive) value. On the
other hand, when Li,j k entirely opaque (oiti = ai,j
and ti ,j = O), the contribution from Cj to si is scaled
by –ai,j, the minimum possible (negative) number. Fi-
nally, when Liti is partially opaque (O < ta,j < ai,j
and O < oi,j < ai,j) the contribution from Cj to si is
a linear interpolation between these two extremes, We
divide the total contribution to si by Ai to normalize
the value ofs~ between -1 and 1.

If the BSP has n bounded cells, (1) leads to a linear
system of n equations, Mz = b, where

● x G R“ is a vector of the (unknown) solidifies of the
bounded cells,

● b c R“ is a vector representing the cent ributions from
the (known) solidifies of the unbounded cells (bi =

Xk(oi,k - ~i,k), where k ranges over all unbounded
neighbors of C:),

● and M is an n x n matrix with the following properties
(here i and j are integers with 1< i,j < n and i # j):

1. Each diagonal element is positivw Mi,i = Ai >0.

2. Mid = Oi~ - ti,j . Th~,
● Mi,j >0 indicates Li,j is mostly opaque, ad
● Mi,j <0 indicates LiJ is mostly transparent.

3. M is symmetric, i.e., Mi,j = Mj,i.
4. M has weak diagonal dominance, i.e.,

~ lMi,jl < lMi,il,

j,j#i

for all i and there is a k such that

J,j+k

(if Ck has au unbounded neighbor or when C~ has at
least one link that is not fully opaque or fully trans-
parent).

158

These properties imply that M has an inverse (see the
Appendix for a proof). Hence, the linear system Mz = b
has a unique solution. We can solve the linear system to
obtain the the cell solidifies by computing z = M-lb.
However, inverting M takes0(n2)time, which can be
prohibitive costly if the BSP has many leaves, as is likely
to be the case if there are many polygons in the input. In
such cases, we take advantage of the fact that each leaf
in the BSP has a small number of neighbors. Therefore,
M is sparse and we can use an iterative procedure to
solve the linear system efficiently [30]. We would like
to point out that it is not difficult to show that the
elements of z have values between -1 and 1.

In our implementation, we use Gauss-Seidel itera-
tions. Each iteration takes time proportional to the
number of links in the adjacency graph. We set the
initial values of the solidifies of the bounded cells of the
subdivision to be O. We terminate the iterations when
the change in the solidity of each cell is less than some
small pr~specified tolerance. During each iteration, we
update the scdidities in arbhrary order. We plan to
study techniques that order the updates cleverly so as
to increaae the rate of convergence.

After solving the linear system of equations, we claa-
si~ each cell aa solid or not (a bkmry choice) by looking
at the sign of its solidity. A cell whose solidity is positive
is determined to be solid, whereas a cell whose solidity
is negative or zero is determined to be non-solid.

4.3 Model Output

Finally, in the model output phase, we write files con-
taining consistent descriptions for the objects repre
sented by the input polygons. To generate a consistent
representation, we simply output a polygonal demrip-
tion of all links in the adjacency graph that represent
the boundaries between cells that are solid (s{ > O)
and cells that are not solid (si < O). We consistently
orient s31output polygons away from solid cells (see F~-
ure 2(d)).

Another iile format we currently support is a solid-
based representation that represents the solid objects
by explicitly encoding the BSP as a list of split planes
augmented by a solidity value for each leaf ceU.

5 Results and Discussion

We have implemented our solid reconstruction algor-
ithm and run it on a number of dataaets.

In the trivial case, when the input model is a manifold
polygonal surface, the boundary representation output
by our algorithm is identical to the input model (as it
should be). In the manifold case, all cells lie entirely
in the interior or exterior of the modeled objects, and
the solidity computed by our algorithm is exactly 1 for
every cell in the interior of the solid object and exactly

–1 for every cell in the exterior of all solid objects. This
follows readily from the fact that each link is either fully
opaque or fully transparent. Note that unlike previous
boundary-baaed approaches, our algorithm additionally
outputs a representation of the modeled object as the
union of a set of convex polyhedra.

In many complex caaes, when the input model con-
tains errors, our algorithm is able to fix errors automat-
ically and output consistent solid and boundary rep-
resentations, even in cases where previous approaches
are unsuccessful. For instamce, consider the 3D polygo-
nal model of a coffee mug shown in Plate I(a). In this
example, polygons are oriented randomly (back-facing
polygons are drawn in black); the handle is modeled by
several improperly intersecting and disconnected hollow
cylinders (note the gaps along the top silhouette edge
of the handle); and the polygons at both ends of the
handle form improper intersections with the side of the
cup.

AU previous approaches known to the authors fail
for this simple example. Boundary-based approaches
that traverse the surface of the object [15] fail in the ar-
eas where polygons are unconnected (along the handle).
Proximity-baaed approaches [1, 4, 24] that merge fea-
tures within some tolerance of each other do not work as
no suitable tolerance can be chosen for the entire model
because the size of the largest error (a crack between
polygons on the handle) is larger than the size of the
smallest f~ture (a bevel on the top of the lip). Finally,
solid-baaed approaches [27, 28] that decide whether each
cell is solid or not baaed on the orientations of the in-
put polygons along the cell’s boundaries fail because the
input has many wrongly-orient ed polygons.

Our algorithm is able to fix the errors in this ex-
ample and output a correct and consistent model (see
Plates I(b) -I(d)). Plate I(b) shows outlines of the cells
constmcted during the spatial subdivision phaae, with
each cell labeled by its solidity computed during the
solid determination phase. In addition, each cell C~ is
outlined with a color that depends on the value of its
solidity ~i (the color ranges from red when Si = 1 to
green when si = –1). Plate I(c) shows oriented poly-
gons computed during the model output phase that are
drawn along the boundaries between solid and non-solid
cells. Finally, Plate I(d) shows the boundary representa-
tion output of our algorithm. The reconstructed model
is both correct and consistent: the cracks in the han-
dle have been filled in; intersections in the handle have
been made explicit; and all polygons have been oriented
correctly.

Plates II-IV show results derived from experiments
with larger models from a variety of applications. The
images on the left side of the last page show the in-
put models, while the images on the right show dif-
ferent visualizations of the cell solidifies computed for
these models with our algorithm. In all these cases,
we were able to construct correct and consistent solid
and boundary representations. The three sets of images
demonstrate the importance of appropriate visualiza-

159

tion techniques for viewing the solid cells of the BSP. For
instance, the text strings drawn in Plate II(b) would be
overlapping if used in Plates III(b) and IV(b). Similarly,
the opaque boundaries drawn in Plate III(b) would be
inappropriate for use in Plate IV(b) as the outer-most
solid cells (ceilings sad floors) would mask the interior
non-solid cells. In complex cases, such as Plate IV(b),
we simply represent cell solidifies by colored dots drawn
at the cells’ centroids. In all cases, solidity information
is drawn with a representative color linearly interp~
lated between red (for si = 1) ~d green (for si = - 1).
We use a 3D viewing program to allow the user to select
different visualization options interactively.

We now present an analysis of the running time of
our algorithm for the above models. In the table be-
low, each row corresponds to the model whose name is
specified in the iirst column. The second column dis-
plays the number of polygons in the model. The third
column contains the number of cells in the spatial subdi-
vision constructed for that model. The fourth and fifth
columns specify the number of Gauss-Seidel iterations
needed for convergence and the total running time for
the model in seconds, respectively. These experiments
were run on SGI Indigo2 with a 200MHzR4400 proces-
sor. For the mug, about 35% of the total time was spent
on calculating solidifies, while for the other models, this
time ranged from 10-15%.

Model #polys #cells #iter. time
Mug 121 359 61 9.77
Clutch 420 159 39 8.64
Phone I 1228] 819] 82 I 78.64
Budding 1687] 1956] 92 I 240.34

The advantages of our algorithm are related to the
fact that we use a global approach to classify regions of
space rather than just considering local boundary rela-
tionships or feature proximities. Fmt, our algorithm is
efkctive for models containing intersecting, overlapping,
or unconnected polygons for which it is difficult to tr-
verse boundaries. Second, the output of our algorithm
does not depend on the initial orientations of input poly-
gons. Third, the boundary output by our algorithm is
alwags guaranteed to be consistent (although it may not
be a correct representation of the modeled object) since
it is derived directly from the solid cells of the partition.
Finally, we are able to output a solid representation of
the model as well as a boundary representation, which
may be critical to many applications.

However, our approach does have limitations. Its suc-
cess depends on the spatial subdivision constructed. As
a result, missing polygons may lead to the creation of
cells that do not correctly model the shape of the solid
object. Another limitation of our technique is that it
is based on the assumption that input polygons sepa-
rate solid and non-solid regions. Therefore, if the input
model contains two solid objects that are intersecting
or separated by a polygon in the input model (e.g., a
mouse on a table), the solidifies for the cells along the
solid-on-solid boundary are driven by each other to vai-

ues lower than 1. Intuitively, the polygon separating the
solid objects is an “extra” polygon.

Fortunately, in many cases, cells with intermediate
solidity values (si close to O) identify parts of the model
containing topologictd errors and inconsistencies like
missing and extra polygons. This feature is useful for
verifying model consistency and localizing model inac-
curacies. For example, notice that in Plates I(a) and
I(b) cells are red (si close to 1) in are~ where the input
model has no errors (on the left side of the cup) and
that cells are yellow-ish (si close to O) in areas where
there are intersecting or unconnected polygons in the
input model. This example demonstrates an important
feature of our algorithm: it not only helps fix up errors,
but also identifies where they are.

6 Future Work

There are two possible directions for future work. One
approach we plan to examine is to determine the 1~
cation of missing/extra polygons as the BSP is being
constructed. During the construction of the BSP, poly-
gons are placed on the boundaries of the current set of
leaves (some of the current leaves will be interior nodes
in the fial BSP). We plan to maintain the solidifies of
the current leaves of the BSP. If a current leaf has a so-
lidity close to Oand there is a plane that splits the leaf
so that at least one of the two new leaves has solidity
closeto –1 or 1, then it is likely that the splitting plane
contains a missing polygon. A similar idea can be used
to recognize extra polygons.

Another possible avenue for future work is to utilize
final cell solidity values (those determined after the BSP
has been fully constructed) to recognize missing/extra
polygons. We plan to do so by defining a metric that
measures the “goodness” of the BSP and using the met-
ric to drive a simulated annealing or optimization pro-
cess that maximiz es the goodness of the BSP. For ex-
ample, a “goodness” metric that penrdizes solutions in
which two cells with markedly different (respectively,
similar) solidifies share a mostly transparent (respec-
tively, opaque) boundary is shown below (in the for-
mula, i and j range over all the leaves of the BSP and
~#3):

goo&ess _ D,j ((1- ‘si~s”)~i,j + +Oi,j)—

~iti Ua,j

By associating weights with the transparent and opaque
areas of each link, we can “change” the opacity of a link.
Our goal then is to search for that set of weights that
maximizes the goodness.

Note that the two ideaa outlined above are not re-
stricted to BSPS and can be generalized to any spatial
decomposition. We expect these extensions to allow our
algorithm to adapt dynamically when the model has
missing polygons or solid-on-solid regions, and thus gen-
erate correct solutions for a wider class of input models.

160

7 Conclusions

Wehavedescribed an algorithm that reconstructs con-
sistent solid and boundary representations of objects
from error-ridden polygonal data. The algorithm parti-
tions R3 into a set of cells, computes the solidity of each
cell baaed on cell adjacency relationships, and utilizes
computed cell solidifies to construct a consistent out-
put representation. In contrast to previously described
approaches, our method gives excellent results on many
real 3D models cent aining intersecting, overlapping, or
unconnected polygons. We believe that our technique
is useful for interactive visualization, visibility culling,
collision detection, radiosit y, and many other interactive
3D graphics applications.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Daniel R. Baum, Stephen Mann, Kevin P. Smith,
and James M. Wmget. Making radiosity us-
able: Automatic preprocessing and meshing tech-
niques for the generation of accurate radiosity so-
lutions. In Thomas W. Sederberg, editor, Com-
puter Graphics (SIGGRAPH ’91 Proceedings),vol-
ume 25, pages 51-60, July 1991.

Jan Helge Balm. Removing zero-volume parts from
CAD models for layered manufacturing. IEEE
Computer Gmphics and Applications, 15(6):27-34,
1995.

Jan Helge Bohn and Michael J. Wozny. A topology-
baaed approach for shell closure. In P. R. Wilson,
M. J. Wozny, and M. J. Pratt, editors, Geometric
Modeling for Product Realization, pages 297-319.
North-Holland, Amsterdam, 1993.

Geo&ey Butlin and Clive Stops. CAD data re-
pair. In Pmcerziings of the 5th International Mesh-
ing Roundtable, October 1996. See also http://
VW. f egs. co .uk/CADf ix. html.

Carl Erikson. Error correction of a large architec-
tural modek the Henderson County Courthouse.
Technical Report TR95-013, Department of Com-
puter Science, University of North Carolina at
Chapel Hill, 1995.

J. D. Foley, A. van Dam, S. K. Feiner, and J. F.
Hughes. Computer Gmphics: Principles and Pmc-
tice. Addison-Wesley, Reading, MA, 1990.

S. Fortune and C. J. Van Wyk. Efficient exact
arithmetic for computational geometry. In Pmt.
9th Annu. ACM S~pos. Comput. Gwm., pages
163-172, 1993.

S. J. Fortune, D. M. Gay, B. W. Kernighan,
O. Landron, R. A. Valenzuela, and M. H. Wright.
WISE design of indoor wireless systems: practical

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

computation and optimization. In IEEE Compu-
tational Science and Engineering, volume 2, pages
58-68, Spring 1995.

H. Fuchs, Z. M. Kedem, and B. Naylor. On visi-
ble surface generation by a priori tree stmctures.
Comput. Gmph., 14(3):124-133, 1980. Proc. SIG-
GRAPH ’80.

S. Gottschalk, M. C. Lin, and D. Manocha. OBB-
tree: A hierarchical structure for rapid interfer-
ence detection. In Holly Rushmeier, editor, Com-
puter Graphics (SIGGRAPH ’96 Proceedings), vol-
ume 30, pages 171-180, August 1996.

Martin Held, James T. Klosowski, and Joseph S. B.
Mitchdl. Evaluation of collision detection methods
for virtual reality fly-throughs. In PTVC. ‘7th Canad.
Conf. Comput. Geom., pages 205-210, 1995.

C. Hoffrnann. Gwmetric and Solid Modeling. Mor-
gan Kaufmann, San Mateo, California, 1989.

C. M. HoErnann, J. E. Hopcroft, and M. S. Kara-
sick. Towards implementing robust geometric com-
putations. In Proc. 4thAnnu. ACM Syrnpos. Com-
put. Geom., pages 106-117, 1988.

Brian W. Kernighan and Christopher J. Van Wyk.
Extracting geometrical information horn awhitec-
tural drawings. In Proceedings of the Workshop
on Applied Computational Geome@, pages 82–87,
May 1996.

Delnaz Khorramabadi. A walk through the
planned CS building. Technical Report UCB/CSD
91/652, Computer Science Department, University
of California at Berkeley, 1991.

Robert Laurini and Fraqoise Milleret-llatfort.
Topological reorganization of inconsistent geo-
graphical databases: a step towarda their certifica-
tion. Computer and Gmphics, 18(6):803-813, 1994.

Ernst Mtlcke. Comments on the Computa-
tional Geometry Impact Task Force Report.
At http: IIUW. cs. duke. edd- jef f elconpgeoml
f iles/mucke. html, June 1996.

Bruce F. Naylor. SCULPT: an interactive solid
modeling tool. In Pmt. Gmphics Interface ’90,
p%= 138-148, 1990.

Bruce F. Naylor. Interactive solid geometry via
partitioning trees. In Proc. Gmphics Interface ’92,
pages 11-18, 1992.

Bruce F. Naylor. Partitioning tree image repre-
sentation and generation from 3D geometric mod-
els. In Pmt. Gmphics Interface ’92, pages 201-212,
1992.

161

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

A

Bruce F. Naylor, John Amanatides, and Wfiam C.
Thlbault. Merging BSP trees yields polyhedral set
operations. In Pmt. SIGGRAPH ’90, volume 24
of Computer Gmphics, pages 115-124, New York,
1990. ACM SIGGRAPH.

R. A. Schumacher, R. Brand, M. Gilliland, and
W. Sharp. Study for applying computer-generated
images to visual simulation. Technical RepO1’t

AFHRL-TR+9-14, U.S. Air Force Human Re-
sources Laboratory, 1969.

Mark Segal. Using tolerances to guarantee valid
polyhedral modeling results. Computer Graphics,
24(4):105–114, August 1990.

Xuejun Sheng and Ingo R. Meier. Generating
topological structures for surface models. IEEE
Computer Gmphics and Applications, 15(6):3541,
1995.

Jonathan R. Shewchuk. Robust adaptive floating-
point geometric predicates. In Proc. 12th Annu.
ACM Sympos. Comput. Gwm., pages 141-150,
1996.

K. Sugihara and M. Iri. A solid modelling system
free from topological inconsistency. Journal Of In-
formation Pmcwsing, 12(4):380-393, 1989.

Seth Jared Teller. Visibility Computations in
Densely Occluded Poiyhednal Environments. PhD
thesis, Department of Computer Science, Univer-
sity of California, Berkeley, 1992.

William C. Thibault and Bruce F. Naylor. Set
operations on polyhedra using binary space parti-
tioning trees. In Proc. SIGGRAPH ’87,volume 21
of Computer Gmphics, pages 153-162, New York,
1987. ACM SIGGRAPH.

C. Yap. Towards exact‘geometric computation.
Comput. Gwm. Thwry Appl., 1996. to appear.

David M. Young. Itemtive solution of large linear
systems. Academic Press, New York, NY, USA,
1971.

J. Yu. Ezact Arithmetic Solid Modeling. PhD the-
sis, Purdue University, CS Dept., West Lafayette,
IN 47907, USA, December 1991.

Proof that M has an inverse

We prove that an inverse exists for any matrix M with
weak diagonal dominance, i.e.,

Assume that M has no inverse. Then the determinant
det M = O. As a result, there exists a non-zero vector u
such that Mu = O [30, Theorem 1.4]. Let i be the index
SUChthat l~i I = maxj Iuj 1.Note that IuiI >0 since u is
not a zero vector. Now, Mu = O implies that

j,j+i

Using the diagonal dominance of M and taking ab-
solute values in the above equation, we have

\j,j#i /

since l~i I = m~j [~j 1. AS a result, all the inequalities
above turn into equalities. Hence,

j,j#i \jti+i /

But IuI = ma.xj [~j 1. Therefore,

solving for uk in Mu = O, where k is
thatc.aiaeaM to be weakly diagonally
have

(3)

the row of M
dominant , we

i&Uk = - ~ hfkjUj.
j,a#k

Taking absolute values in the above equation and us-
ing (2), we have

‘(j~klMkjl)luklbJ’(3)0

Therefore, IukI < luk 1, which is a contradiction.
Hence det M # Oand M has an inverse.

for all i and there is a k such that

162

