
A Linear Bound on the Complexity of the Delaunay
Triangulation of Points on Polyhedral Surfaces�

Dominique Attali
LIS, ENSIEG

Domaine Universitaire, BP 46,
38402 Saint Martin d’Hères Cedex, France

Dominique.Attali@inpg.fr

Jean-Daniel Boissonnat
INRIA,

2004 Route des Lucioles, BP 93,
06904 Sophia-Antipolis, France

Jean-Daniel.Boissonnat@sophia.inria.fr

ABSTRACT
Delaunay triangulations and Voronoi diagrams have found numer-
ous applications in surface modeling, surface mesh generation, de-
formable surface modeling and surface reconstruction. Many algo-
rithms in these applications begin by constructing the three-dimensional
Delaunay triangulation of a finite set of points scattered over a sur-
face. Their running-time therefore depends on the complexity of
the Delaunay triangulation of such point sets.

Although the complexity of the Delaunay triangulation of points
inR3 may be quadratic in the worst-case, we show in this paper that
it is only linear when the points are distributed on a fixed number
of well-sampled facets of R3 (e.g. the facets of a polyhedron). Our
bound is deterministic and the constants are explicitly given.

Categories and Subject Descriptors
I.3.5 [Computing Methodologies]: Computational Geometry and
Object Modeling—Curve, surface, solid, and object representa-
tions; F.2.2 [Theory of Computation]: Nonnumerical Algorithms
and Problems—Geometrical problems and computations

General Terms
Theory, Algorithms, Performance

Keywords
Delaunay triangulation, Voronoi diagram, complexity, polyhedral
surfaces, sample, surface modeling, reconstruction.

1. INTRODUCTION
Delaunay triangulations and Voronoi diagrams are among the

most thoroughly studied geometric data structures in computational
geometry. Recently, they have found many applications in surface
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modeling, surface mesh generation [12], deformable surface mod-
eling [22, 16], medial axis approximation [4, 9, 21], and surface
reconstruction [3, 1, 8, 2, 7, 6]. Many algorithms in these appli-
cations begin by constructing the three-dimensional Delaunay tri-
angulation of a finite set of points scattered over a surface. Their
running-time therefore depends on the complexity of the Delaunay
triangulation of such point sets.

It is well known that the complexity of the Delaunay triangu-
lation of n points in Rd , i.e. the number of its simplices, can be


(nd
d

2
e) [10]. In particular, in R3 , the number of tetrahedra can

be quadratic. This is prohibitive for applications where the num-
ber of points is in the millions, which is routine nowadays. Al-
though it has been observed experimentally that the complexity of
the Delaunay triangulation of well-sampled surfaces is linear (see
e.g. [8, 13]), no result close to this bound has been obtained yet.
Our goal is to exhibit practical geometric constraints that imply
subquadratic and ultimately linear Delaunay triangulations. Since
output-sensitive algorithms are known for computing Delaunay tri-
angulations [11], better bounds on the complexity of the Delau-
nay triangulation would immediately imply improved bounds on
the time complexity of computing the Delaunay triangulation.

First results on Delaunay triangulations with low complexity have
been obtained by Dwyer [14, 15] who proved that, if the points are
uniformly distributed in a ball, the expected complexity of the De-
launay triangulation is only linear. Recently, Erickson [17, 18] in-
vestigated the complexity of three-dimensional Delaunay triangu-
lations in terms of a geometric parameter called the spread, which
is the ratio between the largest and the smallest interpoint distances.
He proved that the complexity of the Delaunay triangulation of any
set of n points in R3 with spread � is O(�3).

Despite its practical importance, the case of points distributed
on a surface has not received much attention. A first result has
been obtained by Golin and Na [19]. They proved that the ex-
pected complexity of 3D Delaunay triangulations of random points
on any fixed convex polytope is �(n). Very recently, they extended
their proof to the case of general polyhedral surfaces of R3 and ob-
tained a O(n log4 n) bound on the expected complexity of the De-
launay triangulation [20]. Deterministic bounds have also been ob-
tained. Attali and Boissonnat [5] proved that, for any fixed polyhe-
dral surface S, any so-called “light-uniform "-sample” of S of size
n has only O(n7=4) Delaunay tetrahedra. If the surface is convex,
the bound reduces to O(n3=2). Applied to a fixed C2 uniformly-
sampled surface, the result of Erickson mentioned above shows that
the Delaunay triangulation has complexity O(n3=2). This bound is
tight in the worst-case. It should be noticed however that Erickson’s
definition of a uniform sample is rather restrictive and does not al-
low two points to be arbitrarily close (in which case, the spread
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would become infinite).
In this paper, we consider the case of points distributed on a fixed

number of planar facets inR3 , e.g. the facets of a given polyhedron.
Under a mild uniform sampling condition, we show that the com-
plexity of the Delaunay triangulation of the points is linear. Our
bound is deterministic and the constants are explicitly given.

2. DEFINITIONS AND NOTATIONS

2.1 Voronoi diagrams and Delaunay triangu-
lations

Let E = fp1; : : : ; png be a set of points of Rd . The Voronoi
cell of pi is

V (pi) = fx 2 Rd : kx� pik � kx� pjk 8j = 1; : : : ; ng
where kx � yk denotes the Euclidean distance between the two
points x; y of Rd . The collection of Voronoi cells is called the
Voronoi diagram of E, denoted Vor(E). The Delaunay triangu-
lation of E, denoted Del(E) is the dual complex of Vor(E) (see
Figure 1). If there is no sphere passing through d+ 2 points of E,
Del(E) is a simplicial complex that can be obtained from Vor(E)
as follows. If E0 is a subset of points of E whose Voronoi cells
have a non empty intersection, the convex hull conv(E0) is a De-
launay face and all Delaunay faces are obtained this way. It is well
known that the balls circumscribing the d-simplices inDel(E) can-
not contain a point of E in their interior. The complexity of Del(E)
is the number of its faces, which is also the number of faces of the
dual Voronoi diagram.

A ball or a disk is said to be empty iff its interior contains no
point of E. We also say that a sphere is empty if the associated ball
is empty.

Figure 1: Voronoi diagram of a set of points on the left and its
dual Delaunay triangulation on the right.

2.2 Notations
For a curve �, we denote by l(�) its length. For a portion of a

surface R, we denote by a(R) its area, and by @R its boundary.
We further denote by B(x; r) (�(x; r)) the ball (sphere) of radius
r centered at x, and by Dp(x; r) the disk lying in plane P centered
at x 2 P and of radius r.

LetR � P be a region of P . The plane P containing R is called
a supporting plane of R. We define:

R�p " = fx 2 P : Dp(x; ") \ R 6= ;g
R	p " = fx 2 P : Dp(x; ") � Rg

R �p " is obtained by growing R by " within its supporting plane
P and R	p " is obtained by shrinking R by "within its supporting
plane P . When the supporting plane is unique or when it is clear
from the context, we will simply note R� " and R	 ".

2.3 Polyhedral surfaces
We call polyhedral surface a finite collection of bounded poly-

gons, any two of which are either disjoint or meet in a common
edge or vertex. The polygons are called facets. Notice that we al-
low an arbitrary number of polygons to be glued along a common
edge. In the mathematical literature, such an object is called a pure
two-dimensional piece-wise linear complex. We prefer to use in
this paper the term surface since surfaces are our primary concern.

In the rest of the paper, S denotes an arbitrary but fixed polyhe-
dral surface. Three quantities C, A and L will express the com-
plexity of the surface S : C denotes the number of facets of S,
A = a(S) its area, and L the sum of the lengths of the boundaries
of the facets of S:

L =
X
F�S

l(@F ):

Observe that, if an edge is incident to k facets, its length will be
counted k times.

We consider two zones on the surface, the "-singular zone that
surrounds the edges of S and the "-regular zone obtained by shrink-
ing the facets.

Definition 1. Let " � 0. The "-regular zone of a facet F �
S consists of the points of F at distance greater than " from the
boundary of F . The "-regular zone of S is the union of the "-
regular zones of its facets. We call "-singular zone of F (resp. S)
the set of points that do not belong to the "-regular zone of F (resp.
S).

Observe that the "-regular zone of the facet F is F 	 ". The
0-singular zone of S consists exactly of the edges of S.

2.4 Sample
Any finite subset of points E � S is called a sample of S. The

points of E are called sample points. We impose two conditions on
samples. First, the facets of the surface must be uniformly sampled.
Second, the sample cannot be arbitrarily dense locally.

Definition 2. Let S be a polyhedral surface. E � S is said to
be a ("; �)-sample of S iff for every facet F of S and every point
x 2 F :

� the ball B(x; ") encloses at least one point of E \ F ,

� the ball B(x; 2") encloses at most � points of E \ F .

The 2 factor in the second condition of the definition is not im-
portant and is just to make the constant in our bound simpler. Any
other constant and, in particular 1, will lead to a linear bound.

In the rest of the paper, E denotes a ("; �)-sample of S and we
provide asymptotic results when the sampling density increases,
i.e. when " tends to 0. As already mentioned, we consider � and
the surface S (and, in particular, the three quantities C, A and L)
to be fixed and not to depend on ".

Several related sampling conditions have been proposed.
Amenta and Bern have introduced "-samples [3] that fit locally the
surface shape : the point density is high where the surface has high
curvature or where the object or its complement is thin. However
this definition is not appropriate for polyhedral surfaces since an
"-sample, as defined in [3], should have infinitely many points.

Erickson has introduced a notion of uniform sample that is re-
lated to ours but forbids two points to be too close [17]. Differently,
our definition of a ("; �)-sample does not impose any lower bound
on the minimal distance between two sample points.
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In [5], Attali and Boissonnat use a slightly different definition
of a ("; �)-sample. They assumed that for every point x 2 S,
the ball B(x; ") encloses at least one sample point and the ball

B(x; r) encloses O( r
2

"2
) sample points. With this sampling condi-

tion, they proved that the complexity of the Delaunay triangulation
is O(n1:8) for general polyhedral surfaces and O(n1:5) for convex
polyhedral surfaces. Our definition of a ("; �)-sample is slightly
more restrictive since the facets need to be sampled independently
of one another, which leads to add a few more sample points near
the edges. However, the two conditions are essentially the same
and our linear bound holds also under the slightly more general
sampling condition of [5].

Golin and Na [19, 20] assume that the sample points are chosen
uniformly at random on the surface. The practical relevance of
such a model is questionable since data are usually produced in a
deterministic way.

3. PRELIMINARY RESULTS
S designates a polyhedral surface and E � S a ("; �)-sample

of S. Let n(R) = jE \ Rj be the number of sample points in the
region R � S. Let n = jEj be the total number of sample points.
We first establish two propositions relating n(R) and n. We start
with the following lemma:

LEMMA 1. Let F be a facet of S. For any R � F , we have:

a(R)

4�"2
� n(R) � �a(R� ")

�"2

PROOF. Let[�i=1D(mi; ") be a maximal set of � non-intersecting
disks lying inside R � ". Because the set of disks is maximal, no
other disk can be added without intersecting one of the � disks
D(mi; "). This implies that no point x of R is at distance greater
than 2" from a point mi (see Figure 2). Therefore, [�i=1D(mi; ")
is a packing of R� " and [�i=1D(mi; 2") is a covering of R. Con-
sequently:

a(R)

4
� ��"

2 � a(R� ")

The disks lie in R � ". Therefore, the centers of the disks lie in
R. By assumption, the disk D(mi; ") contains at least one sample
point and the disk D(mi; 2") contains at most � sample points.
Hence :

� � n(R) � ��

and
a(R)

4�"2
� n(R) � �a(R� ")

�"2

PROPOSITION 2. Let F be a facet of S. For any R � F , we
have:

n(R) � 4�
a(R� ")

A
n

PROOF. We first apply Lemma 1 to bound n from below. Sum-
ming over the facets of S, we get :

A

4�"2
� n (1)

We apply again Lemma 1 to bound n(R) from above.

n(R) � �a(R� ")

�"2

Eliminating " from the two inequalities yields the result.

x

R� "

R

"

Figure 2: A maximal set of non-intersecting disks contained in
R � " and the corresponding covering of R obtained by dou-
bling the radii of the disks.

PROPOSITION 3. Let F be a facet of S. Let � � F be a curve
contained in F . Let k > 0. We have:

n(�� k") � (2k + 1)2

k
�
l(�)

"
� 2(2k + 1)2

k

p
� �

l(�)p
A

p
n

PROOF. Arguing as in the proof of Lemma 1, we see that the
region �� k" can be covered by l(�)

k"
disks of radius 2k" centered

on � and contained in the supporting plane of F .
Applying Lemma 1 to a disk R with radius 2k", we get:

n(R) � ��(2k"+ ")2

�"2
= (2k + 1)2�

Therefore, we have :

n(�� k") � (2k + 1)2 �
l(�)

k"

From Equation 1, we get:

1

"
� 2

p
�p
A

p
n

Combining the two inequalities leads to the result.
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LEMMA 4. Let x be a sample point in the "-regular zone of S.
Let P be the supporting plane of the facet through x. Any empty
sphere passing through x intersects P in a circle whose radius is
less than ".

F

F 	 "

x

c
y

Dp(y; ")

� \ P

Figure 3: Assume � is an empty sphere passing through a point
x 2 F 	 " and intersecting the supporting plane of F in a
circle of radius greater than ". Then, � contains an empty disk
Dp(y; ") centered on F .

PROOF. The proof is by contradiction. Let P be the supporting
plane of F . Consider an empty sphere � passing through x and
intersecting P along a circle of radius greater than " (see Figure 3).
Let c be the center of this circle. Let y be the point on the segment
[xc] at distance " from x. Because x belongs to the "-regular zone
of F , y 2 F . The empty sphere � encloses the disk Dp(y; ").
Therefore, Dp(y; ") is an empty disk of P , centered on F and of
radius ", which contradicts our assumption.

4. COUNTING DELAUNAY EDGES
Let S be a polyhedral surface and E be a ("; �)-sample of S.

The Delaunay triangulation of E connects two points p; q 2 E iff
there exists an empty sphere passing through p and q. The edge
connecting p and q is called a Delaunay edge. We will also say that
p and q are Delaunay neighbours.

The number of edges ep and the number of tetrahedra tp incident
to a vertex p lying in the interior of the convex hull of E are related
by Euler formula

tp = 2ep � 4

since the boundary of those tetrahedra is a simplicial polyhedron of
genus 0. Using the same argument, if p lies on the boundary of the
convex hull, we have:

tp < 2ep � 4

By summing over the n vertices, and observing that a tetrahedron
has four vertices and an edge two, we get

t < e� n:

To bound the complexity of the Delaunay triangulation, it is there-
fore sufficient to count the Delaunay edges of E.

We distinguish three types of Delaunay edges : those with both
endpoints in the "-regular zone, those with both endpoints in the

"-singular zone and those with an endpoint in the "-regular zone
and the other in the "-singular zone. They are counted separately
in the following subsections,

We denote by Es the set of sample points in the "-singular zone
of S.

4.1 Delaunay edges with both endpoints in the
"-regular zone

In this section, we count the Delaunay edges joining two points
in the "-regular zone.

LEMMA 5. Let x be a sample point in the "-regular zone and
F the facet that contains x. x has at most � Delaunay neighbours
in F .

PROOF. By Lemma 4, any empty sphere passing through x in-
tersects F in a circle whose radius is less than ". Therefore, the
Delaunay neighbours of x on F are at distance at most 2" from x.
By assumption, the disk centered at x with radius 2" contains at
most � points of E.

LEMMA 6. Let x be a sample point in the "-regular zone of a
facet F . Let F 0 6= F be another facet of S. x has at most �
Delaunay neighbours in the "-regular zone of facet F0.

PROOF. Refer to Figure 4. P and P 0 are the supporting planes
of F and F 0, y0 is a Delaunay neighbour of x in the "-regular zone
of F 0 and � is an empty sphere passing through x and y0. � inter-
sects the planes P and P 0 along two circles whose radii are respec-
tively r and r0. By Lemma 4, r � " and r0 � ".

x

x0

y

y0

P

P 0

M

v

Figure 4: Any sphere passing through x and y0 intersects one
of the two planes P or P 0 in a circle whose diameter is at least
kx0 � y0k.

Let M be the bisector plane of P and P 0. Let x0 and y be the
points symmetric to x and y0 with respect to M . Consider the
smallest sphere passing through x, x0, y and y0. This sphere in-
tersects P and P 0 in two disks of the same radius rmin. We claim
that rmin � max(r; r0). Indeed, let c be the circumcenter of �,
and Hxy0 (resp. Hx0y) be the bisector plane of x and y0 (resp.
of x0 and y). Observe that v 2 Hxy0 \ Hx0y and c 2 Hxy0 . If
c 2 Hxy0 \ Hx0y, rmin = r = r0 and the claim is proved. Oth-
erwise, c must belong to one of the two open halfspaces limited by
Hx0y. If c belongs to the halfspace that contains x0, � encloses
x0 and therefore rmin � r0 while in the second it encloses y and
rmin � r.
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We therefore have :

kx0 � y0k
2

= rmin � max(r; r0) � "

and consequently:

kx0 � y
0k � 2":

The Delaunay neighbours of x in the "-regular zone of F0 lie in
the disk Dp0(x0; 2"). This disk contains at most � points of E.

PROPOSITION 7. There are at most C
2
�n Delaunay edges with

both endpoints in the "-regular zone of S.

PROOF. The surface has C facets. Therefore, by Lemmas 5 and
6, a point x in the "-regular zone of S has at most C� Delaunay
neighbours.

4.2 Delaunay edges with both endpoints in the
"-singular zone

In this section, we count the Delaunay edges joining two points
in the "-singular zone.

PROPOSITION 8. The number of Delaunay edges with both end-
points in the "-singular zone is less than

1

2
182� �2

L2

A
n

PROOF. By Proposition 3, the number jEsj of sample points in
the "-singular zone is at most

18
p
� �

Lp
A

p
n

Hence, the number of Delaunay edges in the "-singular zone is at
most 1

2
jEsj � (jEsj � 1) < 1

2
jEsj2.

Figure 5: Example of a Delaunay triangulation ofm points hav-
ing a quadratic number of edges. Even if such a configuration
can occur for a subset of the sample points, the number of De-
launay edges involved in this configuration is O(n).

4.3 Delaunay edges joining the "-regular and
the "-singular zones

In this section, we count the Delaunay edges with one endpoint
in the "-regular zone and the other in the "-singular zone.

We first introduce a geometric construction of independent inter-
est that will be useful.

Let P be a plane and Es be a set of points. We assign to each
point x of Es the region V (x) � P consisting of the points p 2 P
for which the sphere tangent to P at p and passing through x en-
closes no point of Es (see Figure 6). In other words, if R(p; x) de-
notes the radius of the sphere tangent to P at p and passing through
x, we have:

V (x) = fp 2 P : 8y 2 Es; R(p; x) � R(p; y)g:

Px

Pp

V (x)

x

Figure 6: The cell V (x) is the set of contact points between
a plane P and a sphere passing through x and tangent to P .
The part of the paraboloid Px on the lower envelope of the
paraboloids projects to the cell V (x).

It is easy to see that the set of all V (x), x 2 Es, is a subdivi-
sion of P we note V (see Figure 9). Let Px be the paraboloid of
revolution with focus x and director plane P . The paraboloid Px
consists of the centers of the spheres passing through x and tangent
to P . Assume that the points Es are all located above plane P . If
not, we replace x by the point symmetric to x with respect to P ,
which does not change V . Let us consider the lower envelope of the
collection of paraboloids fPxgx2Es

. Cell V (x) is the projection
of the portion of the lower envelope contributed by Px (see Figures
6 and 9).

Consider the bisector V (x; y) of x; y 2 Es, i.e. the points p 2 P
such that R(p; x) = R(p; y). V (x; y) is the projection on P of the
intersection of the paraboloids Px and Py. As easy computations
can show, the bisector V (x; y) of x and y is a circle or a line (con-
sidered as a degenerated circle). Let H(x; y)

H(x; y) = fp 2 P : R(p; x) � R(p; y)g:
Since V (x; y) is a circle, H(x; y) is either a disk, in which

case we rename it D(x; y)+, or the complementary set of a disk
D(x; y)�. We therefore have

V (x) =
\

y2Es;y 6=x
H(x; y) =

�\D(x; y)+
� n �[D(x; y)�

�

It follows that the edges E(x; y) of V (x) are circle arcs that we
call convex or concave wrt x depending whether the disk D(x; y)
(whose boundary contains E(x; y)) is labelled + or � (see Figure
7). Observe that the convex edges of V (x) are included in the
boundary of the convex hull of V (x).
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F V (x) V (y)E(x; y)

Figure 7: The bold edges are the convex edges of the shaded
cells. The edge E(x; y) which is concave wrt x is convex wrt y.
The convex edges of a cell lie on the boundary of its convex hull.

PROPOSITION 9. The number of Delaunay edges with one end-
point in the "-regular zone and the other in the "-singular zone is
at most : �

1 + 450 � �2
L2

A

�
n

PROOF. Let F be a facet of S and P the supporting plane of F .
We bound the number of Delaunay edges with one endpoint in Es
and the other in E \ (F 	 "), i.e. the number of Delaunay edges
joining the "-singular zone and the "-regular zone of F .

We denote by VF the restriction of the subdivision V introduced
above to F , and, for x 2 Es, we denote by V (x) the cell of VF
associated to x.

We first show that the Delaunay neighbours of x that belong to
the "-regular zone of F belong to V (x)�2". Consider a Delaunay
edge (xf) with x 2 Es, x 62 P and f 2 Es \ (F 	 "). Let � be
an empty sphere passing through x and f , v its center (see Figure
8). By Lemma 4, � intersects P in a circle whose radius r is less
than ". For a point c on the segment [vx], we note �c the sphere
centered at c and passing through x. Because � encloses �c, �c

is an empty sphere. For c = v, �c intersects P . For c = x, �c

does not intersect P . Consequently, there exists a position of c on
[vx] for which �c is tangent to P . Let p = �c \ P for such a
point c. We have p 2 V (x) and kp � fk � 2r � 2". Hence,
f 2 V (x)� 2". Now, let us consider a Delaunay edge (xf) with
x; f 2 Es \ P . Applying Lemma 4 leads to f 2 V (x)� 2".

LetNF be the number of Delaunay edges betweenEs and F	".
We have, using the fact that VF is a subdivision of F and Proposi-
tion 3 :

NF �
X
x2Es

n(V (x)� 2")

� n(F ) +
X
x2Es

n(@V (x)� 2")

� n(F ) + 25
p
� �

1p
A

p
n
X
x2Es

l(@V (x))

Let us bound
P

x2Es
l(@V (x)). Given a cell V (x), we bound

the length of its convex edges. By summing over all x 2 Es, all
edges in VF will be taken into account.

The convex edges of x are contained in the boundary of the con-
vex hull of V (x). Since V (x) � F , the length of the boundary of

Pf

v

p

c

�

x

�c

Figure 8: Every sphere � passing through x and f 2 P con-
tains a sphere �c passing through x and tangent to P .

the convex hull of V (x) is at most the length of @F . Consequently:X
x2Es

l(@V (x)) � l(@F )� jEsj

Since, by Proposition 3, jEsj � 18
p
� � Lp

A

p
n, we have:

NF � n(F ) + 450 � �2
l(@F )� L

A
n

By summing over all the facets, we conclude that the total num-
ber of Delaunay edges with one endpoint in the "-regular zone and
the other in "-singular zone is at most :

�
1 + 450 � �2

L2

A

�
n

4.4 Main result
We sum up our results in the following theorem :

THEOREM 10. Let S be a polyhedral surface and E a ("; �)-
sample of S of size jEj = n. The number of edges in the Delaunay
triangulation of E is at most :�

1 +
C �

2
+ 612 � �2

L2

A

�
n

It should be observed that the bound does not depend on the rel-
ative position of the facets (provided that their relative interiors do
not intersect). Notice also that the bound is not meaningful when
A = 0, which is the case of the quadratic example in Figure 5.

5. CONCLUSION
We have shown that, under a mild sampling condition, the Delau-

nay triangulation of points scattered over a fixed polyhedral surface
or any fixed pure piece-wise linear complex has linear complexity.
Our sampling condition does not involve any randomness (as in the
work by Golin and Na [19]) and is less restrictive than Erickson’s
one [17].

Although the sampling condition has been expressed in a simple
and intuitive way, the linear bound holds under a more general set-
ting. Indeed, all we need for the proof is to subdivide the surface
in two zones, an "-regular zone where one can apply Lemma 4 and
an "-singular zone containing O(

p
n) points.
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As mentionned in the introduction, Erickson has shown that the
Delaunay triangulation of n points distributed on a cylinder may
be quadratic. To understand where our analysis fails for such an
example, one has to remember that our proof relies on Lemma 4
which states that empty balls intersect polyhedral surfaces in disks
whose area is smaller than �"2, which is not the case anymore in
Erickson’s example.

The main open question is of course to consider the case of
smooth surfaces. The O(n

p
n) lower bound obtained by Erickson

for cylinders show that a linear bound does not hold for arbitrary
surfaces. We conjecture that, for generic surfaces, the complexity
of the Delaunay triangulation is still linear. We say that a surface S
is generic if 1. its maximal balls intersect S at a finite number of so-
called contact points, and 2. the intersection of S with the union of
the maximal balls with only one contact point form a set of curves
of finite length on S. In particular, generic surfaces cannot contain
spherical nor cylindrical pieces.
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Figure 9: Decomposition of a facet F into cells for different set of points Es. The lower envelope of the paraboloid fPxgx2Es
has

been represented. The red spheres represent the points of Es and the red lines materialize the projection of the points of Es on the
plane P . The bisector of two points is a circle. The projection of x on P do not belong necessary to its cell. The decomposition of F
can have a quadratic number of edges.
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