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Abstract-An algorithm for set operations on pairs of polygons is presented. The algorithm uses a boundary 
representation for the input and output polygons. Its domain includes simple polygons as well as polygons 
with dangling edges, vertices of degree greater than 2, and holes within the area of the polygon. A partial 
proof of the correctness of the algorithm is given as well as an analysis of its complexity. The implementation 
that is described is table-driven. It is facilitated by the use of efficient data structures. Implementation issues 
such as numerical accuracy are also discussed and sample results of its execution are demonstrated. 

1. INTRODUCTION 
Union, intersection, and difference set-theoretic op- 
erations on polygons have been extensively studied be- 
cause an efficient algorithm for performing these tasks 
is very useful for CAD/CAM systems as well as for 
computer graphics packages. A good algorithm for the 
case of convex polygons is known[ l], but it is more 
difficult to develop a general efficient algorithm for any 
two simple polygons. 

There are two main approaches to design algorithms 
for set operations on polygons. One is based on the 
divide and conquer paradigm and the other is based 
on direct manipulation of the boundary line segments 
that construct the polygon. Using the divide and con- 
quer idea, the two main approaches to perform set 
operation on polygons are based on constructive solid 
geometry (CSG)[3] and on quadtrees[4]. 

In the CSG method a polygon (as every other solid) 
is represented as a CSG tree. A CSG tree is a binary 
tree whose leaf nodes represent pre-defined primitive 
shapes (such as triangles, squares, etc.) and an internal 
node represents the result of a boolean operation be- 
tween its left and right CSG sub-trees. A boolean set 
operation on two polygons is decomposed recursively 
into boolean operations on the primitive shapes. In the 
quadtree method, the plane containing each polygon 
is divided recursively into quadrants containing frag- 
ments of the plane. A boolean set operation on two 
polygons is done by traversing the quadtrees of the 
polygons and looking for the common parts in nodes 
representing the same quadrants in the plane. Both 
methods have been used in algorithms for set-theoretic 
operations on polygons[3, 5-8]. 

The CSG method can only handle polygons that are 
decomposed into the pre-defined primitives and thus 
may be limited. The quadtree method is limited in its 
accuracy since the maximal depth of the tree is 
bounded so that the input polygons cannot be repre- 
sented precisely. These problems have been addressed 
in the literature[6, 8, 13] but there are many special 

cases, the correctness of the algorithms is difficult to 
prove and a precise worst case complexity analysis is 
similarly difficult. Actually, correctness proofs and 
complexity analysis are not presented in the literature. 

Algorithms using the other approach of direct 
boundary elements manipulation are summarized be- 
low. Algorithms that “weave” the output polygons by 
traversing the input polygons and retaining only the 
desired output are presented by Weiler[12], and East- 
man and Yessios[15]. Weiler presented an interesting 
method using a graph representation along with local 
and history information of the vertices. This entails 
very complicated data structures and methods to ma- 
nipulate them. Weiler does not discuss implementation 
issues. 

Nievergelt and Preparata[ 17] have presented an al- 
gorithm which is an extension of the plane sweep al- 
gorithm[ 1]. Although the asymptotic complexity of this 
algorithm is it requires that complex data 
structures be maintained along with methods to ma- 
nipulate them. The authors do not discuss how to im- 
plement the algorithm. 

Putnam and Subrahmanyam[9] have presented an 
algorithm to perform boolean operations on n-dimen- 
sional objects. This algorithm is very general. The au- 
thors do not discuss any implementation details and 
it is difficult to see how to implement it. 

As we can see, although there are many algorithms 
for the task of performing set operations on polygons, 
they are either not very practical or they are incapable 
of dealing with complicated cases. Rigorous proofs of 
correctness are not given in any of the papers, and very 
important implementation issues are hardly discussed. 
Also, none of these algorithms can work in practice 
without attention to numerical accuracy issues, and 
this important detail is not generally discussed. Most 
of the algorithms are for simple regular polygons and 
cannot perform on more complex non-regular poly- 
gons. Handling more complex polygons can be useful, 
and it is relatively difficult to do correctly. 
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In this paper we present a new algorithm for set 
operations between polygons, discuss its implemen- 
tation, partially prove its correctness, and give crude 
bounds on its complexity, The algorithm uses a simple 
boundary representation which is natural for many 
graphics applications. It uses only two linked lists and 
one hash table, and it can handle complicated non- 
regular polygons as its input and output. We also dis- 
cuss the issue of precise numerical methods and 
their use. 

point, and if each pair of consecutive edges share ex- 
actly one point[1]. 

The boundary of a one-sided polygon consists of a 
single point. The boundary of a two-sided polygon 
consists of a single line segment whose two oppositely 
directed forms are the two edges of the polygon, and 
whose end-points are the two vertices. One-sided and 
two-sided polygons are called irreducible degenerate 
polygons. 

The class of irreducible degenerate polygons together 
with the class of simple polygons make up the class of 

A simple polygon has a clockwise orientation if its 
vertices are ordered in a clockwise order. A precise 
definition of clockwise orientation can be given in terms 
of the signed area of a polygon. If the polygon’s vertices 
have the opposite order, the polygon has a counter- 
clockwise orientation. Thus if a simple polygon 

has a clockwise orientation, the reverse simple polygon 

has a counterclockwise orientation. An irreducible 
degenerate polygon D is both clockwise and counter- 
clockwise oriented, and either of these orientations can 
be specified to be the principal orientation of D in any 
particular context. 

Let A point p is in the interior of 
if there exists a neighborhood of p that is 

contained within O. A point p is in the exterior of 
if there exists a  neighborhood of p that is 

contained within A point p belongs to the 
closure of if every neighborhood of p 
contains a point of O. A point p is on the boundary of 

if every neighborhood of p contains 
points from int(O) and ext(O). A set O is regular if O 
= clos(int(O)). Intuitively, a regular set in has no 
dangling points or edges and no subregions of zero 
area. 

According to the Jordan Curve Theorem, a simple 
polygon, taken as a closed non-self-intersecting curve 
in the E2 plane, divides the plane into three regions, 
the boundary region, the inside region or interior, and 
the outside region or exterior. The polygon itself is 
taken as the closed set consisting of the union of the 
inside region and the boundary. Either the interior or 
the exterior is of infinite area and the complementary 
region is of finite area. We shall denote the finite area 
region of a simple polygon P by FAR(P). The finite 
area region of an irreducible degenerate polygon will 
be defined to be the empty set with this under- 
standing, an irreducible degenerate polygon also has 
disjoint interior, exterior and boundary sets whose 
union is 

We divide simple polygons into two types: islands 
and holes. An island-type simple polygon has an in- 
terior with a finite area and an infinite area exterior. 
A hole-type simple polygon has a finite area exterior 
and an infinite area interior. We also follow the con- 
vention that if a simple polygon has a certain orien- 
tation and type, a second simple polygon with the op- 
posite orientation is regarded as of the opposite type 

2. DEFlNlTIONS irreducible  polygons. 
2.1 Points and lines in the  plane 

We are concerned with objects in two-dimensional 
Euclidean space, A point a in is an ordered pair 
(x, y)  where x and y are real numbers representing the 
right-handed Cartesian X-axis and Y-axis coordinates. 
A point in may also be regarded as a vector starting 
at the origin, (0, 0), and ending at the point. 

Given two distinct points, and 
in E2, the directed line 

is the line that passes 
through a and b in the direction from a towards b. The 
directed line-segment segment (a, b) = { (x, y) : (x, y) 

is the segment of the 
line between a and b in that order. 

A point can be to the east of a directed line 
which is imagined to be pointing north: it can 

be to the west of the line, or it can lie on the line. 
Define for a 
point and the line c is to the east of 

if F < 0, to the west of if F > 0, and it 
lies on if F = 0. 

Two lines and can be parallel or they 
can intersect. When they intersect they have a common 
point and there are unique values t and s which satisfy 
the equation Two line 
segments segment(a, b) and segment(c, d) intersect if 
values of t  and s exist which satisfy the above equation 
such that 

A polyline sequence ofdirected line segments is an 
ordered list of line segments where the second endpoint 
of each line segment is equal to the first endpoint of 
the next line segment in the list. A closed polyline se- 
quence is one such that the second endpoint of the last 
line segment is equal to the first endpoint of the first 
line segment in the sequence. Each directed line seg- 
ment must have a positive length, except that the single 
line segment of a one-member closed polyline sequence 
is a degenerate line segment of length 0. 

2.2 Polygons in the plane 
The boundary of the n-sided polygon 

in the plane is the closed polyline se- 
quence of n directed line segments 

where 
for The n points of the 
polygon are its vertices, while the line segments are its 
edges. 

A polygon is simple if it has at least two distinct 
vertices, if no pair of nonconsecutive edges share a 
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Let us define an edge fragment of  a  polygon to be a 
possibly degenerate (a degenerate edge fragment is a 
single point) sub-segment of an original edge such that 
each one of its two endpoints is either an original vertex 
or an intersection point of two edges. A polygon is 
orientable if 

1. Any two of its edges are either disjoint or collinear, 
or intersect at a point that is an endpoint Of at least 
one of the edges. 

2. The set of its edge fragments creates a vertex-com- 
plete polygon whose vertices are the original vertices 
along with the intersection points between edges of 
the original polygon. 

with respect to the first polygon. For example, a coun- 
terclockwise simple polygon is regarded as a hole with 
respect to a clockwise island simple polygon. 

We now define several more classes of polygons. 
A polygon is vertex-complete if: 

1. Any pair of its edges either are disjoint, or intersect 
at endpoints, or are identical as sets. 

2. The set of its edges can be partitioned into subsets 
of single closed polyline sequences where each such 
partition subset, taken as a closed polyline sequence, 
is an irreducible polygon. These irreducible poly- 
gons are called the minimal component parts of the 
original polygon. For every pair of distinct irreduc- 

polygons, either their finite area regions are disjoint 
or the finite area region of one of them is nested 
within thefinite area region of the other. In the first 
case, where if both parts 

and A, are not included within the finite area 

then both and must have the same orientation. 
In the second case, where then 
if there is no irreducible part such that 

opposite orientations. 

This definition means that a vertex-complete polygon 
is built of these irreducible minimal component parts. 
It cannot have crossing edges, but it can have coincident 
vertices and collinear edges and many closed sequences 
of edges as long as they obey the second rule above. 

The class of vertex-complete polygons which have 
one or more irreducible degenerate minimal compo- 
nent parts constitutes the class of degenerate polygons. 

We can represent a vertex-complete polygon as a 
forest where each tree in the forest is an inclusion tree. 
A node in such a tree represents an irreducible part. 
There is an edge between two nodes and if 

and there is no irreducible part 
such that Each tree 

of the forest represents a maximal disjoint component 
of the associated polygon. 

Using this forest-of-inclusion-trees representation, 
we can define thefinite area region  of a vertex- 
complete polygon P. Suppose P corresponds to the for- 
est of inclusion trees Let be one 
of the trees of the forest which has k levels. Then 

is defined as the vertex-complete finite area 
region associated with the root of the tree, where the 
vertex-complete finite area region associated with an 
arbitrary node N in the tree is defined recursively as 
follows: If the node N is a leaf then is defined 
as N ’ s  finite area region FAR(N); otherwise 
is defined as where the 
are the sons of node N in the tree Finally, FAR(P) 

The orientation of a vertex-complete polygon P is 
the same as the orientation of any one of its maximal 
component parts represented by the inclusion trees 

where a with must 
be chosen if possible. 

ible parts, and where and are simple Any orientable polygon can be converted into a ver- 
tex-complete polygon by introducing additional ver- 
tices. The finite area region of such a converted polygon 

is then taken as the finite area region of the original 
orientable polygon. 

Finally, a polygon is convex if its interior is its finite 

adjacent pairs of its vertices lies in the interior of the 
polygon, and a polygon is simple-convex if it is simple 
and convex. 

hierarchies: 

polygons, and 

vertex-complete polygons 
  vertex-complete polygons   orientable polygons 

and 
regular vertex-complete polygons   regular orientable 
polygons orientable polygons. 

The domain of our algorithm is the class of vertex- 
complete polygons. Examples of polygons of different 
classes are given in Fig. 1. 

2.3 Set operations between polygons 

set operations on A and B as follows: 

region of some other irreducible part of the polygon, 
area region, and if the line segment between any non- 

then and must have 
The above classes of polygons form the following 

Let A and B be two polygons in We define the 

In our definition of vertex-complete and orientable 
polygons we allow polygons with coincident vertices 
and overlapping edges, i.e., edges like 
and where and 
There are situations where these types of polygons are 
not desirable. Thus we wish to optionally produce reg- 
ular polygons as output, since, by the definition of reg- 
ular sets, regular polygons do not have overlapping 
and dangling edges or coincident vertices[3, 8]. The 
operation of finding a polygon’s regular parts (deleting 
all the coincident vertices, dangling edges and zero- 
area sub-regions) is called regularization[5]. However, 
it is not certain that the result of a set operation on 
two regular polygons is another regular polygon. This 



Fig. 1. Polygons of different classes in the polygon hierarchy. (a) simpletonvex polygon. (b) simple polygon. 
(c) regular vertex-complete polygon. (d) vertex-complete polygon. (e) orientable polygon. (f) general 

polygon. 

is the motivation for defining the regular set opera- 
tions[3, 5]: 

polygon P. These three sets of edge fragments of Q are 
denoted by and As in [9], the 
set of boundary edge fragments, can be further 
partitioned into two parts which are the boundary edge 
fragments of Q that are directed in the same direction 
as the boundary edge fragments of P, and the boundary 
edge fragments of Q that are directed in the opposite 
direction to the boundary edge fragments of P. These 

division enables us to construct only regular result 
polygons when required by not using the edge frag- 
ments in the set 

The classified edge fragments are stored in a data 
structure that allows fast searching and deletion op- 
erations. Then each result polygon is constructed, its 
vertices are put in the output array and its edge frag- 
ments are deleted from the data structure so as to pre- 
pare for constructing the next result polygon. Each re- 
sult polygon is constructed by successively searching 
for a next continuing edge fragment until the search 
finds an edge fragment which has a second endpoint 
that is being visited for the second time. At this point, 
a result polygon has been found. 

This algorithm is simple and efficient. We use a hash 
table in a novel way, along with other simple data 
structures. The elementary manipulation of these data 
structures is efficient so that the time and space com- 
plexity are reduced. The algorithm does not have to 
handle a large number of special cases and therefore 
it can easily be seen to work on every pair of vertex- 

for which the operation's result is a regular polygon, sets are denoted by and This finer 

3. THE ALGORITHM FOR SET OPERATIONS 

Our algorithm for set operations on polygons has 
two main stages. The first stage is the classification of 
the line segments of the input polygons and the second 
stage is the construction of the result polygons. 

The algorithm first classifies the original vertices of 
each polygon to be inside, outside or on the boundary 
of the other polygon. Then it finds all the intersection 
points between edges of the two polygons. For each 
polygon, the original vertices along with the intersection 
points are stored in a data structure such that each two 
neighboring points define an original edge or a part of 
an original edge of a result polygon (or, as we call them, 
edge fragments). 

The algorithm then classifies the edge fragments of 
one polygon to be inside, outside or on the boundary 
of the other polygon. This classification is given in [5] 
where the set of edge fragments of a polygon Q is di- 
vided into these three subsets with respect to a reference 
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sified as a boundary point and inserted into both 
the vertex rings A V and BV in the proper places. If 
the intersection is along a common line segment, 
the two endpoints of the common segment are clas- 
sified as boundary points and inserted into the two 
vertex rings in the right places. 

However, the vertex ring insertion process inserts 
a new point only if this point does not exist or exists 
only once in the vertex ring. Thus a vertex can ap- 
pear twice in sequence in a vertex ring, but no more 
copies will be stored. This allows the non-regular 
intersection of two polygons which intersect at just 
a single vertex to be correctly computed. Every two 
neighboring points in the vertex data structures 
represent an edge fragment which is a part of, or is 
equal to, an edge in the original polygon. 

Each edge fragment belonging to one polygon is 
now classified to be inside, outside, or on the 
boundary of the other polygon. An edge fragment 
is defined to be inside if at least one of its endpoints 
is an inside vertex, or the two endpoints are bound- 
ary vertices but all the other points of the edge frag- 
ment are inside points (in this latter case it is enough 
to check if an internal point of the edge fragment 
is inside the other polygon). An edge fragment is 
defined to be outside if at least one of its endpoints 
is an outside vertex, or the two endpoints are 
boundary vertices but all the other points of the 
edge fragment are outside points (in this latter case 
it is enough to check if an internal point of the edge 
fragment is outside the other polygon). An edge 
fragment is a boundary fragment if all of its points 
are on the boundary of the other polygon. 

Select the edge fragments from among the total set 
of edge fragments of both polygons, which are given 
implicitly in their respective vertex rings, as required 
to construct the result polygons. The required edge 
fragments to be selected depend on the specified set 
operation and the polygon types. These selected 
edge fragments are stored in an edge fragments table, 
EF. Each selected edge fragment from a given poly- 
gon is stored only once in the edge fragments table. 

In the selection process the inside or outside edge 
fragments of both polygons are selected according 
to the operation and the two polygon types as sum- 
marized in Table 2. In this table there is a row for 
each combination of polygon types and a column 

complete polygons, even those with vertices of degree 
more than two or with collinear edges. 

3.1 General description of the algorithm 
The algorithm we use to solve the problem of com- 

puting the result of a set operation on two polygons 
gets as its input an operation code which specifies 
whether union, intersection or set difference is desired, 
an indicator. code specifying .whether regular result 
polygons are required, and two vertex-complete poly- 
gon arrays, A and B, along with their types (island or 
hole). The algorithm constructs a set of irreducible re- 
sult polygons along with their types in the output 
array C. 

If regular output is not desired, various result poly- 
gons may be degenerate. A degenerate polygon is a 
point or a line segment given by oppositely directed 
overlapping edges. A point can be the result of a set 
intersection operation on two polygons, for example 
the intersection of two polygons that touch only at one 
vertex. 

1. Normalize the orientations of the input polygons. 

4. Classify the edge fragments. 

The algorithm has six steps: 

Find the relative orientation of the two input poly- 
gons A and B, and change the orientation of polygon 
B if necessary, according to the operation and the 
polygon types as summarized in Table 1. This step 
is needed because we do not require an island poly- 
gon to be represented by a specific onentation 
(clockwise for example), but it is required that a 
hole polygon be represented by the opposite ori- 
entation to an island polygon. 

2. Classify and insert the vertices. 
Classify the original vertices of each polygon as to 
whether they are inside, outside, or on the boundary 
of the other polygon. Insert the classified vertices 
of the two input polygons, A and E, in the two vertex 
rings, AV and BV respectively. The vertex rings are 
circular linked lists in which vertex points appear 
in sequence so that each two adjacent points define 
an edge fragment. 

For each edge of one polygon find all the edges of 
the other polygon it intersects with and calculate 
all those intersection points. When two edges in- 
tersect they can intersect at a point, or they can 
overlap along a common line segment. If the inter- 
section is at a point, this intersection point is clas- 

5 .  Select and organize the edge fragments. 

3. Find and insert the intersection points. 

Table 1. Mutual orientation of the input polygons according to the operation and the polygon types. 
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Table 2. Type of edge fragments to select according to the operation and the input polygon types. 

for each set operation between polygon A and poly- tions are presented along with the particular 
gon B. In each column, the required types of edge boundary edge fragments to select for each set op- 
fragments of both polygons are specified. eration. 

Particular boundary edge fragments are selected Degenerate single point boundary edge fragments 
according to the situation of all matching boundary are selected only when a non-regular form of output 
edge fragments of both polygons A and B. Note that is permitted and only if the degenerate edge frag- 
if there is a boundary edge fragment of polygon A, ment has no adjacent edge fragment. If it has no 
there must be at least one exactly overlapping adjacent edge fragment, it is an isolated point and 
boundary edge fragment of polygon B which may not a degenerate point in a closed polyline sequence, 
have the same or opposite direction. We present so it has to be reported as a non-regular part of the 
the possible boundary edge fragment situations in output. 
Table 3. In this table, for each combination of poly- The selected edge fragments are organized in the 
gon types and specified regular or non-regular form data structure, EF, in a manner that allows finding 
of output, all the boundary edge fragments situa- all the edge fragments which start with a given point 

Table 3. Boundary edge fragments to select according to the operation, polygon types, and regular output 
requirements. 



An algorithm for pairs of polygons 37

The procedure polygonoperation uses the following and that allows any specified edge fragment to be 
deleted. We shall discuss later several options for 
the implementation of this data structure. 

To construct each result polygon, we arbitrarily 
choose one edge fragment from the EF table and 
then successively choose an arbitrary edge fragment 
whose first endpoint matches the second endpoint 
of the previously chosen edge fragment. This process 
continues until an edge fragment is chosen whose 
second endpoint is now visited a second time (an 
irreducible polygon has now been found).   Then the 
successive vertices of the polygon that was found 
are transferred in sequence to the output array as 
a single polygon and the corresponding edge frag- 
ments are deleted from the EF table whereupon 
another result polygon may be sought. 

By using this method we form the greatest pos- 

sequence of edges is regarded as a result polygon. 
The type of each obtained result polygon is found 
using Table 4. This is a table of indicators which 

sub-procedures and tables: 

procedure 
point) returns True if the two line segments Segmentl 

and                 intersect and returns False otherwise. 
If the two line segments intersect, their intersection 
point is found in Point. 
procedure finds and 
returns whether the point Point is inside, outside or 
on the boundary of the polygon Polygon. The pro- 
cedure checks, for every edge of the polygon, if the 
point is on the edge, and if not, whether the edge 
intersects with a ray that begins at the point and is 
directed in the X-axis direction. If the point is on the 
edge, the procedure returns boundary. If the edge 
intersects with the ray, except at the edge’s lower 
endpoint, a counter is incremented. When all edges 

counter is an odd number or outside if the counter 
is an even number. 
Procedure inserts into the 

6 .  Construct the result polygons and find their types. 

sible number of result polygons, since every closed are checked, the procedure returns inside if the 

specify whether the type of an output polygon is of 
the same type or the opposite type as of polygon A, 

vertex ring, DSV, the point Point with the type Type 
if this point is not already in DSV, The possible types 

when both A and B have the same orientation. If 
A and B have the opposite orientations, the orien- 

is specified in the table. 

are: inside, outside or boundary. 
Procedure inserts an edge 

not already there. If regular output result polygons 
are required and a non-boundary edge fragment is 
to be inserted, the procedure checks whether the 
same edge fragment with the opposite direction is 
already in EF. If so, it does not insert the edge frag- 
ment and it deletes the existing edge fragment with 
the opposite direction from the edge fragments table. 
Procedure deletes an edge frag- 
ment from the edge fragments table. 
Procedure searches and returns 
from the edge fragments table an edge fragment 
whose first endpoint is Point. 
Procedure searches and returns 
the index of an edge fragment in the edge fragments 
table that contains the edge fragment Fragment. 
Procedure organizes the edge fragments 
table to allow fast search and deletion operations. 

returns clockwise 
if the polygon Polygon has a clockwise orientation 
and returns counterclockwise if the orientation is 
counterclockwise. This procedure finds the vertex 

tation of the output polygon is the opposite of what fragment into the edge fragments table, EF, if it is 

3.2 Procedural description ofthe algorithm 
We can describe the algorithm as a procedure poly- 

gonoperation. The procedure takes as its input two ar- 
rays, A and B, that include the vertices of the two poly- 
gons, the two polygon types, and an op- 
eration code, and a regularity indicator, Reg, 
and produces one output array, Out, which includes 
the vertices of the result polygons. 

The input arrays contain the two input polygons 
where each polygon is represented as a sequence of the 
(x,y) coordinates of its distinct vertices (and it is known 
that the first and last vertices are connected by an edge). 
The polygon type can be island or hole, the operation 
to be performed is intersection, union or difference 
and the regularity code indicates if the output poly- 
gons should be regular or not. In the output array, 
each result polygon is represented as in the input 
arrays, with multiple result polygons separated by a 
marker row. 

Table 4. Output polygon type for a given operation and given input polygon types 
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with the minimum X value and compares the slopes 
of the two edges attached to this vertex in order to 
find the orientation. 
Procedure changes the 
orientation of the polygon Polygon. 
Table 

contains indicators which specify 
whether the two input polygons should have the same 
or opposite orientations according to the operation 
and the polygon types (Table 1). 
Table 

contains the type of edge frag- 
ments, besides the boundary line fragments, to be 
selected for insertion into the line fragments table 
according to the operation and the polygon types 
(Table 2). 
Table 

contains indicators 
which specifies how many boundary edge fragments 
are to be selected given the edge fragments situation 
for regular and non-regular operations. The table is 
according to the operation and the polygon types 
(Table 3). 
Table 

contains indicators which specify 
whether the type of an output result polygon is the 
same as or the opposite of the type of polygon A 
when both have the same orientation. If they have 
the opposite orientations, the orientation of the result 
polygon is the opposite of what is written in the table. 
The table is arranged according to the operation and 
the polygon types (Table 4). 
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from polygon A, polygon B or both. When both bits 
are set, the edge fragment is a boundary edge frag- 
ment of both polygons. 

5. Two bits to store the edge fragment's type (inside, 
outside, or boundary) of the edge fragment whose 
first endpoint is in the current entry. 

6. An index that is used in the construction of the 
result polygons to point to the next hash table entry 
used in the current attempt to construct a result 
polygon. 

Insertion of an edge fragment is done first by finding 
an entry, for the second endpoint in the hash table 
(if it does not exist in the table, it is inserted). Then 
we find an entry for the first endpoint (if it does not 
exist in the table, or if it exists but its successor index 
is not - 1  then a new entry for is made). Then the 
successor index in is set to point to A single 
point edge fragment is inserted as one entry in the 
table where the successor index to the second endpoint 
points to the entry itself. 

Deletion of an edge fragment is implemented by 
setting to -1 the successor index field in the entry of 
the first endpoint of the edge fragment. 

Searching for an edge fragment is done by using 
linear open addressing hashing for an entry with the 
edge fragment’s first endpoint coordinates. If such an 
entry is found, the successor index field is checked for 
the second endpoint of the edge fragment. If the suc- 
cessor index field is not - 1, the edge fragment is found. 
If the successor index field is - 1, then the linear search 
continues until it is determined that no such point is 
stored. 

All the boundary edge fragments of both polygons 
are inserted into the edge fragments table, EF, from 
the two vertex rings A V and BV. Then, for each bound- 
ary edge fragment for which one or more exactly over- 
lapping edge fragments exist, the boundary situation 
is checked and some or all of these edge fragments are 
deleted, if necessary, according to Table 3. 

When EF is implemented as a sorted table, this re- 
gularization process can & done by sorting the EF 
table after the insertion of the edge fragments of the 
first polygon, A, and then using binary search for the 
check discussed above, when inserting the edge frag- 
ments of the second polygon, B. After appending the 
admissible edge fragments from B, the whole EF array 
is sorted again. 

When EF is implemented as a hash table, the edge 
fragments of A are inserted one-by-one with the hashing 
insertion procedure. Then, when the edge fragments 
of B are inserted, the search for oppositely directed 
edge fragments is done by hashing. The admissible edge 
fragments of B are inserted by hashing as soon as they 
are encountered. 

In case a non-regular output is permitted, the pro- 
cedure may produce output result polygons which are 
line-segment polygons (like a polygon whose edges are 

and and/or single- 
point polygons (like a polygon whose edge is 

along with any regular result polygons. 

3.3 Implementation details 
In this section we describe the data structures and 

methods used in implementing the procedure for set 
operations on polygons. 

The procedure uses two linked lists, AV and BV, 
one array, EF, and three static control tables as its 
internal data structures. 

The two linked lists are the vertex rings. They are 
used to store the vertices and intersection points of 
each polygon in sequential order, so that all edge frag- 
merits are defined by two adjacent vertex ring entries. 
The insertion of the original vertices of a polygon is 
done by linking them together into the linked list in 
their Original order (including the link between the last 
Vertex and the first one). The insertion of each inter- 
section point is then done by moving along the linked 
list between the two original endpoints of the inter- 
sected edge and looking for the right place to insert the 
new intersection point according to the coordinates of 
the new point, the coordinates of the existing points 
and the edge direction. 

We have imlemented the EF table, which is 
searched to construct the result polygons, using two 
different methods. In the first method EF is built as a 
sorted table. Each new edge fragment is inserted into 
the next available space in the array and subsequently 
the array is sorted. The search method used within this 
sorted EF table is binary search. Deletion of an edge 
fragment is handled by using one bit in each entry of 
the EF table to mark the entry as deleted or not deleted. 
This is done to avoid physical deletions that could re- 
quire moving a lot of the entries. 

In the second method, the EF table is built as an 
open addressing hash table of edge fragments. An entry 
in the hash table represents an endpoint of an edge 
fragment and contains the following fields: 

1. A bit to indicate whether the entry is free or used. 
2. The coordinates of an endpoint of the edge frag- 

ment. 
3. A successor index to the hash table entry that con- 

tains the coordinates of the second endpoint of the 
edge fragment. If this successor index is -1, the 
current entry represents the terminating endpoint 
of an edge fragment and does not itself represent 
the first endpoint of an edge fragment. 

4. Two bits to indicate whether the edge fragment 
whose first endpoint is in the current entry comes 
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The algorithm as presented is designed to take the 
class of vertex-complete polygons as its input. It cannot 
handle general orientable polygons because when it 
searches for the next vertex of a result polygon it de- 
pends on the fact that any two overlapping edge frag- 
ments must be identical as sets. This assumption holds 
in the case of vertex-complete polygons but fails for 
orientable polygons since edges of the same polygon 
can touch (as in Fig. 1) but the algorithm does not 
compute and use these intersection points. This situ- 
ation is shown in Fig. 2 where polygon 

is orientable but not vertex-complete and 

ment(a, b) with polygon A .  Consider computing A 
B. In the edge fragments selection process the edge 

fragment segment(a, b) is selected from the vertex ring 
of polygon A, and edge fragments segment(a, d )  and 
segment(d, b) are selected from the vertex ring of poly- 
gon B after the intersection point d has been intro- 
duced. The intersection result of A and B is polygon 
A. Although the correct output is constructed, extra 
edge fragments have been introduced which do not 
form a cycle. Thus, either edge fragment segment(a, 
b) or edge fragment segment(d, b) has no continuation, 
and this causes the algorithm to fail. 

One way to extend the domain of the algorithm to 
orientable polygons is to have a preprocessing step 
where each polygon is checked for whether edges in- 
tersect each other. Intersection points, if found, are 
inserted as vertices of the polygon. This preprocessing 
reduces all orientable polygons to vertex-complete 
polygons which can be handled by our algorithm. 

Our implementation is crucially dependent on the 
accuracy of the numerical calculations involved at three 
key points: 

1. Determining if a point is inside, outside or on the 
boundary of a polygon must be done absolutely 
correctly. This requires accurate numerical calcu- 
lation to distinguish between the boundary situation 
and the inside or outside situation. 

2. The decision as to whether an intersection point 
exists between two edges must be absolutely correct. 

3. The calculation of the (x, y) value of an intersection 
point should be very accurate to avoid possible non- 
orientable result polygons. We cannot absolutely 
avoid non-orientable result polygons, but a test can 
be programmed which will detect such polygons. 

There are surprisingly many situations where ordi- 
nary floating point arithmetic is not good enough to 
achieve the required accuracy. We have used interval 
and multiprecision arithmetic subroutines to overcome 
the first two decision- problems[10]. The use of these 

cases when many of the vertices of one polygon are on 
the boundary of the other polygon. This increase in 
running time is the price we pay for the accuracy of 
the result. Although the third problem can be solved 
by using the same approach, it seems to be costly and 
rarely required. 

polygon B = polygon[a, b, f, g] shares the edge seg- 
subroutines increases the running time, especially in 

4. ANALYSIS OF THE ALGORITHM 

4.1 Correctness proof of the algorithm 
In this section we prove the correctness of the al- 

gorithm by proving the correctness of its two stages. 
The first stage is the classification of the line segments 
of the input polygons and the second stage is the con- 
struction of the result polygons. Since the second stage 
uses the output of the first stage as its input and since 
we assume that the inputs to the algorithm are two 
vertex-complete polygons, we can be sure of the cor- 
rectness of the output by proving the correctness of 
each stage. We prove the correctness for intersection 
of two vertex-complete island polygons. The proofs for 
other operations and other combinations of polygon 
types are similar. 

Definition 1. Given two vertex-complete island polygons 
A and B, an edge fragment is defined to be a sub-seg- 
ment of an original edge of A or B such that each of its 
two endpoints is either an original vertex of A or B, or 
an intersection point of edges of these two polygons and 
such that no vertices or intersection points occur in the 
interior of the sub-segment. 

Theorem 1. Given two vertex-complete island polygons 
A and B, an edgefragment, f, of one of these polygons 
is also an edge of an intersection result polygon R if 
and only if it is a boundary edge fragment or it is an 
inside edge fragment. In case regular result polygons 
are required, a boundary edge fragment f is an edge of 
an intersection result polygon R if and only if there is 
no other edge fragment with the same endpoints but 
with opposite direction in both polygons. 

Proof: 
We prove by contradiction that an edge of an in- 

tersection result polygon R is a boundary or an inside 
edge fragment of A or B. Suppose there is an outside 
edge fragment as an edge of an intersection result poly- 
gon. This means that there exists at least one point p 
R such that P A and P B, but this contradicts 

the definition of 
Fig. 2. Intersection of two orientable polygons that share an 

edge. 
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sumption that both A and B are identically ori- 
ented. 

Theorem 2. Given two identically oriented vertex-com- 
plete island polygons A and B, the set of all their inside 
and boundary edge fragments can be partitioned into 
edge-disjoint non-self-intersecting cycles of edge frag- 
ments where no two cycles share an edgefragment. 

Proof: 
Define a polyline sequence of edge fragments as an 
ordered list of edge fragments where the second end- 
point of each edge fragment is equal to the first end- 
point of the next edge fragment in the list. We will 
prove the theorem by showing that every maximal se- 
quence of inside and boundary edge fragments must 
form a cycle of edge fragments and that these cycles 
are edge-disjoint. 

We first show that every maximal sequence of inside 
and boundary edge fragments must form a cycle. Sup- 
pose this is not true, so there is a maximal sequence 
of edge fragments that does not form a cycle. By 
Lemma 1 we know that every inside or boundary  edge 
fragment has a continuation so this sequence must be 
infinite. But the number of edge fragments is finite, so 
such a sequence cannot exist. 

Therefore, we see that every maximal sequence of 
inside and boundary edge fragments forms a cycle. If 
the cycle includes all the edge fragments of the se- 
quence, we are done. If the cycle does not include all 
the edge fragments of the sequence, then we are left 
with a leading path of edge fragments, and we must 
show that this leading path has a continuation which 
is edge-disjoint from the cycle; then we can ensure that 
another cycle will be formed if the remaining sequence 
of edge fragments is continued using the successive 
continuation edge fragments of the leading path. We 
will show that the leading path has a continuation by 
considering all the possible cases. 

In Fig. 3 we show the four different cases for a leading 
path and a cycle. The solid lines represent edge frag- 
ments that are originally from polygon A and the 
dashed lines represent edge fragments that are originally 
from polygon B. In the figure, edge fragment (a, b) is 
the leading path while the sequence 

is the cycle. In Fig. 3(a) and 3(b), vertex b has an 
indegree of two. That means that polygon A is not 
simple and that b is a touching point of two edge-dis- 
joint parts of polygon A.  

Now, if a vertex-complete polygon A consists of two 
edgedisjoint parts with some common vertices, the 
result of the intersection of such a polygon with another 
polygon B can be considered as the union of the in- 
tersection results of the edge-disjoint cycles of A with 
B. Thus, we can consider these two intersection s u b  
problems separately. This reduction process may be 
reiterated until both parts of A are irreducible parts. 
Thus, we may assume we have the base case where 
polygon A is formed from exactly two irreducible parts. 

In Fig. 3c, since edge fragment (a, b) is originally an 
inside or a boundary edge fragment of polygon A ,  there 

We prove by contradiction that a boundary or an 
inside edge fragment of A or B is an edge in the inter- 
section result polygon R. Suppose there is a boundary 
or an inside edge fragment of A that is not an edge in 
the result polygon R. This means that there is a point 

This contra- 
dicts the definition of 

Now we prove by contradiction that the boundary 
edge fragments that contribute to a regular intersection 
result polygon are those that appear only in one direc- 
tion. From the previous part of the proof we know that 
every boundary edge fragment of A and B appears in 
a possibly non-regular result polygon R. So if a bound- 
ary edge fragment appears twice in both directions, it 
contributes two opposite directed edges to a result 
polygon. Such a result polygon is not a regular polygon 
since it includes overlapping edges. Thus, the edge 
fragments that contribute to a regular result polygon 
cannot be those that appear in both directions; they 
must be those that appear only in one direction. 

Lemma 1. Given two vertex-complete island identically 
oriented input polygons A and B, for every inside or 
boundary edge fragment selected for con- 
structing an intersection result polygon, there is a con- 
tinuation edge fragment which is an input 
edge fragment or a boundary edge fragment. 

Proof: 
We prove this lemma by considering all the possible 
inside or boundary edge fragments. 
Case 1 : is an inside edge fragment. 
In this case is either an inside point or a boundary 
point. If is an  inside point, it is an original vertex of 
one of the polygons (suppose, without loss of generality, 
it is an original vertex of polygon A)  so there is an 
original edge of A ,  such that at least a part of 
it is inside B. Thus, there is a continuation edge frag- 
ment, that is a part of edge where 

is either or is a point on the edge that is 
an intersection point between and an edge of 
polygon B. 

If pi is a boundary point let us assume, without loss 
of generality, that is an edge fragment that is 
originally from polygon A .  If is an original vertex of 
polygon A and the next edge fragment of A is inside 
or on the boundary of polygon B, we are done. If the 
next edge fragment of A is outside of polygon B or 
is an intersection point, there is a part of the edge of 
polygon B that is on that is inside polygon A ,  so 
there is an edge fragment that is originally from polygon 
B, that can continue edge fragment 
Case 2: is a boundary edge fragment. 
Inthiscase is an edge fragment of both A and 
B. If A and B continue to have the same boundary, 

is a boundary edge fragment that continues 
If after point one of the polygons, A or B, 

goes inside the other one, there is an inside contin- 
uation edge fragment. If after point both the poly- 
gons go outside each other, then the two polygons have 
opposite orientations, and this contradicts the as- 
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(c) (d) 
Fig. 3. The four possibilities of a cycle of edge fragments and its leading path. 

must be a closed sequence of edges of polygon B that tex-complete polygon in Section 2.2). Thus we may 
surround it. If this closed sequence includes edge frag- assume, without loss of generality, that either (1): the 
ments (c, b) and (b, d )  there is a continuation of the sequence comes from polygon A 
leading path (a, b) that is originally from polygon A. and the sequence comes from 
This is because (c, b) and (b, d )  are also inside or polygon B, or (2): the sequence 
boundary edge fragments, and for this to be so, there comes from polygon A and the sequence 
must be an edge fragment (b, e), originally from poly- comes from polygon B, where and e 
gon A, that is inside or on the boundary of polygon B. 
If the closed sequence of edges of polygon B does not First suppose (1) holds. Since both polygons A and 
include edge fragments (c, b) and (b, d) ,  this means B are identically oriented, let us look at point c with 
that polygon B is not simple and that b is the touching respect to polygon B and point d with respect to poly- 
point of two edge-disjoint parts of polygon B. As men- gon A. Point c can be outside B and then point d can 
tioned before, we can reduce this case to that where be inside A, but if point c is inside B then point d 
polygon B is composed of just two irreducible pans. cannot be inside A. Thus, the situation of both c and 

In Fig. 3d, since both (a, b) and (b, d )  are inside or d being inside points is impossible and since all the 
on the boundary of polygon B, there must be a closed edge fragments are inside or boundary edge fragments 
sequence of edges of polygon B that surround it. If this and this contradicts the assumption that two 
closed sequence includes edge fragment (c, b), there is cycles share edge fragment (a, b). 
a continuation of the leading path (a, b) that is origi- Now suppose (2) holds. Since both polygons A and 
nally from polygon B. If the closed sequence of edges B are identically oriented, let us look at point d with 
of polygon B does not include edge fragment (c, b), respect to polygon Band point c with respect to polygon 
that means that polygon B is not simple and that b is A. Point c can be outside A and then point d can be 
the touching point of two edgedisjoint parts of polygon inside B, but if point c is inside A then point d cannot 
B. As mentioned before, we can reduce this case to be inside B. Thus, the situation of both c and d being 
that where polygon B is composed of just two irreduc- inside points is impossible, and since all the edge frag- 
ible parts. ments are inside or boundary edge fragments and 

Now we show that the cycles are edge-disjoint. If all d, this contradicts the assumption that two cycles share 
the edge fragments form one cycle, we are done. 0th-  edge fragment (a, b). 
erwise, suppose there are two cycles that share an edge 

Theorem 3. The algorithm for intersection between two fragment. We show this situation in Fig. 4. The edge 
identically oriented vertex-complete island polygons A fragment (a, b) is shared by the two cycles. If all the 
and B is correct. edge fragments in the figure come originally from one 

polygon, this polygon is not vertex-complete since by Proof: 
our assumption it cannot be partitioned into closed In Theorem 1 we have proved that the edge fragments 
sequences of edge fragments (see the definition of ver- that are selected to form the result are exactly those 
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Fig. 4. The two possibilities for two cycles of edge fragments to share an edge fragment. 

needed to construct the result polygons. In Theorem 
2 we have proved that given the set of selected edge 
fragments, the construction process produces the set 
of the result polygons. 

4.2 Complexity analysis of the algorithm 
In this section we analyze the worst case time and 

space complexity of the sorted table version of the al- 
gorithm presented for computing the intersection of 
two polygons A and B. Let and be the number 
of vertices (and edges) in polygon A and polygon B 
respectively and let be the number of intersection 
points between edges of A and B. Note that can be 
as large as The time complexity of each step 
in the algorithm is summarized below. 

ment. In this case the cost is at most steps. 
The same is true for polygon B edge fragments. Thus 
the total cost of this step is of 

5 .  Selecting the result edge fragments is done in time 
proportional to the number of edge fragments which 
is The cost of organizing the result 
edge fragments for later searching depends on the 
organization method. Since we give here a worst 
case analysis, we shall not discuss the hash table 
method since, although it is the better method with 
respect to the average case complexity, it has an 
inferior worst case cost. For a sorted array organi- 
zation, the complexity is the sorting complexity and 
thus the total cost is 

also depends on the organization method we choose 
for the edge fragments. For the sorted table method, 

is so the total cost of this step 
is 

Using each estimate above, we can see that the total 

1. Finding the orientation of each polygon requires 6. The complexity of constructing the result polygons 
visiting each vertex in each polygon so the total cost 
of this step is 

steps and classifying each vertex of polygon B is 
done in steps. Inserting each classified vertex 
point into the associated vertex ring requires 
steps so the total cost of this step is 

3. Finding all the intersection points between the edges 
of A and the edges of B in the way we have presented 
here is done in steps. Inserting each in- 
tersection point into the associated vertex ring re- 
quires steps at most. Thus the total cost of 
this step is 

4. Classifying each edge fragment is done in steps 
if one of its endpoints is an original vertex of A or 
B. The worst case for an edge fragment of polygon 
A is when its two endpoints are boundary points 
and the edge fragment is not a boundary edge frag- 

2. Classifying each vertex of polygon A is done in the cost of the binary search for each edge fragment 

worst case time-cost of the algorithm is 

The space used by the algorithm consists of two ver- 
tex rings, one of size and the other of size 

and one edge fragment table of size 
So the total amount of space required is 
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By using modifications discussed below, an elabo- 
rated algorithm whose overall time cost is 

can be obtained. 

4.3 Improvements to the algorithm 
In this section we discuss some theoretical, but pos- 

sibly impractical, improvements to the algorithm. We 
can see in the previous section that the largest contri- 
butions to the worst case time complexity come from 
the cost of two steps of the algorithm: 

Finding the intersection points of the edges of the 

ring, continuing from point v, until a boundary 
point is found, assign all the edges visited to be inside 
edge fragments, and go to (4). 

3. If all the points in the vertex ring, AV, are now 
visited, quit. Otherwise follow the points in the A V  
ring, continuing from point v, until a boundary 
point is found, and assign all the edges visited to be 
outside edge fragments. 

4. If all the points in the vertex ring, AV,  are now 
visited, quit. Otherwise continue to follow the points 
in the A V  ring until all points are visited or until 
this step is exited while checking the edges in the 

boundary points and they lie on one edge of B, they 
form a boundary edge fragment. If one point, u, is 
a boundary point that is an intersection point of 
edges and and if this intersection 
point is not an endpoint of and if the next point, 
w, is to the east of then classify the edge fragment 
(u, w)  as an inside edge fragment and go to (2). If 
the next point, w, is to the west of then classify 
the edge fragment (u, w) as an outside edge fragment 
and go to (3). In case the first point, u, is an endpoint 
of b, we have to check whether the second point is 
to the east or west of both and and take into 
consideration the angle between . We and 
summarize the rules in Table 5 .  If the edge fragment 
is seen to be an  inside edge fragment, classify it as 
such and go to (2). If the edge fragment is seen to 
be an outside edge fragment, classify it as such and 
go to (3). 

We present Fig. 5 to help clarify the meaning of 
angles that are greater or less than 180°. 

In step (1) the algorithm visits once, in the worst 
case, each node of the vertex ring AV. In steps (2)-(4) 

A V. For each edge fragment in A V it checks if the edge 

of polygon B. Thus, this classification algorithm re- 
quires time. 

two polygons and inserting them into the vertex reference polygon B. If two adjacent points are 
rings. 
Classifying the edge fragments as inside, outside, or 
boundary edge fragments. 

For the first of these problems, we can theoretically 
use the algorithm sketched by Mairson and Stolfi[ 11] 
to find the intersection points. Given two sets of line 
segments A and B, consisting of and noninter- 
secting segments respectively, this algorithm finds all 
the intersection points of segments of A with seg- 
ments of B in time. 
Now, to handle the insertions, we can put the inter- 
section points in a temporary array, sort the array ac- 
cording to the coordinates of the endpoints and the 
direction of the original edge, and then form the vertex 
ring by traversing the sorted array. This insertion sub- 
computation will take time. 

For the second problem we can use an algorithm to 
classify the edge fragments in which we first find the 
intersection points and insert them into the vertex rings, 
and then classify the edge fragments using the infor- 
mation that intersection points are boundary points. 
We present here a brief description of this classification 

reference polygon B. In the case of a counterclockwise 

as follows: 

1. Choose from the vertex ring, A V, an original vertex, 
v ,  that is not a boundary point, and find if it is an 

to (2) and if it is an outside point go to (3). If there 
is no such vertex v (i.e., all the vertices of polygon 
A are boundary points) choose one vertex v of A 
and go to (4). 

2. If all the points in the vertex ring, A V, are now 
visited, quit. Otherwise follow the points in the A V  

algorithm for a clockwise oriented polygon A and a the algorithm visits once each node of the vertex ring 

polygon the algorithm is similar. The algorithm goes fragment is to the east or the west of at most two edges 

inside or an outside point. If it is an inside point go 5. CONCLUSIONS 
As mentioned before, algorithms for set operations 

on polygons usually have two main stages: edge clas- 
sification and output polygon construction. 

A common approach to the classification problem 
is the use of a divide and conquer paradigm along with 
vertex neighborhood information[5,8] in order to 

Table 5. The rules when the first point of edge fragment (u, w )  is an endpoint of 
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Fig. 5. Clockwise oriented polygon with angles < 180° at 
points a, b, d, e and angle > 180° at point c. 

classify an edge of one polygon as being inside, outside 
or on the boundary of the other polygon, The line seg- 
ment classification of the first stage and vertex neigh- 
borhood information are then used to perform the 
construction of the result polygons. 

The use of vertex neighborhood information seems 
to require complex data structures and associated space 
to store the information. Moreover, just as with Our 
algorithm, without absolutely accurate determination 
of line segment intersections, such algorithms cannot 

determination, the proof of correctness of such algo- 
rithms can be difficult since there are often many spe- 
cial cases to deal with and it can be difficult to show 

neighborhood information is even more complicated 

whose vertices might have a degree greater than 2. 
We have presented here a robust algorithm, which 

is not based on checking a large number of special 
cases. It can handle the class of vertex-complete poly- 
gons as input, which properly includes the elementary 
simple polygons. Its space requirements are relatively 
modest, and its worst case time complexity is not bad, 
although it can be improved in theory. 

be guaranteed correct. Even with accurate intersection 17. J. Nievergelt and F. P. Preparata, Plane-sweep algorithms 

that all these cases are handled properly. Handling the APPENDIX A EXPERIMENTAL RESULTS 
In this appendix we present some results of set operations 

between polygons produced by our program. Examples are 

the algorithm can deal with. In Fig. 6 we see two star shapes 
as polygon A in (a) and polygon Bin (b), and the result poly- 
gons o f  in (c), in (d), in (e), and 
in (f) in Figs. 7-9 we show polygon A in (a), polygon B in 
(b), and the regular result polygons of 
and are shaded in (c), (d), (e), and (f) respectively. Fig. 
7 is special because the two polygons have the same set of 
vertices. In Fig. 8 we present an example where polygon A is 
made of three irreducible parts and two of its vertices lie on 
edges of polygon B. In this case absolute numerical accuracy 
is crucial to obtain the correct results. In Fig. 9 a vertex-com- 
plete polygon with three holes and collinear edges is presented 
and we see that the correct regular results are obtained. 

In Figs. 10-12 we show polygon A in (a), polygon B in (b), 
and the regular results polygons of and 

are shaded in (c), (e), (g), and (i) respectively, and the 
non-regular result polygons of and 

are shown in (d), (f), (h), and (j) respectively. In Fig. 10 
we show how the algorithm handles collinear overlapping edges 
of the input polygons A and B. We can also see a degenerate 
single point result polygon in Fig. 10(d). in Figs. 1 1. and 12 
we show two other cases where the regular and non-regular 
results are different. 

when one tries to work with vertex-complete polygons shown that present some of the kinds of complex cases that 
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