Comput & GraphicsVol. 13, No 2, pp 167-183, 1989
Printed in Great Britain

0091-8493/89 $3.00 + .00
© 1989 Maxwell Pergamon Macmillan plc

Technical Section

AN ALGORITHM FOR COMPUTING THE UNION,
INTERSECTION OR DIFFERENCE OF TWO POLY GONS

N AVRAHAM MARGALIT o
Computer Vison Laboraory, Center for Automation Reseerch, University of Maryland,
College Park, MD 20742

and

GARY D. KNOTT
Department of Computer Science, University of Maryland, College Park, MD 20742

Abstract-An agorithm for set operations on pairs of polygonsis presented. The agorithm uses a boundary
representation for the input and output polygons. Its domain includes simple polygons as well as polygons
with dangling edges, vertices of degree greater than 2, and holes within the area of the polygon. A partial
proof of the correctness of the algorithm is given aswell as an analysis of its complexity. The implementation
that is described is table-driven. It is facilitated by the use of efficient data structures. Implementation issues
such as numerical accuracy are also discussed and sample results of its execution are demonstrated.

1. INTRODUCTION

Union, intersection, and difference set-theoretic op-
erationson polygonshave been extensively studied be-
cause an efficient algorithm for performing these tasks
is very useful for CAD/CAM systems as well as for
computer graphics packages. A good algorithm for the
case of convex polygons is known[ 1], but it is more
difficult to develop a generd efficient algorithm for any
two simple polygons.

There are two main approachesto design algorithms
for set operations on polygons. One is based on the
divide and conquer paradigm and the other is based
on direct manipulation of the boundary line segments
that construct the polygon. Using the divide and con-
quer idea, the two main approaches to perform set
operation on polygons are based on constructive solid
geometry (CSG)[3] and on quadtrees4].

Inthe CSG method a polygon (asevery other solid)
is represented asa CSG tree. A CSG treeis a binary
tree whose leaf nodes represent pre-defined primitive
shapes (such astriangles, squares, etc.) and an internal
node represents the result of a boolean operation be-
tween its left and right CSG sub-trees. A boolean set
operation on two polygonsis decomposed recursively
into boolean operations on the primitive shapes. Inthe
quadtree method, the plane containing each polygon
isdivided recursively into quadrants containing frag-
ments of the plane. A boolean set operation on two
polygons is done by traversing the quadtrees of the
polygons and looking for the common partsin nodes
representing the same quadrants in the plane. Both
methods have been used in algorithmsfor set-theoretic
operations on polygong 3, 5-8].

The CSG method can only handle polygonsthat are
decomposed into the pre-defined primitives and thus
may be limited. The quadtree method islimited in its
accuracy since the maxima depth of the tree is
bounded so that the input polygons cannot be repre-
sented precisaly. These problems have been addressed
in the literature[6, 8, 13] but there are many special

cases, the correctness of the algorithms is difficult to
prove and a precise worst case complexity analysisis
similarly difficult. Actually, correctness proofs and
complexity analysisare not presented in the literature.

Algorithms using the other approach of direct
boundary elements manipulation are summarized be-
low. Algorithms that “weave” the output polygons by
traversing the input polygons and retaining only the
desired output are presented by Weiler[12], and East-
man and Y essiog[15]. Weller presented an interesting
method using a graph representation along with local
and history information of the vertices. This entails
very complicated data structures and methodsto ma-
nipul ate them. Weiler does not discuss implementation
issues.

Nievergelt and Preparata] 17] have presented an a-
gorithm which is an extension of the plane sweep al-
gorithm[ 1]. Although the asymptotic complexity of this
agorithm isO(n - log(n)), it requiresthat complex data
structures be maintained along with methods to ma-
nipulate them. The authorsdo not discusshow to im-
plement the agorithm.

Putnam and Subrahmanyam[9] have presented an
algorithm to perform boolean operations on n-dimen-
sional objects. Thisalgorithm is very general. The au-
thors do not discuss any implementation details and
it isdifficult to see how to implement it.

Aswe can see, although there are many algorithms
for the task of performing set operationson polygons,
they areeither not very practical or they are incapable
of dealing with complicated cases. Rigorous proofs of
correctnessare not given inany of the papers, and very
important implementation issuesare hardly discussed.
Also, none of these algorithms can work in practice
without attention to numerical accuracy issues, and
this important detail is not generally discussed. Most
of the algorithms are for simple regular polygonsand
cannot perform on more complex non-regular poly-
gons. Handling more complex polygons can be useful,
and it isrelatively difficult to do correctly.
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In this paper we present a new algorithm for set
operations between polygons, discuss its implemen-
tation, partially prove its correctness, and give crude
boundson itscomplexity, The algorithm usesasimple
boundary representation which is natural for many
graphics applications. It usesonly two linked listsand
one hash table, and it can handle complicated non-
regular polygonsasitsinput and output. We also dis-
cuss the issue of precise numerical methods and
their use.

2. DEFINITIONS
2.1 Pointsand linesin the E? plane

We are concerned with objectsin two-dimensional
Euclidean space, E2 A point ain E?isan ordered pair
(x,y)wherex andy are real numbers representing the
right-handed Cartesian X-axisand Y-axis coordinates.
A pointin E2? may also be regarded asa vector starting
at the origin, (0, 0), and ending at the paint.

Given two distinct points, a = (x;, y,) and b = (x,
), inE2 thedirectedline  L(a, b) = {(x, ») : (x, »)
=(1~fa-+bfor—co << oo} isthelinethat passes
through aand b in thedirection from a towardsb. The
directed line-segment segment (a, b) ={ (X, y) : (X, Y)
= (1~ na+ tbfor0 <t < 1} isthe ssgment of the
line L(a, b} between a and b in that order.

A point ¢ € E? can beto the east of a directed line
L(a, b) which isimagined to be pointing north: it can
be to the west of the ling, or it can lie on the line.
Define F = (x; = x)(y = y2) = (1 = y)x = x,) for a
point ¢ = (x, y) and the line L(a, b). c isto the east of
L(a, b) if F <0, to the west of L(a, by if F >0, and it
lieson L(a, b) if F=0.

Two linesL(a, by and L(c, d) can be paralléel or they
can intersect. When they intersect they have acommon
point and there are unique valuest and s which satisfy
the equation (1 ~ fa + b = (1 ~ s)c + sd. Two line
segments segment(a, b) and segment(c,d) intersect if
valuesoftand s exist which satisfy the above equation
suchthat s, t € [0, 1].

A polyline sequence ofdirected line segments is an
ordered list of line segmentswherethe second endpoint
of each line segment is equal to the first endpoint of
the next line segment in the list. A closed polyline se-
quence is one such that the second endpoint of the last
line segment is equal to the first endpoint of the first
line segment in the sequence. Each directed line seg-
ment must have a positive length, except that the single
line segment of aone-member closed polyline sequence
isa degenerate line segment of length 0.

22 Polygonsin the £2 plane

The boundary of the n-sided polygon poiygonip,,
P2, - .., Pa] in the E2 plane isthe closed polyline se-
quence of n directed line segments {segment(py, p2),
segmeni(pz, P3), . . . , segment(pa, py)) Where pi # i
fort £ i<n-1. Thenpointsps, pz2, ..., pa Of the
polygon are its vertices,whilethe line segmentsare its
edges.

A polygon is simpleiif it has at least two distinct
vertices, if no pair of nonconsecutive edges share a

point, and if each pair of consecutive edges share ex-
actly one point[1].

The boundary of a one-sided polygon consists of a
single point. The boundary of a two-sided polygon
consists of a singleline segment whose two oppositely
directed forms are the two edges of the polygon, and
whose end-points are the two vertices. One-sided and
two-sided polygons are caled irreducible degenerate
polygons.

Theclassof irreducibledegenerate polygonstogether
with the classof simple polygons make up the class of
irreducible polygons.

A simple polygon has a clockwiseorientation if its
vertices are ordered in a clockwise order. A precise
definition of clockwiseorientation can begiveninterms
of the signed area of apolygon. If the polygon’s vertices
have the opposite order, the polygon has a counter-
clockwiseorientation. Thusif a simple polygon {seg-
ment(py, p2), Segment(p, P3), - - ., segment(pa, P1))
hasa clockwiseorientation, the reverse simple polygon
(segment(p;, Po), Segment(pa, Po-1), . . . , S€8MENK(Pz,
m)) hasacounterclockwiseorientation. An irreducible
degenerate polygon D isboth clockwise and counter-
clockwiseoriented, and either of these orientations can
be specified to be the principal orientation of D in any
particular context.

Let O ¢ E% A point p isin the interior of O(p
€ in0)) if there exists a neighborhood of p that is
contained within O. A point p isin the exterior of O(p
€ ext(0)) if there exists a neighborhood of p that is
contained within £2 — 0. A point p belongs to the
closureof O(p € clos(0)) if every neighborhood of p
contains apoint of O. A point p ison the boundary of
O(p € boun(0)) if every neighborhood of p contains
points from int(O) and ext(O). A set Oisregular if O
= clog(int(0)).Intuitively, a regular set in E? has no
dangling points or edges and no subregions of zero
area.

According to the Jordan Curve Theorem, asimple
polygon, taken as a closed non-self-intersecting curve
in the E2 plane, divides the plane into three regions,
the boundaryregion, the insideregion or interior,and
the outside region or exterior. The polygon itself is
taken as the closed set consisting of the union of the
inside region and the boundary. Either the interior or
the exterior is of infinite area and the complementary
regionis of finite area. We shall denote the finite area
region of a simple polygon P by FAR(P). The finite
area region of an irreducible degenerate polygon will
be defined to be the empty set &f; with this under-
standing, an irreducible degenerate polygon also has
digoint interior, exterior and boundary sets whose
union is E%

We divide simple polygons into two types: idands
and holes. An island-type simple polygon has an in-
terior with a finite area and an infinite area exterior.
A hole-type simple polygon has a finite area exterior
and an infinite area interior. We also follow the con-
vention that if a simple polygon has a certain orien-
tation and type, a second simple polygon with the op-
posite orientation is regarded as of the opposite type
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with respect to the first polygon. For example, a coun-
terclockwise simple polygon isregarded asa hole with
respect to a clockwiseisland simple polygon.

We now define several more classes of polygons.

A polygon is vertex-complete if:

1. Any pair of its edges either are digjoint, or intersect
at endpoints, or are identical as s&ts.

2. The st of its edges can be partitioned into subsets
of singleclosed polyline sequenceswhereeach such
partition subset, taken as a closed polyline sequence,
is an irreducible polygon. These irreducible poly-
gons are called the minimal component parts of the
origina polygon. For every pair of distinct irreduc-
ibleparts, P, and P,, where P, and P, are simple
polygons, either their finite area regions are digjoint
or thefinite area region of one of them is nested
within thefinite area region of the other. In the first
case, where FAR(P\) N FAR(P,) = &, if both parts
P, and A, are not included within thefinite area
region of some other irreducible part of the polygon,

then both P, and P, must havethe same orientation.
Inthe second case, where F4AR(P,) € FAR(P,), then
if there isno irreduciblepart P; such that FAR(P,)
« FAR(Py) € FAR(P,), then p, and p, must have
opposite orientations.

This definition means that a vertex-complete polygon
isbuilt of these irreducibleminimal component parts.
It cannot have crossing edges, but it can have coincident
verticesand collinear edgesand many closed sequences
of edges aslong as they obey the second rule above.

The class of vertex-complete polygons which have
one or more irreducible degenerate minimal compo-
nent parts constitutes the class of degenerate polygons.

We can represent a vertex-complete polygon asa
forest where each treein the forest isan inclusiontree.
A node in such a tree represents an irreduciblepart.
There is an edge between two nodes P, and P, if
FAR(P)) € FAR(P,) and thereisno irreducible part
P, suchthat FAR(P,) € FAR(P;y) © FAR(P,). Eachtree
of the forest represents a maximal disjoint component
of the associated polygon.

Using this forest-of-inclusion-trees representation,
we can definethefinitearea region FAR(P)of avertex-
completepolygon P. Suppose P corresponds to the for-
est of inclusion trees Q,, Q,, ..., Q,. Let Q; be one
of the trees of the forest which has k levels. Then
FARyc(Q)) is defined as the vertex-complete finite area
region associated with the root of the tree, where the
vertex-completefinite area region associated with an
arbitrary node N in the tree is defined recursively as
follows If the node Nisaleaf then FAR,(N) isdefined
asN ' Bnitearearegion FAR(N);otherwise FARyc(N)
isdefined as FAR(N) ~ U;FARvc(N;) where the N;'s
arethe sonsof node N in thetree @;. Findly, FAR(P)
= U;FARyc(Q).

The orientation of a vertex-complete polygon P is
the same as the orientation of any one of its maximal
component parts represented by the inclusiontrees@;,
Q2 ..., Qs Wherea Q; with area( FAR(Qy)) » 0 must
be chosen if possible.

Let us define an edgefragment ofa polygon to bea
possibly degenerate (a degenerate edgefragment is a
singlepoint) sub-segment of an original edge such that
each one of itstwo endpointsiseither an original vertex
or an intersection point of two edges. A polygon is
orientableif

1. Any two of itsedgesare either digoint or collinear,
or intersect at a point that isan endpoint of at least
one of the edges.

2. The set of its edge fragments creates a vertex-com
pletepolygon whose verticesare the original vertices
alongwith the intersection points between edges of
the original polygon.

Any orientable polygon can be converted into a ver-
tex-complete polygon by introducing additional ver-
tices. Thefinite area region of such aconverted polygon

is then taken as the finite area region of the original
orientable polygon.

Finally, apolygonisconvex if itsinterior isitsfinite
area region, and ifthe line segment between any non-
adjacent pairs of itsverticesliesin the interior of the
polygon, and a polygon is simple-convex if it issimple
and convex.

The above classes of polygons form the following
hierarchies:
simple-convex polygons C convex polygons C orientable
polygons, and
simple-convex polygons C simple polygons C regular
vertex-completepolygons
C vertex-complete polygons C orientable polygons
C set of all polygons, and
regular vertex-completepolygons regular orientable
polygonsC orientablepolygons.

The domain of our agorithm isthe class of vertex-
completepolygons. Examples of polygons of different
classesaregivenin Hg. 1.

2.3 S operationsbetween polygons
Let A and B be two polygonsin £2. We define the
set operationson A and B as follows:

AUB={(x,»):(x,y) EAor(x,y) € B}
ANB={(xy:(x ¥y EAdand (x,y) €E B}
A= B = clos({(x, y): (x, ) €E A and (x, y) € B})

In our definition of vertex-complete and orientable
polygons we alow polygons with coincident vertices
and overlapping edges, i.e., edgeslike segment(py, Pit1)
and segment(p;, Py+1) where P = Pj+1 and P = By.
There are situationswhere these types of polygonsare
not desirable. Thuswewishto optionally produce reg-
ular polygons as output, since, by the definition of reg-
ular sets, regular polygons do not have overlapping
and dangling edges or coincident verticeq 3, 8]. The
operation of finding a polygon’sregular parts (deleting
al the coincident vertices, dangling edges and zero-
areasub-regions) is called regularization[5]. However,
it is not certain that the result of a set operation on
two regular polygonsis another regular polygon. This
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Fig. 1. Polygons of different classesin the polygon hierarchy. (a) smpletonvex polygon. (b) smple polygon.
(c) regular vertex-complete polygon. (d) vertex-complete polygon. (€) orientable polygon. (f) general
polygon.

is the motivation for defining the regular set opera-
tiong[3,5]:

A U* B = regularization(A U B)
A N* B = regularization(4 N B)
A —* B = regularization(A — B)

for which the operation's result isa regular polygon,

3. THE ALGORITHM FOR SET OPERATIONS

Our agorithm for set operations on polygons has
two main stages. The first stage isthe classification of
the line segments of the input polygonsand the second
stageis the construction of the result polygons.

The agorithm first classifiesthe original vertices of
each polygon to be inside, outside or on the boundary
of the other polygon. Then it findsdl the intersection
points between edges of the two polygons. For each
polygon, the originad verticesal ongwith theintersection
points arestored in adata structure such that each two
neighboring points definean origina edge or a part of
an original edge of aresult polygon (or, aswe call them,
edge fragments).

The agorithm then classfiesthe edge fragments of
one polygon to be inside, outsideor on the boundary
of the other polygon. This classificationisgivenin [5]
where the set of edge fragments of a polygon Q is di-
vided into these three subsets with respect to areference

polygon P. These three setsof edge fragments of Qare
denoted by F#(Q), F#(Q) and F#(Q). Asin [9],the
set of boundary edge fragments, F#'(Q), can be further
partitioned into two partswhich are the boundary edge
fragments of Q that are directed in the same direction
as the boundary edge fragments of P, and the boundary
edge fragments of Q that are directed in the opposite
direction to the boundary edge fragments of P. These
sets are denoted by F&*™(Q) and F&"*(Q). This finer
division enables us to construct only regular result
polygons when required by not using the edge frag-
mentsin the set F&*(Q).

The classified edge fragments are stored in a data
structure that allows fast searching and deletion op-
erations. Then each result polygon is constructed, its
verticesare put in the output array and its edge frag-
ments are deleted from the data structure so as to pre-
pare for constructing the next result polygon. Each re-
sult polygon is constructed by successively searching
for a next continuing edge fragment until the search
finds an edge fragment which has a second endpoint
that isbeing visited for the second time. At this point,
aresult polygon has been found.

Thisalgorithm issimpleand efficient. We use ahash
table in a novel way, along with other simple data
structures. The elementary manipulation of these data
structures is efficient so that the time and space com-
plexity are reduced. The agorithm does not have to
handle a large number of specia cases and therefore
it can easily be seen to work on every pair of vertex-
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complete polygons, even those with vertices of degree
more than two or with collinear edges.

3.1 General descriptionof thealgorithm

The agorithm we use to solvethe problem of com-
puting the result of a set operation on two polygons
getsas its input an operation code which specifies
whether union, intersection or set differenceisdesired,
an indicator.code specifying .whether regular result
polygonsare required, and two vertex-complete poly-
gon arrays, A and B, along with their types (island or
hol€e). The algorithm constructsa set of irreducible re-
sult polygons along with their types in the output
array C.

If regular output is not desired, various result poly-
gons may be degenerate. A degenerate polygon is a
point or a line segment given by oppositely directed
overlapping edges. A point can be the result of a set
intersection operation on two polygons, for example
the intersection of two polygonsthat touch only at one

vertex.

The algorithm has six steps:

1. Normalize the orientations of the input polygons.
Find the relative orientation of the two input poly-
gonsA and B, and changethe orientation of polygon
B if necessary, according to the operation and the
polygon types assummarized in Table 1.Thisstep
isneeded because we do not require an idand poly-
gon to be represented by a specific onentation
(clockwise for example), but it is required that a
hole polygon be represented by the opposite ori-
entation to an island polygon.

. Classifyand insert the vertices.

Classify the original vertices of each polygon asto
whether they areinside, outside, or on the boundary
of the other polygon. Insert the classified vertices
of the two input polygons, A and E, in the two vertex
rings,AVand BVrespectively. The vertex ringsare
circular linked lists in which vertex points appear
in sequence so that each two adjacent points define
an edge fragment.

. Find and insert the intersectionpoints.

For each edge of one polygon find all the edges of
the other polygon it intersects with and calculate
all those intersection points. When two edges in-
tersect they can intersect at a point, or they can
overlap along acommon line segment. If the inter-
section isat a point, this intersection point isclas-

sified as a boundary point and inserted into both
the vertex ringsA V and BV in the proper places. If
the intersection is along a common line segment,
the two endpoints of the common segment areclas-
sified as boundary points and inserted into the two
vertex ringsin the right places.

However, the vertex ring insertion process inserts
anew point only ifthis point doesnot exist or exists
only oncein the vertex ring. Thus a vertex can ap-
pear twicein sequencein avertex ring, but no more
copies will be stored. This allows the non-regular
intersection of two polygonswhich intersect at just
asinglevertex to be correctly computed. Every two
neighboring points in the vertex data structures
represent an edge fragment whichisa part of, or is
equal to, an edge in the origina polygon.

. Classifythe edgefragments.

Each edge fragment belonging to one polygon is
now classfied to be inside, outside, or on the
boundary of the other polygon. An edge fragment
isdefinedto be insideif at least one of itsendpoints
isan inside vertex, or thetwo endpoints are bound-
ary verticesbut al the other points of the edge frag-
ment areinside points (in thislatter caseit is enough
to check if an internal point of the edge fragment
is inside the other polygon). An edge fragment is
defined to be outside if at least one of itsendpoints
is an outside vertex, or the two endpoints are
boundary vertices but all the other points of the
edge fragment are outside points (in this latter case
itisenough to check if aninternal point of the edge
fragment is outside the other polygon). An edge
fragment is a boundary fragment if all of its points
are on the boundary of the other polygon.

. Sect and organizethe edgefragments.

Select the edge fragments from among the total set
of edge fragmentsof both polygons, which aregiven
implicitly in their respective vertex rings, as required
to construct the result polygons. The required edge
fragmentsto be selected depend on the specified set
operation and the polygon types. These selected
edge fragmentsare stored in an edge fragmentstable,
EF. Each selected edge fragment from agiven poly-
gon isstored only oncein the edge fragmentstable.

In the selection processthe inside or outside edge
fragments of both polygons are selected according
to the operation and the two polygon typesassum-
marized in Table 2. In this table there is a row for
each combination of polygon types and a column

Table 1. Mutual orientation of the input polygons according to the operation and the polygon types.

polygon types operation
A B ANB AUB | A-B | B-A
tsland 1sland | same same | opposite | opposite
tsland  hole | opposite | opposite | same same
hole island | opposite | opposite | same same
hole hole same same | opposite | opposite
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Table 2. Type of edge fragmentsto select according to the operation and the input polygon types.

polygon types

operation

ANnB AUuB
A B A B A

A-B B-A
B A B A B

ssland island | inside  inside | outside outside | outside inside | inside outside
ssland  hole | outside snside | snside outside | snside inside | outside outside
hole island | inside outside | outside inside | outside outside | inside inside
hole hole | outside outside | snside inside | instde outside | outside snside

for each set operation between polygon A and poly-
gon B. In each column, the required types of edge
fragments of both polygons are specified.
Particular boundary edge fragments are selected
according to the situation of all matchingboundary
edge fragments of both polygonsA and B. Notethat
if there is a boundary edge fragment of polygon A,
there must be at least one exactly overlapping
boundary edge fragment of polygon B which may
have the same or opposite direction. We present
the possible boundary edge fragment situationsin
Table 3. In thistable, for each combination of poly-
gon typesand specified regular or non-regular form
of output, all the boundary edge fragments situa-

tions are presented along with the particular
boundary edge fragmentsto select for each st op-
eration.

Degeneratesinglepoint boundary edge fragments
are selected only when a non-regular form of output
is permitted and only if the degenerate edge frag-
ment has no adjacent edge fragment. If it has no
adjacent edge fragment, it isan isolated point and
not adegeneratepoint in a closed polylinesequence,
so it hasto be reported asa non-regular part of the
output.

The selected edge fragments are organized in the
data structure, EF, in amanner that alowsfinding
all the edge fragments which start with a given point

Table 3. Boundary edge fragments to select according to the operation, polygon types, and regular output

requirements.
edges configuration regular operation ] non-regular operation
A(island) B(island) | ANB|AUB|A~B|B-A|AnNB|AUB|A-B|B-4
-— = — - = - —
= — - — = — —
—ch — =
— -t ~ -— — — — — — —
=t = = =
A(ssland)  B(hole)
- = = = = = N
= — - — — = -
— “— =
- - - - — — -— — - -—
= = = -
A(hole)  B(island)
- = -—b ——) - - =
= — — — — — &=
— — =
- - —_ — — — - - - —
= = = =
A(hole)  B(hole)
-— = -—t — - = -—
=2 - — - - = —
— — =
- -— — -— -— - - — — —
= = = P
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and that alows any specified edge fragment to be
deleted. We shall discuss later severa options for
the implementation of this data structure.

6. Construct the result polygons andfind their types.
To construct each result polygon, we arbitrarily
choose one edge fragment from the EF table and
then successively choose an arbitrary edge fragment
whosefirst endpoint matches the second endpoint
of the previoudly chosen edge fragment. Thisprocess
continues until an edge fragment is chosen whose
second endpoint is now visited a second time (an
irreducible polygon has now been found). Then the
successive vertices of the polygon that was found
are transferred in sequence to the output array as
a single polygon and the corresponding edge frag-
ments are deleted from the EF table whereupon
another result polygon may be sought.

By using this method we form the greatest pos-
sible number of result polygons, since every closed
sequence of edgesis regarded as a result polygon.
The type of each obtained result polygon is found
using Table 4. This is a table of indicators which
specify whether the type of an output polygon is of
the same type or the opposite type as of polygon A,
when both A and B have the same orientation. If
A and B have the opposite orientations, the orien-
tation ofthe output polygon isthe opposite of what
isspecified in the table.

3.2 Procedural description ofthe algorithm

We can describe the algorithm asa procedure poly-
gonoperation. The procedure takes as its input two ar-
rays, Aand B, that include the vertices of the two poly-
gons, the two polygon types, Atype and Btype, an op-
eration code, Oper, and a regularity indicator, Reg,
and produces one output array, Out, which includes
the vertices of the result polygons.

The input arrays contain the two input polygons
where each polygon isrepresented asa sequence of the
(x,y) coordinates of its distinct vertices (and it isknown
that the firgt and last vertices are connected by an edge).
The polygon type can be island or hole, the operation
to be performed is intersection, union or difference
and the regularity code indicates if the output poly-
gons should be regular or not. In the output array,
each result polygon is represented as in the input
arrays, with multiple result polygons separated by a
marker row.

The procedurepolygonoperation uses the following
sub-procedures and tables:

e procedure findintersection(Segment,, Segment,,
point) returns True if the two line segments Segment
and Segment, intersect and returns Fal se otherwise.
If the two line segments intersect, their intersection
point isfound in Paint.

e procedure insidepolygon(Point, Polygon) finds and
returns whether the point Point is inside, outside or
on the boundary of the polygon Polygon. The pro-
cedure checks, for every edge of the polygon, if the
point is on the edge, and if not, whether the edge
intersects with aray that beginsat the point and is
directed in the X-axisdirection. Ifthe point ison the
edge, the procedure returns boundary. If the edge
intersects with the ray, except at the edge’ slower
endpoint, a counter isincremented. When all edges
are checked, the procedure returns inside if the
counter isan odd number or outsideif the counter
iSan even number.

o Procedure insertV(DSV, Point, Type) insertsinto the
vertex ring, DSV, the point Point with the type Type
ifthispoint isnot already in DSV, The possibletypes
are: inside, outside or boundary.

® Procedure insertE(Fragment, Reg) inserts an edge
fragment into the edge fragments table, EF, if it is
not already there. If regular output result polygons
are required and a non-boundary edge fragment is
to be inserted, the procedure checks whether the
same edge fragment with the opposite direction is
aready in EF. If S0, it doesnot insert the edge frag-
ment and it deletes the existing edge fragment with
the opposite direction from the edge fragmentstable.

¢ Procedure deleteE(Fragment) deletes an edge frag-

ment from the edge fragments table.

Procedure searchnextE(Point) searches and returns

from the edge fragments table an edge fragment

whose first endpoint is Point.

o Procedure searchE(Fragment) searchesand returns
the index of an edge fragment in the edge fragments
table that contains the edge fragment Fragment.

o Procedure organizeE() organizesthe edgefragments
table to allow Tast search and deletion operations.

e Procedure findorientation(Polygon) returns clockwise
if the polygon Polygon has a clockwise orientation
and returns counterclockwise if the orientation is
counterclockwise. This procedure finds the vertex

Table 4. Output polygon type for a given operation and given input polygon types

polygon types T operation
A B | AnB | AUB | A—-B | B-A
tsland island | same same same | opposite
tsland  hole same | opposite | same same
hole 1sland | opposite | same same same
hole hole same same | opposite | same
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with the minimum X value and comparesthe slopes
of the two edges attached to this vertex in order to
find the orientation.

e Procedure changeorientation(Polygon) changes the
orientation of the polygon Polygon.

o Table polygonsorientation[polygon-A-type][polygon-
B-type][Oper] contains indicators which specify

whether the two input polygons should have the same

or opposite orientations according to the operation
and the polygon types (Table 1).

s Table fragmentypefpolygon-A-type][polygon-B-
type][Oper][polygon] containsthe type of edge frag-
ments, besides the boundary line fragments, to be
selected for insertion into the line fragmentstable
according to the operation and the polygon types
(Table 2).

o Table boundaryfragment|polygon-A-type][polygon-
B-type][situation]{Oper][Reg] contains indicators
which specifieshow many boundary edge fragments
areto be sdlected given the edge fragmentssituation
for regular and non-regular operations. The tableis
according to the operation and the polygon types
(Table 3).

o Table resultorientation[polygon-A-type][polygon-
B-type][Oper] contains indicators which peaify
whether the type of an output result polygon isthe
same as or the opposite of the type of polygon A
when both have the same orientation. If they have
the opposite orientations, the orientation of theresult
polygon isthe opposite of what iswrittenin thetable.
Thetableisarranged accordingto the operation and
the polygon types (Table4).

The procedure polvgonoperation is as follows:
Procedure polygonoperation(Oper, Reg, A, B, Atype,
Btype, Out)
begin

comment: find and set the orientations of the input
polygons.

orientationA = findorientation(A),
orientationB := findorientation(B);
if polygonsorientation[ Atypel{Btype)[Oper] = same
then
if orientationd # orientationB then changeorien-
tation(B)
else if orientationd = orientationB then changeo-
rientation(B);

comment: initiate the vertex rings and classify the
vertices.

for every vertex v € A do insertV(AV, v, insidepol-
ygon(v, B));
for every vertex v € B do insertV(BV, v, insidepol-
ygon(v, A));

comment: find intersections.

for everyedge a € A do
for every edge b € B do
if findintersection(a, b, Point) then
{insertV(AV, Point, boundary); insertV(BV,
Point, boundary)};

comment: classify select and organize the edge
fragments. :

Type := fragmentype{ Atype]| Brype)[Oper)[A];
for every edge fragment f € AV do
if one endpoint of f is a point of type T’ype then
insertE(f)
else if the two endpoints of f are boundary type
points then
{m := middle point of f;
if insidepolygon(m, B) is of type Type or
of type boundary then
insertE(f)};
Type := fragmentype| Atype][ Btype][Oper][B];
for every edge fragment f € BV do
{if one endpoint of f is a point of type Type then
insertE(f)
else if the two endpoints of f are boundary type
points then
{m := middle point of f;
if insidepolygon(m, A) is of type Type or
of type boundary.then
insertE(f)}:};
for every boundary edge fragment f € EF do
{j := searchE(fragment of opposite direction to
I
calculate sit, which is an overlapping boundary
edges situation code;
d = boundaryfragment|Atype][Btypellsit]-
[Oper)[Reg);
if d = 0 then [deleteE(f),deleteE( EF[])}
else if d = 1 then
deleteE(f or EF[j], the one that comes
only from one polygon)};
organizeE(),

comment: construct the result polygons and find their
types.

while edge fragments table is not empty do
{ f:= any edge fragment from the edge fragments
data structure;
while f was not visited do
{indicate that f was visited;
f = searchnextE(second endpoint of /)};
for every edge fragment [ in the closed sequence
found do
{if / and the previous edge fragment in se-
quence are on the same line then
merge the two edge fragments;
else put f in the output array Out;
deleteE(f)};
put 2 marker in the output array Out to indicate
an end-of-polygon;
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o0 := findorientation(current result polygon);
if 0 = orientationd then
if resultorientation[ Atypel[ Btypel{Oper] = same
then ‘
type of last result polygon := Atype
else type of last result polygon := opposite of

- Atype
else if resultorientation[Atypel[Btype][Oper]
= .same then
type of last result polygon := opposite of
Atype

else type of last result polygon := Atype}
end :

3.3 Implementation details

In this section we describe the data structures and
methods used in implementing the procedure for set
operations on polygons.

The procedure uses two linked lists, AV and BV,
one array, EF, and three static control tables as its
internal data structures.

The two linked lists are the vertex rings. They are
used to store the vertices and intersection points of
each polygon in sequential order, so that all edge frag-
merits are defined by two adjacent vertex ring entries.
The insertion of the original vertices of a polygon is
done by linking them together into the linked list in
their Origind order (includingthe link between the last
Vertex and the first one). The insertion of each inter-
section point isthen done by moving along the linked
list between the two origina endpoints of the inter-
sected edge and looking for the right place to insert the
new intersection point according to the coordinates of
the new point, the coordinates of the existing points
and the edge direction.

We have imlemented the EF table, which is
searched to construct the result polygons, using two
different methods. In the first method EF isbuilt asa
sorted table. Each new edge fragment isinserted into
the next available space in the array and subsequently
the array issorted. The search method used within this
sorted EF tableisbinary search. Deletion of an edge
fragment is handled by using one bit in each entry of
the EF table to mark the entry as deleted or not deleted.
Thisisdoneto avoid physica deletions that could re-
quire moving a lot of the entries.

In the second method, the EF table is built as an
open addressing hash table of edge fragments. An entry
in the hash table represents an endpoint of an edge
fragment and contains the following fields:

1. A hit to indicate whether the entry is free or used.

2. The coordinates of an endpoint of the edge frag-
ment.

3. A successor index to the hash table entry that con-
tains the coordinates of the second endpoint of the
edge fragment. If this successor index is —1, the
current entry represents the terminating endpoint
of an edge fragment and does not itself represent
the first endpoint of an edge fragment.

4. Two bits to indicate whether the edge fragment
whose firgt endpoint is in the current entry comes

from polygon A, polygon B or both. When both hits
are set, the edge fragment is a boundary edge frag-
ment of both polygons.

5. Two bits to store the edge fragment's type (inside,
outside, or boundary) of the edge fragment whose
first endpoint isin the current entry.

6. An index that is used in the construction of the
result polygonsto point to the next hash table entry
used in the current attempt to construct a result

polygon.

Insertion of an edge fragment isdone first by finding
anentry, E,, for the second endpoint in the hash table
(if it does not exist in the table, it is inserted). Then
wefind anentry E, for the first endpoint (if it doesnot
existin the table, or if it existsbut its successor index
isnot — 1then a new entry for E, is made). Then the
successor index in E; iS set to point to E,. A single
point edge fragment is inserted as one entry in the
table where the successor index to the second endpoint
points to the entry itself.

Deletion of an edge fragment is implemented by
setting to -1 the successor index field in the entry of
the first endpoint of the edge fragment.

Searching for an edge fragment is done by using
linear open addressing hashing for an entry with the
edge fragment’ sfirst endpoint coordinates. If such an
entry isfound, the successor index field is checked for
the second endpoint of the edge fragment. If the suc-
cessor index field isnot - 1, the edge fragment is found.
If the successor index field is- 1, then the linear search
continues until it isdetermined that no such point is
stored.

All the boundary edge fragments of both polygons
are inserted into the edge fragments table, EF, from
the two vertex ringsA Vand BV. Then, for each bound-
ary edge fragment for which one or more exactly over-
lapping edge fragments exist, the boundary situation
ischecked and some or al of these edge fragments are
deleted, if necessary, according to Table 3.

When EF isimplemented as a sorted table, this re-
gularization process can & done by sorting the EF
table after the insertion of the edge fragments of the
firgt polygon, A, and then using binary search for the
check discussed above, when inserting the edge frag-
ments of the second polygon, B. After appending the
admissible edge fragments from B, the whole EF array
is sorted again.

When EF isimplemented as a hash table, the edge
fragmentsofA areinserted one-by-onewith the hashing
insertion procedure. Then, when the edge fragments
of B are inserted, the search for oppositely directed
edgefragmentsisdone by hashing. The admissibleedge
fragments of B are inserted by hashing as soon asthey
are encountered.

In case a non-regular output is permitted, the pro-
cedure may produce output result polygonswhich are
line-segment polygons (likea polygon whoseedgesare
segment(p,, p2) and segment(p;, p1)) and/or single-
point polygons (like a polygon whose edge is seg-
ment(p,, p1)) dong with any regular result polygons.
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The algorithm as presented is designed to take the
class of vertex-complete polygons asits input. It cannot
handle general orientable polygons because when it
searches for the next vertex of a result polygon it de-
pends on the fact that any two overlapping edge frag-
ments must beidentical assets. Thisassumption holds
in the case of vertex-complete polygons but fails for
orientable polygons since edges of the same polygon
can touch (asin Fig. 1) but the algorithm does not
compute and use these intersection points. This situ-
ationisshown in Fig. 2 where polygon 4 = polygon|a,
b, ¢, d, e} is orientable but not vertex-complete and
polygon B = polygon[a, b, f, g] shares the edge seg-
ment(a, b) with polygon A. Consider computing A
M B. In the edge fragments selection processthe edge
fragment segment(a,b) is selected from the vertex ring
of polygon A, and edge fragments segment(a,d) and
segment(d, b) are selected from the vertex ring of poly-
gon B after the intersection point d has been intro-
duced. The intersection result of A and B is polygon
A. Although the correct output is constructed, extra
edge fragments have been introduced which do not
form a cycle. Thus, either edge fragment segment(a,
b) or edge fragment segment(d,b) has no continuation,
and this causes the algorithm to fail.

Oneway to extend the domain of the agorithm to
orientable polygons is to have a preprocessing step
where each polygon is checked for whether edgesin-
tersect each other. Intersection points, if found, are
inserted asvertices of the polygon. This preprocessing
reduces dl orientable polygons to vertex-complete
polygons which can be handled by our algorithm.

Our implementation is crucialy dependent on the
accuracy of the numerical calculationsinvolvedat three
key points:

1. Determining if a point isinside, outside or on the
boundary of a polygon must be done absolutely
correctly. This requires accurate numerical calcu-
lation to distinguish between the boundarysituation
and the insideor outsidesituation.

a d b

Fig. 2. Intersection of two orientable polygons that share an
edge.

2. The decision as to whether an intersection point
exists between two edges must be absolutely correct.

3. The cdculation of the (x, y) value of an intersection
point should be very accurate to avoid possible non-
orientable result polygons. We cannot absolutely
avoid non-orientable result polygons, but atest can
be programmed which will detect such polygons.

There are surprisingly many situations where ordi-
nary floating point arithmetic is not good enough to
achieve the required accuracy. We have used interval
and multi precision arithmetic subroutinesto overcome
the first two decision- problemg10]. The use of these
subroutines increases the running time, especialy in
caseswhen many of the verticesof one polygon are on
the boundary of the other polygon. This increase in
running time is the price we pay for the accuracy of
the result. Although the third problem can be solved
by using the same approach, it seemsto be costly and
rarely required.

4. ANALYSISOF THE ALGORITHM

4.1 Correctness proof of the algorithm

In this section we prove the correctness of the a-
gorithm by proving the correctness of its two stages.
Thefirst stageisthe classification of the line segments
of the input polygons and the second stage isthe con-
struction of the result polygons. Sincethe second stage
uses the output of thefirst stage asitsinput and since
we assume that the inputs to the algorithm are two
vertex-complete polygons, we can be sure of the cor-
rectness of the output by proving the correctness of
each stage. We prove the correctness for intersection
of two vertex-complete idand polygons. The proofs for
other operations and other combinations of polygon
typesare similar.

Definition 1. Given two vertex-completeidand polygons
Aand B, an edge fragment is defined to be a sub-seg-
ment of an original edge of A or B such that each of its
two endpointsis either an original vertex of Aor B, or
an intersection point of edges of these two polygonsand
such that no vertices or intersection points occur in the
interior of the sub-segment.

Theorem 1. Given two vertex-complete idand polygons
A and B, an edgefragment, f, of one of these polygons
is also an edge of an intersection result polygon R if
and only if it is a boundary edge fragment or itisan

inside edge fragment. In case regular result polygons
arerequired, a boundary edge fragment f is an edge of
an intersection result polygon Rif and only if there is
no other edge fragment with the same endpoints but

with opposite directionin both polygons.

Proof:

(==) We prove by contradiction that an edge of an in-
tersection result polygon R isa boundary or an inside
edge fragment of A or B. Suppose there isan outside
edge fragment asan edge of an intersection result poly-
gon. This means that there existsat least one point p
€ R such that P € A and P & B, but this contradicts
the definition of R = 4 N B.
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(=) We prove by contradiction that a boundary or an
insideedge fragment of A or B isan edgein the inter-
section result polygon R. Suppose thereis aboundary
or an insideedge fragment of A that isnot an edgein
the result polygon R. This means that there isa point
D,pE Aand p € B but p & R. This contra-
dictsthe definition of R = 4 N B.

Now we prove by contradiction that the boundary
edge fragmentsthat contribute to aregular intersection
result polygon are those that appear only in one direc-
tion. From the previous part of the proof we know that
every boundary edge fragment of A and B appearsin
apossibly non-regular result polygon R. So if abound-
ary edge fragment appears twice in both directions, it
contributes two opposite directed edges to a result
polygon. Such aresult polygon isnot aregular polygon
since it includes overlapping edges. Thus, the edge
fragments that contribute to a regular result polygon
cannot be those that appear in both directions; they
must be those that appear only in one direction. ®

Lemma 1. Given two vertex-completeisand identically
oriented input polygons A and B, for every inside or
boundary edgefragment (m-1, p1), selected for corr
sructing an intersection result polygon, there isa con
tinuation edgefragment (pi, pi-1)Which is an input
edgefragment or a boundary edgefragment.

Proof:

We prove this lemma by considering all the possible
inside or boundary edge fragments.

Case 1:(pi-1, Py) IS an inside edge fragment.
Inthiscase p; is either an inside point or a boundary
point. If pyisan insdepoint, it isan original vertex of
one of the polygons (suppose, without lossof generality,
it isan origina vertex of polygon A) so there is an
original edge of A, (pi, py), such that at least a part of
it isinside B. Thus, there is a continuation edge frag-
ment, (p1, Pi+1), that is a part of edge (pi, py), where
P iSeither py or isa point on the edge (pi, py) that is
an intersection point between (p;, p;} and an edge of
polygon B.

If pi isa boundary point let us assume, without loss
of generality, that (pi—1, pr) isan edge fragment that is
originaly from polygonA. If py isan original vertex of
polygon A and the next edge fragment of A isinside
or on the boundary of polygon B, we are done. If the
next edge fragment of A is outside of polygon B or py
isan intersection point, there isa part of the edge of
polygon B that p; is on that is inside polygon A, so
thereisan edge fragment that isoriginally from polygon
B, (pi, pi+1) that can continue edge fragment (pi-s, py).
Case 2: (pi-1, ;) isa boundary edge fragment.
Inthiscase(pi-1, p1} isan edge fragment of both A and
B. If A and B continue to have the same boundary,
(m, pi+1) iS a boundary edge fragment that continues
(pi-1, p). |f after point p;, one of the polygons, A or B,
goes inside the other one, there is an inside contin-
uation edge fragment. If after point p;, both the poly-
gonsgo outside each other, then thetwo polygonshave
opposite orientations, and this contradicts the as-

sumption that both A and B are identicaly ori-
ented. &

Theorem 2. Given two identically oriented vertex-com-
pleteisland polygons A and B, the set of all their inside
and boundary edge fragments can be partitioned into
edge-digoint non-salf-intersecting cycles of edge frag-
ments where no two cycles share an edgefragment.

Proof:

Define a polyline sequence of edge fragments as an
ordered list of edge fragments where the second end-
point of each edge fragment is equal to the first end-
point of the next edge fragment in the list. We will

prove the theorem by showing that every maximal se-
guence of inside and boundary edge fragments must

form a cycle of edge fragments and that these cycles
are edge-digoint.

We first show that every maximal sequenceof inside
and boundaryedge fragments must form a cycle. Sup-
pose this is not true, SO there isa maximal sequence
of edge fragments that does not form a cycle. By
Lemma 1 we know that every insideor boundary edge
fragment has a continuation so this sequence must be
infinite. But the number of edge fragmentsisfinite, so
such a sequence cannot exist.

Therefore, we see that every maximal sequence of
inside and boundary edge fragments forms a cycle. If
the cycle includes all the edge fragments of the se-
quence, we are done. If the cycle does not include all
the edge fragments of the sequence, then we are left
with a leading path of edge fragments, and we must
show that this leading path has a continuation which
isedge-digointfrom the cycle; then we can ensurethat
another cyclewill be formed if the remaining sequence
of edge fragments is continued using the successive
continuation edge fragments of the leading path. We
will show that the leading path has a continuation by
considering al the possible cases.

In Fig. 3we show the four different casesfor aleading
path and a cycle. The solid lines represent edge frag-
ments that are originally from polygon A and the
dashed linesrepresent edge fragmentsthat areoriginaly
from polygon B. In the figure, edge fragment (a,b) is
the leading path while the sequence {(4, d), ..., (¢,
b)) isthe cycle. In Fig. 3(a) and 3(b), vertex b hasan
indegree of two. That means that polygon A is not
simpleand that b isatouching point of two edge-dis-
joint parts of polygon A.

Now, if avertex-complete polygon A consists of two
edgedisjoint parts with some common vertices, the
result of the intersection of such apolygon with another
polygon B can ke considered as the union of the in-
tersection results of the edge-digoint cycles of A with
B. Thus, we can consider these two intersection sub
problems separately. This reduction process may be
reiterated until both parts of A are irreducible parts.
Thus, we may assume we have the base case where
polygon A isformed from exactly two irreducibleparts.

In Fg. 3c, since edge fragment (a,b) isoriginally an
insideor a boundaryedge fragment of polygon A, there
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must be a closed sequence of edges of polygon B that
surround it. If this closed sequence includes edge frag-
ments (c, b) and (b, d) there is a continuation of the
leading path (a, b) that is originally from polygon A.
This is because (c, b) and (b, d) are aso inside or
boundary edge fragments, and for thisto be so, there
must be an edge fragment (b, €), originally from poly-
gon A, that isinside or on the boundary of polygon B.
If the closed sequence of edges of polygon B does not
include edge fragments (c, b) and (b, d), this means
that polygon B is not simple and that b isthe touching
point of two edge-digjoint parts of polygon B. As men-
tioned before, we can reduce this case to that where
polygon B is composed of just two irreducible pans.

In Fig. 3d, since both (a,b) and (b,d) are insideor
on the boundary of polygon B, there must be a closed
sequenceof edges of polygon B that surround it. If this
closed sequence includes edge fragment (c, b),there is
a continuation of the leading path (a,b) that is origi-
nally from polygon B. If the closed sequence of edges
of polygon B does not include edge fragment (c, b),
that means that polygon B is not simpleand that b is
the touching point of two edgedisjoint parts of polygon
B. As mentioned before, we can reduce this case to
that where polygon B is composed of just two irreduc-
ible parts.

Now we show that the cyclesare edge-digoint. If all
the edge fragments form one cycle, we are done. Oth-
erwise, suppose there are two cyclesthat share an edge
fragment. We show this situation in Fig. 4. The edge
fragment (a, b) is shared by the two cycles. If all the
edge fragments in the figure come originally from one
polygon, this polygon is not vertex-completesince by
our assumption it cannot be partitioned into closed
sequences of edge fragments (seethe definition of ver-
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Fig. 3. The four possibilities of a cycle of edge fragments and its leading path.

tex-complete polygon in Section 2.2). Thus we may
assume, without loss of generality, that either (1): the
sequence {(e, a), (a, b), (b, ¢)) comes from polygon A
and the sequence {(f; a), (a, b), (b, d)) comes from
polygon B, or (2): the sequence {(e, a), (a, b), (b, d))
comes from polygon A and the sequence {( /. @), (a,
b), (b, ¢)y comes from polygon B, where ¢ # d and e
*f.

First suppose (1) holds. Since both polygonsA and
B are identically oriented, let us look at point ¢ with
respect to polygon B and point d with respect to poly-
gonA. Point ccan be outside B and then point d can
be inside A, but if point ¢ is inside B then point d
cannot be insideA. Thus, the situation of both cand
d being inside points is impossible and since dl the
edge fragments are inside or boundary edge fragments
and ¢ # d, this contradicts the assumption that two
cycles share edge fragment (a,b).

Now suppose (2) holds. Since both polygonsA and
B are identically oriented, let uslook at point d with
respect to polygon Band point cwith respect to polygon
A. Point ¢ can be outside A and then point d can be
inside B, but if point cisinsideA then point d cannot
be inside B. Thus, the situation of both cand d being
inside points isimpossible, and since al the edge frag-
mentsare inside or boundary edge fragments and ¢ #
d, this contradicts the assumption that two cyclesshare
edge fragment (a,b). =

Theorem 3. Thealgorithnfor intersection between two
identically oriented vertex-complete island polygons A
and B is correct.

Proof:
In Theorem 1 we have proved that the edge fragments
that are selected to form the result are exactly those
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Fig. 4. The two possibilities for twd cycles of edge fragments to share an edge fragment.

needed to construct the result polygons. In Theorem
2 we have proved that given the set of selected edge
fragments, the construction process produces the set
of the result polygons. ®

4.2 Complexity analysisof thealgorithm

In this section we analyze the worst case time and
space complexity of the sorted table version of the al-
gorithm presented for computing the intersection of
two polygonsA and B. Let n, and nz be the number
of vertices (and edges) in polygon A and polygon B
respectively and |et ; be the number of intersection
points between edges of A and B. Note that »; can be
aslarge as n4* np. The time complexity of each step
in the algorithm is summarized below.

1. Finding the orientation of each polygon requires
visiting each vertex in each polygon so the total cost
of thisstep isO(n, + np).

2. Classifyingeach vertex of polygon A isdonein O(ng)
steps and classifying each vertex of polygon B is
donein O(n,) steps. Inserting each classified vertex
point into the associated vertex ring requires O(1)
steps so the total cost of this step isO(n, + ng).

3. Finding all the intersection points between the edges
of A and the edges of B in the way we have presented
here isdone in O(n,+ np) steps. Inserting each in-
tersection point into the associated vertex ring re-
quires O(n;) steps at most. Thus the total cost of
thisstepisO(n, « ng + nd).

4. Classifyingeach edge fragment isdonein O(1) steps
if one of itsendpointsis an origina vertex of A or
B. The worst case for an edge fragment of polygon
A is when its two endpoints are boundary points
and the edge fragment is not a boundary edge frag-

ment. In this case the codt is at most O(nz) steps.
Thesameistrue for polygon B edge fragments. Thus
the total cost of this step is of O(ny + ng
+ n;e max{n4, ng}).

5. Selectingthe result edge fragmentsisdone in time
proportional tothe number of edge fragmentswhich
iSO(n4 + ng + ny). The cost of organizing the result
edge fragments for later searching depends on the
organization method. Since we give here a worst
case analysis, we shall not discuss the hash table
method since, although it isthe better method with
respect to the average case complexity, it has an
inferior worst case cost. For a sorted array organi-
zation, the complexity isthe sorting complexity and
thusthe total cost isO((ns + np + 1)+ log(ng + ns
+ n)).

6. The complexity of constructing the result polygons
also depends on the organi zation method we choose
for the edge fragments. For the sorted table method,
the cost of the binary search for each edge fragment
isO(log(n, + ng + ny)), so the total cost of thisstep
iISO((ny + ng + n)-log(ng + ng + ny).

Using each estimate above, we can seethat the total
worst case time-cost of the algorithm is

Oy ong+ m + (ny + ng + n)-log(n, + ng + ny)

+ npe max{ny, ng}) < K(ny npl).

The space used by the a gorithm consistsof two ver-
tex rings, one of size O(n, + n;) and the other of size
O(ng + n;), and one edge fragment table of size O(n,
+ ng + n;). So the total amount of space required is
O(HA + ng + n,-).
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By using modifications discussed below, an elabo-
rated algorithm whose overall time cost isO((n, + nz
+ n)-log(n, + np + n))) can be obtained.

4.3 Improvementsto the algorithm

In this section we discuss sometheoretical, but pos-
sibly impractical, improvements to the algorithm. We
can seein the previous section that the largest contri-
butions to the worst case time complexity come from
the cost of two steps of the algorithm:

¢ Finding the intersection points of the edges of the
two polygons and inserting them into the vertex
rings.

¢ Classifyingthe edge fragments asinside, outside, or
boundary edge fragments.

For thefirst of these problems, we can theoretically
use the algorithm sketched by Mairson and Stolfi 11]
to find the intersection points. Given two sets of line
segments A and B, consisting of n, and ng noninter-
secting segments respectively, this algorithm finds al
the n, intersection points of segments of A with seg-
ments of B in O(n; + (n, + ng)-log(n, + ng)) time.
Now, to handle the insertions, we can put the inter-
section points in atemporary array, sort the array ac-
cording to the coordinates of the endpoints and the
direction of the original edge, and then form the vertex
ring by traversing the sorted array. Thisinsertion sub-
computation will take O(n, + ng + n;+log(n;)) time.

For the second problem we can use an agorithm to
classify the edge fragments in which we firgt find the
intersection pointsand insert them intothe vertex rings,
and then classify the edge fragments using the infor-
mation that intersection points are boundary points.
We present here a brief description of this classification
agorithm for a clockwise oriented polygon A and a
reference polygon B. In the case of a counterclockwise
polygon the algorithm is similar. The algorithm goes
asfollows:

1. Choose from the vertex ring, A V, an origina vertex,
v, that is not a boundary point, and find if it isan
insideor an outsidepoint. If it isan insidepoint go
to (2) and if it isan outsidepoint goto (3). If there
isno such vertex v (i.e, al the vertices of polygon
A are boundary points) choose one vertex v of A
and go to (4).

2. If dl the points in the vertex ring, AV, are now
visited, quit. Otherwise follow the pointsinthe A vV

ring, continuing from point v, until a boundary
point isfound, assign al the edges visited to beinside
edge fragments, and goto (4).

3. If dl the points in the vertex ring, AV, are now
visited, quit. Otherwisefollow the pointsinthe AV
ring, continuing from point v, until a boundary
point isfound, and assign al the edges visitedto be
outsideedge fragments.

4. If al the points in the vertex ring, AV, are now
visited, quit. Otherwisecontinue to follow the points
in the AV ring until al points are visited or until
this step is exited while checking the edges in the
reference polygon B. If two adjacent points are
boundary points and they lie on one edge of B, they
form aboundary edge fragment. If one point, u, is
a boundary point that is an intersection point of
edges a; € 4 and b, € B, and if this intersection
point isnot an endpoint of b;, and if the next point,
w, isto the east of &;, then classifythe edge fragment
(u,w) as an inside edge fragment and go to (2). If
the next point, w, isto the west of b, then classify
the edge fragment (u, w) asan outsideedge fragment
and goto (3). In casethefirst point, u, isan endpoint
of b, we have to check whether the second point is
to the east or west of both b; and 4,,, and take into
consideration the angle a between b; and b;4, . We
summarizetherulesin Table5. If the edge fragment
is seen to be an insideedge fragment, classify it as
such and go to (2). If the edge fragment is seen to
be an outsideedge fragment, classify it assuch and
goto (3).

We present Fig. 5 to help clariff/ the meaning of
anglesthat are greater or lessthan 180°.

In step (1) the agorithm visits once, in the worst
case, each node of the vertex ring AV. In steps (2)-(4)

the agorithm visitsonce each node of the vertex ring
A V. For each edge fragment in A Vit checksif the edge
fragment is to the east or the west of at most two edges
of polygon B. Thus, this classification algorithm re-
quires O(ny + ng + n;) time.

5. CONCLUSIONS

As mentioned before, algorithms for set operations
on polygons usualy have two main stages: edge clas
sification and output polygon construction.

A common approach to the classification problem
isthe use of adivide and conquer paradigm along with
vertex neighborhood information[5,8] in order to

Table 5.The rules when the first point of edge fragment (u, w) isan endpoint of b;.

a < 180° o> 180°
condition edge fragment condition edge fragment
type type
Second point is to the east tnside Second point is to the east tnside
of both b; and b1 of at least one of b; or b4,
Second point is to the west outside Second point is to the west outstde
of at least one of b; or b;,y of both b; and b,
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a < (<]

Fig. 5. Clockwise oriented polygon with angles < 180° at
pointsa, b, d, eand angle > 180° at paint c.

classify an edge of one polygon as being inside, outside
or on the boundary of the other polygon, Theline seg-
ment classification of the first stage and vertex neigh-
borhood information are then used to perform the
construction of the result polygons.

The use of vertex neighborhood information seems
to require complex data structures and associated space
to store the information. Moreover, just as with Our
algorithm, without absolutely accurate determination
of line segment intersections, such algorithms cannot
be guaranteed correct. Even with accurate intersection
determination, the proof of correctness of such algo-
rithms can be difficult since there are often many spe-
cial casesto deal with and it can be difficult to show
that all these cases are handled properly. Handling the
neighborhood information is even more complicated
when one tries to work with vertex-complete polygons
whose vertices might have a degree greater than 2.

We have presented here a robust algorithm, which
is not based on checking a large number of special
cases. It can handle the class of vertex-complete poly-
gons asinput, which properly includes the elementary
simple polygons. Its space requirements are relatively
modest, and itsworst case time complexity is not bad,
athough it can be improved in theory.
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APPENDIX A EXPERIMENTAL RESULTS

In this appendix we present some resultsof set operations
between polygons produced by our program. Examples are
shown that present some of the kinds of complex cases that
the agorithm can deal with. In Fig. 6 we seetwo star shapes
aspolygon A in (a) and polygon Bin (b), and the result poly-
gonsof4NBin(c),4UBIn(d),4-Bin(e),andB - 4
in (f) in Figs 7-9 we show polygon A in (&), polygon B in
(b), and the regular result polygonsof 4 N B, AU B, A ~ B,
and B - 4 areshaded in (c), (d), (€), and () respectively. Fg.
7 is gpecid because the two polygons have the same set of
vertices. In Fig. 8 we present an example where polygon A is
made of three irreducible parts and two of its verticeslie on
edges of polygon B. In this case absolute numerical accuracy
iscrucia to obtain the correct results. In Fig. 9 a vertex-com-
plete polygon with three holesand collinear edgesispresented
and we seethat the correct regular resultsare obtained.

In Figs 10-12 we show polygon A in (&), polygon B in (b),
and the regular resultspolygonsof A N B, AU B, 4 — B, and
B - 4 are shaded in (), (€), (g), and (i) respectively, and the
non-regular result polygonsof A N B, AU B, 4 — B,and B
— A areshown in (d), (f), (h), and (j) respectively. In Fig. 10
weshow how the algorithm handlescol linear overlappingedges
of the input polygonsA and B. We can also see adegenerate
single point result polygonin FHg. 10(d).in Fgs 1land 12
we show two other cases where the regular and non-regular
results are different.
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Fig. 6. Fig. 7.
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