
Comput & Graphics VoI. 13, No 2, pp 167-183, 1989
Printed in Great Britain

0091-8493/89 $3.00 + .00
© 1989 Maxwell Pergamon Macmillan plc

Technical Section

AN ALGORITHM FOR COMPUTING THE UNION,
INTERSECTION OR DIFFERENCE OF TWO POLYGONS

AVRAHAM MARGALIT
Computer Vision Laboratory, Center for Automation Research, University of Maryland,

College Park, MD 20742

and

GARY D. KNOTT
Department of Computer Science, University of Maryland, College Park, MD 20742

Abstract-An algorithm for set operations on pairs of polygons is presented. The algorithm uses a boundary
representation for the input and output polygons. Its domain includes simple polygons as well as polygons
with dangling edges, vertices of degree greater than 2, and holes within the area of the polygon. A partial
proof of the correctness of the algorithm is given as well as an analysis of its complexity. The implementation
that is described is table-driven. It is facilitated by the use of efficient data structures. Implementation issues
such as numerical accuracy are also discussed and sample results of its execution are demonstrated.

1. INTRODUCTION
Union, intersection, and difference set-theoretic op-
erations on polygons have been extensively studied be-
cause an efficient algorithm for performing these tasks
is very useful for CAD/CAM systems as well as for
computer graphics packages. A good algorithm for the
case of convex polygons is known[l], but it is more
difficult to develop a general efficient algorithm for any
two simple polygons.

There are two main approaches to design algorithms
for set operations on polygons. One is based on the
divide and conquer paradigm and the other is based
on direct manipulation of the boundary line segments
that construct the polygon. Using the divide and con-
quer idea, the two main approaches to perform set
operation on polygons are based on constructive solid
geometry (CSG)[3] and on quadtrees[4].

In the CSG method a polygon (as every other solid)
is represented as a CSG tree. A CSG tree is a binary
tree whose leaf nodes represent pre-defined primitive
shapes (such as triangles, squares, etc.) and an internal
node represents the result of a boolean operation be-
tween its left and right CSG sub-trees. A boolean set
operation on two polygons is decomposed recursively
into boolean operations on the primitive shapes. In the
quadtree method, the plane containing each polygon
is divided recursively into quadrants containing frag-
ments of the plane. A boolean set operation on two
polygons is done by traversing the quadtrees of the
polygons and looking for the common parts in nodes
representing the same quadrants in the plane. Both
methods have been used in algorithms for set-theoretic
operations on polygons[3, 5-8].

The CSG method can only handle polygons that are
decomposed into the pre-defined primitives and thus
may be limited. The quadtree method is limited in its
accuracy since the maximal depth of the tree is
bounded so that the input polygons cannot be repre-
sented precisely. These problems have been addressed
in the literature[6, 8, 13] but there are many special

cases, the correctness of the algorithms is difficult to
prove and a precise worst case complexity analysis is
similarly difficult. Actually, correctness proofs and
complexity analysis are not presented in the literature.

Algorithms using the other approach of direct
boundary elements manipulation are summarized be-
low. Algorithms that “weave” the output polygons by
traversing the input polygons and retaining only the
desired output are presented by Weiler[12], and East-
man and Yessios[15]. Weiler presented an interesting
method using a graph representation along with local
and history information of the vertices. This entails
very complicated data structures and methods to ma-
nipulate them. Weiler does not discuss implementation
issues.

Nievergelt and Preparata[17] have presented an al-
gorithm which is an extension of the plane sweep al-
gorithm[1]. Although the asymptotic complexity of this
algorithm is it requires that complex data
structures be maintained along with methods to ma-
nipulate them. The authors do not discuss how to im-
plement the algorithm.

Putnam and Subrahmanyam[9] have presented an
algorithm to perform boolean operations on n-dimen-
sional objects. This algorithm is very general. The au-
thors do not discuss any implementation details and
it is difficult to see how to implement it.

As we can see, although there are many algorithms
for the task of performing set operations on polygons,
they are either not very practical or they are incapable
of dealing with complicated cases. Rigorous proofs of
correctness are not given in any of the papers, and very
important implementation issues are hardly discussed.
Also, none of these algorithms can work in practice
without attention to numerical accuracy issues, and
this important detail is not generally discussed. Most
of the algorithms are for simple regular polygons and
cannot perform on more complex non-regular poly-
gons. Handling more complex polygons can be useful,
and it is relatively difficult to do correctly.

167

32 AVRAHAM MARGALIT and GARY D. KNOTT

In this paper we present a new algorithm for set
operations between polygons, discuss its implemen-
tation, partially prove its correctness, and give crude
bounds on its complexity, The algorithm uses a simple
boundary representation which is natural for many
graphics applications. It uses only two linked lists and
one hash table, and it can handle complicated non-
regular polygons as its input and output. We also dis-
cuss the issue of precise numerical methods and
their use.

point, and if each pair of consecutive edges share ex-
actly one point[1].

The boundary of a one-sided polygon consists of a
single point. The boundary of a two-sided polygon
consists of a single line segment whose two oppositely
directed forms are the two edges of the polygon, and
whose end-points are the two vertices. One-sided and
two-sided polygons are called irreducible degenerate
polygons.

The class of irreducible degenerate polygons together
with the class of simple polygons make up the class of

A simple polygon has a clockwise orientation if its
vertices are ordered in a clockwise order. A precise
definition of clockwise orientation can be given in terms
of the signed area of a polygon. If the polygon’s vertices
have the opposite order, the polygon has a counter-
clockwise orientation. Thus if a simple polygon

has a clockwise orientation, the reverse simple polygon

has a counterclockwise orientation. An irreducible
degenerate polygon D is both clockwise and counter-
clockwise oriented, and either of these orientations can
be specified to be the principal orientation of D in any
particular context.

Let A point p is in the interior of
if there exists a neighborhood of p that is

contained within O. A point p is in the exterior of
if there exists a neighborhood of p that is

contained within A point p belongs to the
closure of if every neighborhood of p
contains a point of O. A point p is on the boundary of

if every neighborhood of p contains
points from int(O) and ext(O). A set O is regular if O
= clos(int(O)). Intuitively, a regular set in has no
dangling points or edges and no subregions of zero
area.

According to the Jordan Curve Theorem, a simple
polygon, taken as a closed non-self-intersecting curve
in the E2 plane, divides the plane into three regions,
the boundary region, the inside region or interior, and
the outside region or exterior. The polygon itself is
taken as the closed set consisting of the union of the
inside region and the boundary. Either the interior or
the exterior is of infinite area and the complementary
region is of finite area. We shall denote the finite area
region of a simple polygon P by FAR(P). The finite
area region of an irreducible degenerate polygon will
be defined to be the empty set with this under-
standing, an irreducible degenerate polygon also has
disjoint interior, exterior and boundary sets whose
union is

We divide simple polygons into two types: islands
and holes. An island-type simple polygon has an in-
terior with a finite area and an infinite area exterior.
A hole-type simple polygon has a finite area exterior
and an infinite area interior. We also follow the con-
vention that if a simple polygon has a certain orien-
tation and type, a second simple polygon with the op-
posite orientation is regarded as of the opposite type

2. DEFlNlTIONS irreducible polygons.
2.1 Points and lines in the plane

We are concerned with objects in two-dimensional
Euclidean space, A point a in is an ordered pair
(x, y) where x and y are real numbers representing the
right-handed Cartesian X-axis and Y-axis coordinates.
A point in may also be regarded as a vector starting
at the origin, (0, 0), and ending at the point.

Given two distinct points, and
in E2, the directed line

is the line that passes
through a and b in the direction from a towards b. The
directed line-segment segment (a, b) = { (x, y) : (x, y)

is the segment of the
line between a and b in that order.

A point can be to the east of a directed line
which is imagined to be pointing north: it can

be to the west of the line, or it can lie on the line.
Define for a
point and the line c is to the east of

if F < 0, to the west of if F > 0, and it
lies on if F = 0.

Two lines and can be parallel or they
can intersect. When they intersect they have a common
point and there are unique values t and s which satisfy
the equation Two line
segments segment(a, b) and segment(c, d) intersect if
values of t and s exist which satisfy the above equation
such that

A polyline sequence ofdirected line segments is an
ordered list of line segments where the second endpoint
of each line segment is equal to the first endpoint of
the next line segment in the list. A closed polyline se-
quence is one such that the second endpoint of the last
line segment is equal to the first endpoint of the first
line segment in the sequence. Each directed line seg-
ment must have a positive length, except that the single
line segment of a one-member closed polyline sequence
is a degenerate line segment of length 0.

2.2 Polygons in the plane
The boundary of the n-sided polygon

in the plane is the closed polyline se-
quence of n directed line segments

where
for The n points of the
polygon are its vertices, while the line segments are its
edges.

A polygon is simple if it has at least two distinct
vertices, if no pair of nonconsecutive edges share a

An algorithm for pairs of polygons 33

Let us define an edge fragment of a polygon to be a
possibly degenerate (a degenerate edge fragment is a
single point) sub-segment of an original edge such that
each one of its two endpoints is either an original vertex
or an intersection point of two edges. A polygon is
orientable if

1. Any two of its edges are either disjoint or collinear,
or intersect at a point that is an endpoint Of at least
one of the edges.

2. The set of its edge fragments creates a vertex-com-
plete polygon whose vertices are the original vertices
along with the intersection points between edges of
the original polygon.

with respect to the first polygon. For example, a coun-
terclockwise simple polygon is regarded as a hole with
respect to a clockwise island simple polygon.

We now define several more classes of polygons.
A polygon is vertex-complete if:

1. Any pair of its edges either are disjoint, or intersect
at endpoints, or are identical as sets.

2. The set of its edges can be partitioned into subsets
of single closed polyline sequences where each such
partition subset, taken as a closed polyline sequence,
is an irreducible polygon. These irreducible poly-
gons are called the minimal component parts of the
original polygon. For every pair of distinct irreduc-

polygons, either their finite area regions are disjoint
or the finite area region of one of them is nested
within thefinite area region of the other. In the first
case, where if both parts

and A, are not included within the finite area

then both and must have the same orientation.
In the second case, where then
if there is no irreducible part such that

opposite orientations.

This definition means that a vertex-complete polygon
is built of these irreducible minimal component parts.
It cannot have crossing edges, but it can have coincident
vertices and collinear edges and many closed sequences
of edges as long as they obey the second rule above.

The class of vertex-complete polygons which have
one or more irreducible degenerate minimal compo-
nent parts constitutes the class of degenerate polygons.

We can represent a vertex-complete polygon as a
forest where each tree in the forest is an inclusion tree.
A node in such a tree represents an irreducible part.
There is an edge between two nodes and if

and there is no irreducible part
such that Each tree

of the forest represents a maximal disjoint component
of the associated polygon.

Using this forest-of-inclusion-trees representation,
we can define thefinite area region of a vertex-
complete polygon P. Suppose P corresponds to the for-
est of inclusion trees Let be one
of the trees of the forest which has k levels. Then

is defined as the vertex-complete finite area
region associated with the root of the tree, where the
vertex-complete finite area region associated with an
arbitrary node N in the tree is defined recursively as
follows: If the node N is a leaf then is defined
as N ’ s finite area region FAR(N); otherwise
is defined as where the
are the sons of node N in the tree Finally, FAR(P)

The orientation of a vertex-complete polygon P is
the same as the orientation of any one of its maximal
component parts represented by the inclusion trees

where a with must
be chosen if possible.

ible parts, and where and are simple Any orientable polygon can be converted into a ver-
tex-complete polygon by introducing additional ver-
tices. The finite area region of such a converted polygon

is then taken as the finite area region of the original
orientable polygon.

Finally, a polygon is convex if its interior is its finite

adjacent pairs of its vertices lies in the interior of the
polygon, and a polygon is simple-convex if it is simple
and convex.

hierarchies:

polygons, and

vertex-complete polygons
 vertex-complete polygons orientable polygons

and
regular vertex-complete polygons regular orientable
polygons orientable polygons.

The domain of our algorithm is the class of vertex-
complete polygons. Examples of polygons of different
classes are given in Fig. 1.

2.3 Set operations between polygons

set operations on A and B as follows:

region of some other irreducible part of the polygon,
area region, and if the line segment between any non-

then and must have
The above classes of polygons form the following

Let A and B be two polygons in We define the

In our definition of vertex-complete and orientable
polygons we allow polygons with coincident vertices
and overlapping edges, i.e., edges like
and where and
There are situations where these types of polygons are
not desirable. Thus we wish to optionally produce reg-
ular polygons as output, since, by the definition of reg-
ular sets, regular polygons do not have overlapping
and dangling edges or coincident vertices[3, 8]. The
operation of finding a polygon’s regular parts (deleting
all the coincident vertices, dangling edges and zero-
area sub-regions) is called regularization[5]. However,
it is not certain that the result of a set operation on
two regular polygons is another regular polygon. This

Fig. 1. Polygons of different classes in the polygon hierarchy. (a) simpletonvex polygon. (b) simple polygon.
(c) regular vertex-complete polygon. (d) vertex-complete polygon. (e) orientable polygon. (f) general

polygon.

is the motivation for defining the regular set opera-
tions[3, 5]:

polygon P. These three sets of edge fragments of Q are
denoted by and As in [9], the
set of boundary edge fragments, can be further
partitioned into two parts which are the boundary edge
fragments of Q that are directed in the same direction
as the boundary edge fragments of P, and the boundary
edge fragments of Q that are directed in the opposite
direction to the boundary edge fragments of P. These

division enables us to construct only regular result
polygons when required by not using the edge frag-
ments in the set

The classified edge fragments are stored in a data
structure that allows fast searching and deletion op-
erations. Then each result polygon is constructed, its
vertices are put in the output array and its edge frag-
ments are deleted from the data structure so as to pre-
pare for constructing the next result polygon. Each re-
sult polygon is constructed by successively searching
for a next continuing edge fragment until the search
finds an edge fragment which has a second endpoint
that is being visited for the second time. At this point,
a result polygon has been found.

This algorithm is simple and efficient. We use a hash
table in a novel way, along with other simple data
structures. The elementary manipulation of these data
structures is efficient so that the time and space com-
plexity are reduced. The algorithm does not have to
handle a large number of special cases and therefore
it can easily be seen to work on every pair of vertex-

for which the operation's result is a regular polygon, sets are denoted by and This finer

3. THE ALGORITHM FOR SET OPERATIONS

Our algorithm for set operations on polygons has
two main stages. The first stage is the classification of
the line segments of the input polygons and the second
stage is the construction of the result polygons.

The algorithm first classifies the original vertices of
each polygon to be inside, outside or on the boundary
of the other polygon. Then it finds all the intersection
points between edges of the two polygons. For each
polygon, the original vertices along with the intersection
points are stored in a data structure such that each two
neighboring points define an original edge or a part of
an original edge of a result polygon (or, as we call them,
edge fragments).

The algorithm then classifies the edge fragments of
one polygon to be inside, outside or on the boundary
of the other polygon. This classification is given in [5]
where the set of edge fragments of a polygon Q is di-
vided into these three subsets with respect to a reference

34 AVRAHAM MARGALIT and GARY D. KNOTT

An algorithm for pairs of polygons 35

sified as a boundary point and inserted into both
the vertex rings A V and BV in the proper places. If
the intersection is along a common line segment,
the two endpoints of the common segment are clas-
sified as boundary points and inserted into the two
vertex rings in the right places.

However, the vertex ring insertion process inserts
a new point only if this point does not exist or exists
only once in the vertex ring. Thus a vertex can ap-
pear twice in sequence in a vertex ring, but no more
copies will be stored. This allows the non-regular
intersection of two polygons which intersect at just
a single vertex to be correctly computed. Every two
neighboring points in the vertex data structures
represent an edge fragment which is a part of, or is
equal to, an edge in the original polygon.

Each edge fragment belonging to one polygon is
now classified to be inside, outside, or on the
boundary of the other polygon. An edge fragment
is defined to be inside if at least one of its endpoints
is an inside vertex, or the two endpoints are bound-
ary vertices but all the other points of the edge frag-
ment are inside points (in this latter case it is enough
to check if an internal point of the edge fragment
is inside the other polygon). An edge fragment is
defined to be outside if at least one of its endpoints
is an outside vertex, or the two endpoints are
boundary vertices but all the other points of the
edge fragment are outside points (in this latter case
it is enough to check if an internal point of the edge
fragment is outside the other polygon). An edge
fragment is a boundary fragment if all of its points
are on the boundary of the other polygon.

Select the edge fragments from among the total set
of edge fragments of both polygons, which are given
implicitly in their respective vertex rings, as required
to construct the result polygons. The required edge
fragments to be selected depend on the specified set
operation and the polygon types. These selected
edge fragments are stored in an edge fragments table,
EF. Each selected edge fragment from a given poly-
gon is stored only once in the edge fragments table.

In the selection process the inside or outside edge
fragments of both polygons are selected according
to the operation and the two polygon types as sum-
marized in Table 2. In this table there is a row for
each combination of polygon types and a column

complete polygons, even those with vertices of degree
more than two or with collinear edges.

3.1 General description of the algorithm
The algorithm we use to solve the problem of com-

puting the result of a set operation on two polygons
gets as its input an operation code which specifies
whether union, intersection or set difference is desired,
an indicator. code specifying .whether regular result
polygons are required, and two vertex-complete poly-
gon arrays, A and B, along with their types (island or
hole). The algorithm constructs a set of irreducible re-
sult polygons along with their types in the output
array C.

If regular output is not desired, various result poly-
gons may be degenerate. A degenerate polygon is a
point or a line segment given by oppositely directed
overlapping edges. A point can be the result of a set
intersection operation on two polygons, for example
the intersection of two polygons that touch only at one
vertex.

1. Normalize the orientations of the input polygons.

4. Classify the edge fragments.

The algorithm has six steps:

Find the relative orientation of the two input poly-
gons A and B, and change the orientation of polygon
B if necessary, according to the operation and the
polygon types as summarized in Table 1. This step
is needed because we do not require an island poly-
gon to be represented by a specific onentation
(clockwise for example), but it is required that a
hole polygon be represented by the opposite ori-
entation to an island polygon.

2. Classify and insert the vertices.
Classify the original vertices of each polygon as to
whether they are inside, outside, or on the boundary
of the other polygon. Insert the classified vertices
of the two input polygons, A and E, in the two vertex
rings, AV and BV respectively. The vertex rings are
circular linked lists in which vertex points appear
in sequence so that each two adjacent points define
an edge fragment.

For each edge of one polygon find all the edges of
the other polygon it intersects with and calculate
all those intersection points. When two edges in-
tersect they can intersect at a point, or they can
overlap along a common line segment. If the inter-
section is at a point, this intersection point is clas-

5 . Select and organize the edge fragments.

3. Find and insert the intersection points.

Table 1. Mutual orientation of the input polygons according to the operation and the polygon types.

36 AVRAHAM MARGALIT and GARY D. KNOTT

Table 2. Type of edge fragments to select according to the operation and the input polygon types.

for each set operation between polygon A and poly- tions are presented along with the particular
gon B. In each column, the required types of edge boundary edge fragments to select for each set op-
fragments of both polygons are specified. eration.

Particular boundary edge fragments are selected Degenerate single point boundary edge fragments
according to the situation of all matching boundary are selected only when a non-regular form of output
edge fragments of both polygons A and B. Note that is permitted and only if the degenerate edge frag-
if there is a boundary edge fragment of polygon A, ment has no adjacent edge fragment. If it has no
there must be at least one exactly overlapping adjacent edge fragment, it is an isolated point and
boundary edge fragment of polygon B which may not a degenerate point in a closed polyline sequence,
have the same or opposite direction. We present so it has to be reported as a non-regular part of the
the possible boundary edge fragment situations in output.
Table 3. In this table, for each combination of poly- The selected edge fragments are organized in the
gon types and specified regular or non-regular form data structure, EF, in a manner that allows finding
of output, all the boundary edge fragments situa- all the edge fragments which start with a given point

Table 3. Boundary edge fragments to select according to the operation, polygon types, and regular output
requirements.

An algorithm for pairs of polygons 37

The procedure polygonoperation uses the following and that allows any specified edge fragment to be
deleted. We shall discuss later several options for
the implementation of this data structure.

To construct each result polygon, we arbitrarily
choose one edge fragment from the EF table and
then successively choose an arbitrary edge fragment
whose first endpoint matches the second endpoint
of the previously chosen edge fragment. This process
continues until an edge fragment is chosen whose
second endpoint is now visited a second time (an
irreducible polygon has now been found). Then the
successive vertices of the polygon that was found
are transferred in sequence to the output array as
a single polygon and the corresponding edge frag-
ments are deleted from the EF table whereupon
another result polygon may be sought.

By using this method we form the greatest pos-

sequence of edges is regarded as a result polygon.
The type of each obtained result polygon is found
using Table 4. This is a table of indicators which

sub-procedures and tables:

procedure
point) returns True if the two line segments Segmentl

and intersect and returns False otherwise.
If the two line segments intersect, their intersection
point is found in Point.
procedure finds and
returns whether the point Point is inside, outside or
on the boundary of the polygon Polygon. The pro-
cedure checks, for every edge of the polygon, if the
point is on the edge, and if not, whether the edge
intersects with a ray that begins at the point and is
directed in the X-axis direction. If the point is on the
edge, the procedure returns boundary. If the edge
intersects with the ray, except at the edge’s lower
endpoint, a counter is incremented. When all edges

counter is an odd number or outside if the counter
is an even number.
Procedure inserts into the

6 . Construct the result polygons and find their types.

sible number of result polygons, since every closed are checked, the procedure returns inside if the

specify whether the type of an output polygon is of
the same type or the opposite type as of polygon A,

vertex ring, DSV, the point Point with the type Type
if this point is not already in DSV, The possible types

when both A and B have the same orientation. If
A and B have the opposite orientations, the orien-

is specified in the table.

are: inside, outside or boundary.
Procedure inserts an edge

not already there. If regular output result polygons
are required and a non-boundary edge fragment is
to be inserted, the procedure checks whether the
same edge fragment with the opposite direction is
already in EF. If so, it does not insert the edge frag-
ment and it deletes the existing edge fragment with
the opposite direction from the edge fragments table.
Procedure deletes an edge frag-
ment from the edge fragments table.
Procedure searches and returns
from the edge fragments table an edge fragment
whose first endpoint is Point.
Procedure searches and returns
the index of an edge fragment in the edge fragments
table that contains the edge fragment Fragment.
Procedure organizes the edge fragments
table to allow fast search and deletion operations.

returns clockwise
if the polygon Polygon has a clockwise orientation
and returns counterclockwise if the orientation is
counterclockwise. This procedure finds the vertex

tation of the output polygon is the opposite of what fragment into the edge fragments table, EF, if it is

3.2 Procedural description ofthe algorithm
We can describe the algorithm as a procedure poly-

gonoperation. The procedure takes as its input two ar-
rays, A and B, that include the vertices of the two poly-
gons, the two polygon types, and an op-
eration code, and a regularity indicator, Reg,
and produces one output array, Out, which includes
the vertices of the result polygons.

The input arrays contain the two input polygons
where each polygon is represented as a sequence of the
(x,y) coordinates of its distinct vertices (and it is known
that the first and last vertices are connected by an edge).
The polygon type can be island or hole, the operation
to be performed is intersection, union or difference
and the regularity code indicates if the output poly-
gons should be regular or not. In the output array,
each result polygon is represented as in the input
arrays, with multiple result polygons separated by a
marker row.

Table 4. Output polygon type for a given operation and given input polygon types

38 AVRAHAM MARGALIT and GARY D. KNOTT

with the minimum X value and compares the slopes
of the two edges attached to this vertex in order to
find the orientation.
Procedure changes the
orientation of the polygon Polygon.
Table

contains indicators which specify
whether the two input polygons should have the same
or opposite orientations according to the operation
and the polygon types (Table 1).
Table

contains the type of edge frag-
ments, besides the boundary line fragments, to be
selected for insertion into the line fragments table
according to the operation and the polygon types
(Table 2).
Table

contains indicators
which specifies how many boundary edge fragments
are to be selected given the edge fragments situation
for regular and non-regular operations. The table is
according to the operation and the polygon types
(Table 3).
Table

contains indicators which specify
whether the type of an output result polygon is the
same as or the opposite of the type of polygon A
when both have the same orientation. If they have
the opposite orientations, the orientation of the result
polygon is the opposite of what is written in the table.
The table is arranged according to the operation and
the polygon types (Table 4).

An algorithm for pairs of polygons 39

from polygon A, polygon B or both. When both bits
are set, the edge fragment is a boundary edge frag-
ment of both polygons.

5. Two bits to store the edge fragment's type (inside,
outside, or boundary) of the edge fragment whose
first endpoint is in the current entry.

6. An index that is used in the construction of the
result polygons to point to the next hash table entry
used in the current attempt to construct a result
polygon.

Insertion of an edge fragment is done first by finding
an entry, for the second endpoint in the hash table
(if it does not exist in the table, it is inserted). Then
we find an entry for the first endpoint (if it does not
exist in the table, or if it exists but its successor index
is not - 1 then a new entry for is made). Then the
successor index in is set to point to A single
point edge fragment is inserted as one entry in the
table where the successor index to the second endpoint
points to the entry itself.

Deletion of an edge fragment is implemented by
setting to -1 the successor index field in the entry of
the first endpoint of the edge fragment.

Searching for an edge fragment is done by using
linear open addressing hashing for an entry with the
edge fragment’s first endpoint coordinates. If such an
entry is found, the successor index field is checked for
the second endpoint of the edge fragment. If the suc-
cessor index field is not - 1, the edge fragment is found.
If the successor index field is - 1, then the linear search
continues until it is determined that no such point is
stored.

All the boundary edge fragments of both polygons
are inserted into the edge fragments table, EF, from
the two vertex rings A V and BV. Then, for each bound-
ary edge fragment for which one or more exactly over-
lapping edge fragments exist, the boundary situation
is checked and some or all of these edge fragments are
deleted, if necessary, according to Table 3.

When EF is implemented as a sorted table, this re-
gularization process can & done by sorting the EF
table after the insertion of the edge fragments of the
first polygon, A, and then using binary search for the
check discussed above, when inserting the edge frag-
ments of the second polygon, B. After appending the
admissible edge fragments from B, the whole EF array
is sorted again.

When EF is implemented as a hash table, the edge
fragments of A are inserted one-by-one with the hashing
insertion procedure. Then, when the edge fragments
of B are inserted, the search for oppositely directed
edge fragments is done by hashing. The admissible edge
fragments of B are inserted by hashing as soon as they
are encountered.

In case a non-regular output is permitted, the pro-
cedure may produce output result polygons which are
line-segment polygons (like a polygon whose edges are

and and/or single-
point polygons (like a polygon whose edge is

along with any regular result polygons.

3.3 Implementation details
In this section we describe the data structures and

methods used in implementing the procedure for set
operations on polygons.

The procedure uses two linked lists, AV and BV,
one array, EF, and three static control tables as its
internal data structures.

The two linked lists are the vertex rings. They are
used to store the vertices and intersection points of
each polygon in sequential order, so that all edge frag-
merits are defined by two adjacent vertex ring entries.
The insertion of the original vertices of a polygon is
done by linking them together into the linked list in
their Original order (including the link between the last
Vertex and the first one). The insertion of each inter-
section point is then done by moving along the linked
list between the two original endpoints of the inter-
sected edge and looking for the right place to insert the
new intersection point according to the coordinates of
the new point, the coordinates of the existing points
and the edge direction.

We have imlemented the EF table, which is
searched to construct the result polygons, using two
different methods. In the first method EF is built as a
sorted table. Each new edge fragment is inserted into
the next available space in the array and subsequently
the array is sorted. The search method used within this
sorted EF table is binary search. Deletion of an edge
fragment is handled by using one bit in each entry of
the EF table to mark the entry as deleted or not deleted.
This is done to avoid physical deletions that could re-
quire moving a lot of the entries.

In the second method, the EF table is built as an
open addressing hash table of edge fragments. An entry
in the hash table represents an endpoint of an edge
fragment and contains the following fields:

1. A bit to indicate whether the entry is free or used.
2. The coordinates of an endpoint of the edge frag-

ment.
3. A successor index to the hash table entry that con-

tains the coordinates of the second endpoint of the
edge fragment. If this successor index is -1, the
current entry represents the terminating endpoint
of an edge fragment and does not itself represent
the first endpoint of an edge fragment.

4. Two bits to indicate whether the edge fragment
whose first endpoint is in the current entry comes

40 AVRAHAM MARGALIT and GARY D. KNOTT

The algorithm as presented is designed to take the
class of vertex-complete polygons as its input. It cannot
handle general orientable polygons because when it
searches for the next vertex of a result polygon it de-
pends on the fact that any two overlapping edge frag-
ments must be identical as sets. This assumption holds
in the case of vertex-complete polygons but fails for
orientable polygons since edges of the same polygon
can touch (as in Fig. 1) but the algorithm does not
compute and use these intersection points. This situ-
ation is shown in Fig. 2 where polygon

is orientable but not vertex-complete and

ment(a, b) with polygon A . Consider computing A
B. In the edge fragments selection process the edge

fragment segment(a, b) is selected from the vertex ring
of polygon A, and edge fragments segment(a, d) and
segment(d, b) are selected from the vertex ring of poly-
gon B after the intersection point d has been intro-
duced. The intersection result of A and B is polygon
A. Although the correct output is constructed, extra
edge fragments have been introduced which do not
form a cycle. Thus, either edge fragment segment(a,
b) or edge fragment segment(d, b) has no continuation,
and this causes the algorithm to fail.

One way to extend the domain of the algorithm to
orientable polygons is to have a preprocessing step
where each polygon is checked for whether edges in-
tersect each other. Intersection points, if found, are
inserted as vertices of the polygon. This preprocessing
reduces all orientable polygons to vertex-complete
polygons which can be handled by our algorithm.

Our implementation is crucially dependent on the
accuracy of the numerical calculations involved at three
key points:

1. Determining if a point is inside, outside or on the
boundary of a polygon must be done absolutely
correctly. This requires accurate numerical calcu-
lation to distinguish between the boundary situation
and the inside or outside situation.

2. The decision as to whether an intersection point
exists between two edges must be absolutely correct.

3. The calculation of the (x, y) value of an intersection
point should be very accurate to avoid possible non-
orientable result polygons. We cannot absolutely
avoid non-orientable result polygons, but a test can
be programmed which will detect such polygons.

There are surprisingly many situations where ordi-
nary floating point arithmetic is not good enough to
achieve the required accuracy. We have used interval
and multiprecision arithmetic subroutines to overcome
the first two decision- problems[10]. The use of these

cases when many of the vertices of one polygon are on
the boundary of the other polygon. This increase in
running time is the price we pay for the accuracy of
the result. Although the third problem can be solved
by using the same approach, it seems to be costly and
rarely required.

polygon B = polygon[a, b, f, g] shares the edge seg-
subroutines increases the running time, especially in

4. ANALYSIS OF THE ALGORITHM

4.1 Correctness proof of the algorithm
In this section we prove the correctness of the al-

gorithm by proving the correctness of its two stages.
The first stage is the classification of the line segments
of the input polygons and the second stage is the con-
struction of the result polygons. Since the second stage
uses the output of the first stage as its input and since
we assume that the inputs to the algorithm are two
vertex-complete polygons, we can be sure of the cor-
rectness of the output by proving the correctness of
each stage. We prove the correctness for intersection
of two vertex-complete island polygons. The proofs for
other operations and other combinations of polygon
types are similar.

Definition 1. Given two vertex-complete island polygons
A and B, an edge fragment is defined to be a sub-seg-
ment of an original edge of A or B such that each of its
two endpoints is either an original vertex of A or B, or
an intersection point of edges of these two polygons and
such that no vertices or intersection points occur in the
interior of the sub-segment.

Theorem 1. Given two vertex-complete island polygons
A and B, an edgefragment, f, of one of these polygons
is also an edge of an intersection result polygon R if
and only if it is a boundary edge fragment or it is an
inside edge fragment. In case regular result polygons
are required, a boundary edge fragment f is an edge of
an intersection result polygon R if and only if there is
no other edge fragment with the same endpoints but
with opposite direction in both polygons.

Proof:
We prove by contradiction that an edge of an in-

tersection result polygon R is a boundary or an inside
edge fragment of A or B. Suppose there is an outside
edge fragment as an edge of an intersection result poly-
gon. This means that there exists at least one point p
R such that P A and P B, but this contradicts

the definition of
Fig. 2. Intersection of two orientable polygons that share an

edge.

An algorithm for pairs of polygons 41

sumption that both A and B are identically ori-
ented.

Theorem 2. Given two identically oriented vertex-com-
plete island polygons A and B, the set of all their inside
and boundary edge fragments can be partitioned into
edge-disjoint non-self-intersecting cycles of edge frag-
ments where no two cycles share an edgefragment.

Proof:
Define a polyline sequence of edge fragments as an
ordered list of edge fragments where the second end-
point of each edge fragment is equal to the first end-
point of the next edge fragment in the list. We will
prove the theorem by showing that every maximal se-
quence of inside and boundary edge fragments must
form a cycle of edge fragments and that these cycles
are edge-disjoint.

We first show that every maximal sequence of inside
and boundary edge fragments must form a cycle. Sup-
pose this is not true, so there is a maximal sequence
of edge fragments that does not form a cycle. By
Lemma 1 we know that every inside or boundary edge
fragment has a continuation so this sequence must be
infinite. But the number of edge fragments is finite, so
such a sequence cannot exist.

Therefore, we see that every maximal sequence of
inside and boundary edge fragments forms a cycle. If
the cycle includes all the edge fragments of the se-
quence, we are done. If the cycle does not include all
the edge fragments of the sequence, then we are left
with a leading path of edge fragments, and we must
show that this leading path has a continuation which
is edge-disjoint from the cycle; then we can ensure that
another cycle will be formed if the remaining sequence
of edge fragments is continued using the successive
continuation edge fragments of the leading path. We
will show that the leading path has a continuation by
considering all the possible cases.

In Fig. 3 we show the four different cases for a leading
path and a cycle. The solid lines represent edge frag-
ments that are originally from polygon A and the
dashed lines represent edge fragments that are originally
from polygon B. In the figure, edge fragment (a, b) is
the leading path while the sequence

is the cycle. In Fig. 3(a) and 3(b), vertex b has an
indegree of two. That means that polygon A is not
simple and that b is a touching point of two edge-dis-
joint parts of polygon A.

Now, if a vertex-complete polygon A consists of two
edgedisjoint parts with some common vertices, the
result of the intersection of such a polygon with another
polygon B can be considered as the union of the in-
tersection results of the edge-disjoint cycles of A with
B. Thus, we can consider these two intersection s u b
problems separately. This reduction process may be
reiterated until both parts of A are irreducible parts.
Thus, we may assume we have the base case where
polygon A is formed from exactly two irreducible parts.

In Fig. 3c, since edge fragment (a, b) is originally an
inside or a boundary edge fragment of polygon A , there

We prove by contradiction that a boundary or an
inside edge fragment of A or B is an edge in the inter-
section result polygon R. Suppose there is a boundary
or an inside edge fragment of A that is not an edge in
the result polygon R. This means that there is a point

This contra-
dicts the definition of

Now we prove by contradiction that the boundary
edge fragments that contribute to a regular intersection
result polygon are those that appear only in one direc-
tion. From the previous part of the proof we know that
every boundary edge fragment of A and B appears in
a possibly non-regular result polygon R. So if a bound-
ary edge fragment appears twice in both directions, it
contributes two opposite directed edges to a result
polygon. Such a result polygon is not a regular polygon
since it includes overlapping edges. Thus, the edge
fragments that contribute to a regular result polygon
cannot be those that appear in both directions; they
must be those that appear only in one direction.

Lemma 1. Given two vertex-complete island identically
oriented input polygons A and B, for every inside or
boundary edge fragment selected for con-
structing an intersection result polygon, there is a con-
tinuation edge fragment which is an input
edge fragment or a boundary edge fragment.

Proof:
We prove this lemma by considering all the possible
inside or boundary edge fragments.
Case 1 : is an inside edge fragment.
In this case is either an inside point or a boundary
point. If is an inside point, it is an original vertex of
one of the polygons (suppose, without loss of generality,
it is an original vertex of polygon A) so there is an
original edge of A , such that at least a part of
it is inside B. Thus, there is a continuation edge frag-
ment, that is a part of edge where

is either or is a point on the edge that is
an intersection point between and an edge of
polygon B.

If pi is a boundary point let us assume, without loss
of generality, that is an edge fragment that is
originally from polygon A . If is an original vertex of
polygon A and the next edge fragment of A is inside
or on the boundary of polygon B, we are done. If the
next edge fragment of A is outside of polygon B or
is an intersection point, there is a part of the edge of
polygon B that is on that is inside polygon A , so
there is an edge fragment that is originally from polygon
B, that can continue edge fragment
Case 2: is a boundary edge fragment.
Inthiscase is an edge fragment of both A and
B. If A and B continue to have the same boundary,

is a boundary edge fragment that continues
If after point one of the polygons, A or B,

goes inside the other one, there is an inside contin-
uation edge fragment. If after point both the poly-
gons go outside each other, then the two polygons have
opposite orientations, and this contradicts the as-

42 AVRAHAM MARGALIT and GARY D. KNOTT

(c) (d)
Fig. 3. The four possibilities of a cycle of edge fragments and its leading path.

must be a closed sequence of edges of polygon B that tex-complete polygon in Section 2.2). Thus we may
surround it. If this closed sequence includes edge frag- assume, without loss of generality, that either (1): the
ments (c, b) and (b, d) there is a continuation of the sequence comes from polygon A
leading path (a, b) that is originally from polygon A. and the sequence comes from
This is because (c, b) and (b, d) are also inside or polygon B, or (2): the sequence
boundary edge fragments, and for this to be so, there comes from polygon A and the sequence
must be an edge fragment (b, e), originally from poly- comes from polygon B, where and e
gon A, that is inside or on the boundary of polygon B.
If the closed sequence of edges of polygon B does not First suppose (1) holds. Since both polygons A and
include edge fragments (c, b) and (b, d) , this means B are identically oriented, let us look at point c with
that polygon B is not simple and that b is the touching respect to polygon B and point d with respect to poly-
point of two edge-disjoint parts of polygon B. As men- gon A. Point c can be outside B and then point d can
tioned before, we can reduce this case to that where be inside A, but if point c is inside B then point d
polygon B is composed of just two irreducible pans. cannot be inside A. Thus, the situation of both c and

In Fig. 3d, since both (a, b) and (b, d) are inside or d being inside points is impossible and since all the
on the boundary of polygon B, there must be a closed edge fragments are inside or boundary edge fragments
sequence of edges of polygon B that surround it. If this and this contradicts the assumption that two
closed sequence includes edge fragment (c, b), there is cycles share edge fragment (a, b).
a continuation of the leading path (a, b) that is origi- Now suppose (2) holds. Since both polygons A and
nally from polygon B. If the closed sequence of edges B are identically oriented, let us look at point d with
of polygon B does not include edge fragment (c, b), respect to polygon Band point c with respect to polygon
that means that polygon B is not simple and that b is A. Point c can be outside A and then point d can be
the touching point of two edgedisjoint parts of polygon inside B, but if point c is inside A then point d cannot
B. As mentioned before, we can reduce this case to be inside B. Thus, the situation of both c and d being
that where polygon B is composed of just two irreduc- inside points is impossible, and since all the edge frag-
ible parts. ments are inside or boundary edge fragments and

Now we show that the cycles are edge-disjoint. If all d, this contradicts the assumption that two cycles share
the edge fragments form one cycle, we are done. 0th- edge fragment (a, b).
erwise, suppose there are two cycles that share an edge

Theorem 3. The algorithm for intersection between two fragment. We show this situation in Fig. 4. The edge
identically oriented vertex-complete island polygons A fragment (a, b) is shared by the two cycles. If all the
and B is correct. edge fragments in the figure come originally from one

polygon, this polygon is not vertex-complete since by Proof:
our assumption it cannot be partitioned into closed In Theorem 1 we have proved that the edge fragments
sequences of edge fragments (see the definition of ver- that are selected to form the result are exactly those

An algorithm for pairs of polygons 43

Fig. 4. The two possibilities for two cycles of edge fragments to share an edge fragment.

needed to construct the result polygons. In Theorem
2 we have proved that given the set of selected edge
fragments, the construction process produces the set
of the result polygons.

4.2 Complexity analysis of the algorithm
In this section we analyze the worst case time and

space complexity of the sorted table version of the al-
gorithm presented for computing the intersection of
two polygons A and B. Let and be the number
of vertices (and edges) in polygon A and polygon B
respectively and let be the number of intersection
points between edges of A and B. Note that can be
as large as The time complexity of each step
in the algorithm is summarized below.

ment. In this case the cost is at most steps.
The same is true for polygon B edge fragments. Thus
the total cost of this step is of

5 . Selecting the result edge fragments is done in time
proportional to the number of edge fragments which
is The cost of organizing the result
edge fragments for later searching depends on the
organization method. Since we give here a worst
case analysis, we shall not discuss the hash table
method since, although it is the better method with
respect to the average case complexity, it has an
inferior worst case cost. For a sorted array organi-
zation, the complexity is the sorting complexity and
thus the total cost is

also depends on the organization method we choose
for the edge fragments. For the sorted table method,

is so the total cost of this step
is

Using each estimate above, we can see that the total

1. Finding the orientation of each polygon requires 6. The complexity of constructing the result polygons
visiting each vertex in each polygon so the total cost
of this step is

steps and classifying each vertex of polygon B is
done in steps. Inserting each classified vertex
point into the associated vertex ring requires
steps so the total cost of this step is

3. Finding all the intersection points between the edges
of A and the edges of B in the way we have presented
here is done in steps. Inserting each in-
tersection point into the associated vertex ring re-
quires steps at most. Thus the total cost of
this step is

4. Classifying each edge fragment is done in steps
if one of its endpoints is an original vertex of A or
B. The worst case for an edge fragment of polygon
A is when its two endpoints are boundary points
and the edge fragment is not a boundary edge frag-

2. Classifying each vertex of polygon A is done in the cost of the binary search for each edge fragment

worst case time-cost of the algorithm is

The space used by the algorithm consists of two ver-
tex rings, one of size and the other of size

and one edge fragment table of size
So the total amount of space required is

44 AVRAHAM MARGALIT and GARY D. KNOTT

By using modifications discussed below, an elabo-
rated algorithm whose overall time cost is

can be obtained.

4.3 Improvements to the algorithm
In this section we discuss some theoretical, but pos-

sibly impractical, improvements to the algorithm. We
can see in the previous section that the largest contri-
butions to the worst case time complexity come from
the cost of two steps of the algorithm:

Finding the intersection points of the edges of the

ring, continuing from point v, until a boundary
point is found, assign all the edges visited to be inside
edge fragments, and go to (4).

3. If all the points in the vertex ring, AV, are now
visited, quit. Otherwise follow the points in the A V
ring, continuing from point v, until a boundary
point is found, and assign all the edges visited to be
outside edge fragments.

4. If all the points in the vertex ring, AV, are now
visited, quit. Otherwise continue to follow the points
in the A V ring until all points are visited or until
this step is exited while checking the edges in the

boundary points and they lie on one edge of B, they
form a boundary edge fragment. If one point, u, is
a boundary point that is an intersection point of
edges and and if this intersection
point is not an endpoint of and if the next point,
w, is to the east of then classify the edge fragment
(u, w) as an inside edge fragment and go to (2). If
the next point, w, is to the west of then classify
the edge fragment (u, w) as an outside edge fragment
and go to (3). In case the first point, u, is an endpoint
of b, we have to check whether the second point is
to the east or west of both and and take into
consideration the angle between . We and
summarize the rules in Table 5 . If the edge fragment
is seen to be an inside edge fragment, classify it as
such and go to (2). If the edge fragment is seen to
be an outside edge fragment, classify it as such and
go to (3).

We present Fig. 5 to help clarify the meaning of
angles that are greater or less than 180°.

In step (1) the algorithm visits once, in the worst
case, each node of the vertex ring AV. In steps (2)-(4)

A V. For each edge fragment in A V it checks if the edge

of polygon B. Thus, this classification algorithm re-
quires time.

two polygons and inserting them into the vertex reference polygon B. If two adjacent points are
rings.
Classifying the edge fragments as inside, outside, or
boundary edge fragments.

For the first of these problems, we can theoretically
use the algorithm sketched by Mairson and Stolfi[11]
to find the intersection points. Given two sets of line
segments A and B, consisting of and noninter-
secting segments respectively, this algorithm finds all
the intersection points of segments of A with seg-
ments of B in time.
Now, to handle the insertions, we can put the inter-
section points in a temporary array, sort the array ac-
cording to the coordinates of the endpoints and the
direction of the original edge, and then form the vertex
ring by traversing the sorted array. This insertion sub-
computation will take time.

For the second problem we can use an algorithm to
classify the edge fragments in which we first find the
intersection points and insert them into the vertex rings,
and then classify the edge fragments using the infor-
mation that intersection points are boundary points.
We present here a brief description of this classification

reference polygon B. In the case of a counterclockwise

as follows:

1. Choose from the vertex ring, A V, an original vertex,
v , that is not a boundary point, and find if it is an

to (2) and if it is an outside point go to (3). If there
is no such vertex v (i.e., all the vertices of polygon
A are boundary points) choose one vertex v of A
and go to (4).

2. If all the points in the vertex ring, A V, are now
visited, quit. Otherwise follow the points in the A V

algorithm for a clockwise oriented polygon A and a the algorithm visits once each node of the vertex ring

polygon the algorithm is similar. The algorithm goes fragment is to the east or the west of at most two edges

inside or an outside point. If it is an inside point go 5. CONCLUSIONS
As mentioned before, algorithms for set operations

on polygons usually have two main stages: edge clas-
sification and output polygon construction.

A common approach to the classification problem
is the use of a divide and conquer paradigm along with
vertex neighborhood information[5,8] in order to

Table 5. The rules when the first point of edge fragment (u, w) is an endpoint of

An algorithm for pairs of polygons 45

structures. ACM Comput. Surveys 16(2), 187-260 (June
1984).

5. R. B. Tilove, Set membership classification: A unified
approach to geometric intersection problems. IEEE
Trans. Comp. C-29(10), 874-883 (October 1980).

6. D. Ayala, P. Brunet, R. Juan and I. Navazo, Object rep-
resentation by means of non-minimal division quadtrees
and octrees. ACM Trans. Graphics 4(1),41-59 (January
1985).

7. G. M. Hunter, Operation on images using quadtrees.
IEEE Trans. Pattern Analysis and Machine Intelligence

8. G. Vanecek, Jr. and D. S. Nau, Computing geometric
boolean operations by input directed decomposition,
University of Maryland, TR 1762 (1987).

9. L. K. Putnam and P. A. Subrahmanyam, Boolean op -
erations on n-dimensional objects. IEEE Comput.
Graphics and Applications 6(6), 43 - 51 (June 1986).

10. G. D. Knott and E. D. Jou, A program to determine
whether two line segments intersect, University of Mary-
land, TR 1884 (1987).

11. H. G. Mairson and J. Stolfi, Reporting line segment in -
tersections in the plane, Technical Report, Department
of Computer Science, Stanford University, (1983).

12. K. Weiler, Polygon comparison using graph representa -
tion, SIGGRAPH 80 Proceedings, 10 - 18 (1980).

13. M. Mantyla, Boolean operations of 2- manifolds through
vertex neighborhood classification. ACM Trans. Graphics
5(1), 1-29 (January 1986),

14. M. Mantyla, Introduction to Solid Modeling, Computer
Science Press, Rockville, MD (1987).

15. C. M. Eastman and C. J. Yessios, An efficient algorithm
for finding the union, intersection, and difference of spatial
domains, Technical Report 3 1, Institute of Physical
Planning, Carnegie - Mellon University (1972).

16. C. M. Hoffmann, J . E. Hopcroft and M. S. Karasick,
Robust set operations on polyhedral solids, Technical
Report 87-875, Department of Computer Science, Cornell
University (1987).

for intersecting geometric figures. Commun. of the ACM
vol. 25(10), 739 - 747 (October 1982).

1(2), 145 - 153 (April 1979).

Fig. 5. Clockwise oriented polygon with angles < 180° at
points a, b, d, e and angle > 180° at point c.

classify an edge of one polygon as being inside, outside
or on the boundary of the other polygon, The line seg-
ment classification of the first stage and vertex neigh-
borhood information are then used to perform the
construction of the result polygons.

The use of vertex neighborhood information seems
to require complex data structures and associated space
to store the information. Moreover, just as with Our
algorithm, without absolutely accurate determination
of line segment intersections, such algorithms cannot

determination, the proof of correctness of such algo-
rithms can be difficult since there are often many spe-
cial cases to deal with and it can be difficult to show

neighborhood information is even more complicated

whose vertices might have a degree greater than 2.
We have presented here a robust algorithm, which

is not based on checking a large number of special
cases. It can handle the class of vertex-complete poly-
gons as input, which properly includes the elementary
simple polygons. Its space requirements are relatively
modest, and its worst case time complexity is not bad,
although it can be improved in theory.

be guaranteed correct. Even with accurate intersection 17. J. Nievergelt and F. P. Preparata, Plane-sweep algorithms

that all these cases are handled properly. Handling the APPENDIX A EXPERIMENTAL RESULTS
In this appendix we present some results of set operations

between polygons produced by our program. Examples are

the algorithm can deal with. In Fig. 6 we see two star shapes
as polygon A in (a) and polygon Bin (b), and the result poly-
gons o f in (c), in (d), in (e), and
in (f) in Figs. 7-9 we show polygon A in (a), polygon B in
(b), and the regular result polygons of
and are shaded in (c), (d), (e), and (f) respectively. Fig.
7 is special because the two polygons have the same set of
vertices. In Fig. 8 we present an example where polygon A is
made of three irreducible parts and two of its vertices lie on
edges of polygon B. In this case absolute numerical accuracy
is crucial to obtain the correct results. In Fig. 9 a vertex-com-
plete polygon with three holes and collinear edges is presented
and we see that the correct regular results are obtained.

In Figs. 10-12 we show polygon A in (a), polygon B in (b),
and the regular results polygons of and

are shaded in (c), (e), (g), and (i) respectively, and the
non-regular result polygons of and

are shown in (d), (f), (h), and (j) respectively. In Fig. 10
we show how the algorithm handles collinear overlapping edges
of the input polygons A and B. We can also see a degenerate
single point result polygon in Fig. 10(d). in Figs. 1 1. and 12
we show two other cases where the regular and non-regular
results are different.

when one tries to work with vertex-complete polygons shown that present some of the kinds of complex cases that

REFERENCES

1. F. P. Preparata and M. I. Shamos. Computational Ge-
ometry, An Introduction, Springer-Verlag. New York
(1985).

2. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design
and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA (1974).

3. A. A. G. Requicha and H. B. Voelcker, Boolean operations
in solid modeling-boundary evaluation and merging al-
gorithms. Proc. IEEE 73(1), 30-44 (January 1985).

4. H. Samet, The quadtree and related hierarchical data

46 AVRAHAM MARGALIT and GARY D. KNOTT

An algorithm for pairs of polygons 47

	1. INTRODUCTION
	2. DEFlNlTIONS
	2.1 Points and lines in the E2 plane
	2.2 Polygons in the E2 plane
	2.3 Set operations between polygons

	3. THE ALGORITHM FOR SET OPERATIONS
	3.1 General description of the algorithm
	3.2 Procedural description ofthe algorithm
	3.3 Implementation details

	4. ANALYSIS OF THE ALGORITHM
	4.1 Correctness proof of the algorithm
	4.2 Complexity analysis of the algorithm

	5. CONCLUSIONS
	REFERENCES
	APPENDIX A EXPERIMENTAL RESULTS

