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Abstract

We present a novel algorithm to evaluate and render Loop subdivi-
sion surfaces. The algorithm exploits the fact that Loop subdivision
surfaces are piecewise polynomial and uses the forward difference
technique for efficiently computing uniform samples on the limit
surface. The main advantage of our algorithm is that it only re-
quires a small and constant amount of memory that does not depend
on the subdivision depth. The simple structure of the algorithm en-
ables a scalable degree of hardware implementation. By low-level
parallelization of the computations, we can reduce the critical com-
putation costs to a theoretical minimum of about one f | oat [ 3] -
operation per triangle.

CR Categories:  1.3.1 [Computer Graphics]: Hardware Archi-
tecture—Graphics processors 1.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Display algorithms

Keywords: subdivision surfaces, rendering, forward differences,
hardware implementation

1 INTRODUCTION

Due to their flexibility to model smooth surfaces of arbitrary shape,
subdivision surfaces are receiving more and more attention in the
area of geometric modeling. After the analysis of subdivision
schemes has been investigated over the last decade [15, 18], the
related techniques are now entering all areas of applied computer
graphics [5, 7]. Since subdivision meshes are considered to fill
the gap between plain triangle meshes and sophisticated NURBS-
representations, they are used whenever the efficiency of polygo-
nal meshes has to be combined with the superior surface quality of
NURBS.

In current implementations, subdivision surfaces are usually
treated as high level representations of surface geometry. Before
rendering a subdivision surface on the screen it is converted into
an ordinary triangle mesh by refining the given control mesh suf-
ficiently. A natural question that arises in this context is whether
subdivision surfaces could be handled as a new rendering primi-
tive, i.e., as a basic piece of geometry that is passed to the graphics
sub-system directly. To achieve this, the evaluation procedure for
subdivision surfaces has to move beyond the graphics API and ide-
ally should be implemented in hardware.
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There are two major challenges: The first is to define a general
interface through which arbitrary control meshes can be transferred
to the graphics system and the second is to find an algorithm which
is suitable for hardware implementation, the central requirements
being: simple algorithmic structure (few special cases) and small
(constant) memory requirements.

The most commonly used subdivision scheme in graphics is
Loop’s scheme since it works on arbitrary triangle meshes and gen-
erates curvature continuous surfaces in the limit [11, 18]. Hence,
we are focussing on the evaluation of Loop subdivision surfaces
throughout the paper. After discussing related work, we recollect
some facts on Loop subdivision. In Section 3 we explain the for-
ward difference technique which is the basic tool for our evaluation
algorithm in Section 4. It’s space, memory and precision require-
ments are discussed in Section 5. Finally we show some experi-
mental results in Section 6. Additional implementation details are
given explicitly in the appendix.

1.1 Previous work

Several authors have investigated this topic before [9, 12, 14]. The
naive approach of first generating a refined mesh and then passing
its triangles to the shading pipeline is not appropriate in most cases
since the memory requirements increase exponentially with the re-
finement depth.

Consequently, Kohler and Mdiller [9] reduce the complexity of
the data structure by only refining along a front which advances
across the surface. Their general technique applies to any tensor-
product subdivision scheme. Pulli and Segal [14] focus on Loop
subdivision and further reduce the storage needs by processing local
surface patches individually. However, in order to simplify the data
management, they perform a preprocessing which clusters pairs of
triangular patches to quadrilateral ones. Miiller and Havemann [12]
extend this approach by taking adaptive refinement strategies into
account during the clustering.

In all proposed solutions the storage requirements still depend
on the subdivision depth down to which the initial control mesh has
to be refined. The underlying rationale is always the same: change
the computation order from breadth-first (standard subdivision) to
depth-first and maintain only the “active” part of the control mesh.
Obviously this idea applies to non-polynomial subdivision schemes
as well.

Our algorithm, in contrast, specifically exploits the knowl-
edge about the piecewise polynomial structure of Loop subdivi-
sion surfaces (see also [17]). It can be modified to work for the
Doo/Sabin [6] and the Catmull/Clark scheme [3] as well but it can-
not be generalized to non-polynomial schemes. To rate the per-
formance, we compare our scheme to Pulli/Segal since this can be
considered as the current standard solution.

2 LOOP SUBDIVISION

Loop’s subdivision scheme [11] generalizes the uniform refinement
of quartic Box-spline surfaces to control meshes of arbitrary topol-
ogy. Itis one of the most thoroughly analyzed subdivision schemes.
In this section we summarize some of its relevant properties.



2.1 Definitions

Let M, be an open or closed triangle mesh of arbitrary topology.
The number of edges incident to a vertex is called the valence of
this vertex. A vertex is called regular if it is an inner vertex of
valence 6 or a boundary vertex of valence 4, otherwise it is called
irregular. A triangle having 0, < 1, or < 3 irregular vertices is
called regular, semi-regular, or irregular respectively.

2.2 Subdivision operator

A (Loop) subdivision step maps a triangle mesh M; to a refined
triangle mesh M;1 by applying the following two operations:

e Splitting: Each triangle is split in four by inserting new ver-
tices on the midpoints of the edges and connecting them pair-
wise (see Figure 1).

e Averaging: Each vertex is relocated by replacing its position
with a weighted average of its neighbors. The corresponding
masks are shown in Figure 2.
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Figure 1: Splitting: A triangle is split in four.

The sequence Mo, M, ... generated by iteratively applying this
operator converges to a smooth limit surface M.

Note that the boundary masks B2 and B3 are chosen such that
the resulting boundary curve converges to a cubic B-spline and does
not depend on the inner vertices of the mesh. This assures that
control meshes with a common boundary polygon can be patched
together without leaving gaps. Other choices for the boundary rules
are possible [2] but our’s is optimized for the evaluation procedure.
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Figure 2: Averaging: Masks for the interior vertices (upper row)
and for the boundary vertices (lower row). Vertices from the
coarser level (even vertices) are marked by circles, new vertices
on the finer level (odd vertices) are marked by squares. Only
the mask V' does depend on the valence n of the center vertex:
an = 55 (40 — (3 + 2 cos(2w/n))?).

Another approach to controlling the boundary of a Loop sur-
face works as follows (see e.g. [13]): Instead of defining addi-
tional smoothing rules for the boundary vertices, we can simply
discard the boundary vertices together with their incident triangles
after each subdivision step. The meshes M; will still converge to a
well-defined smooth limit but the resulting surface will have shrunk
along the boundary (see Figure 3). In order to avoid this effect an
additional strip of triangles can be added along the boundary before
the first subdivision step is executed (shrink-to-fit).

In this setup it is easy to recover the behaviour of our bound-
ary masks B2 and B3 at the regular parts of the boundary: One just
has to add a boundary strip by using the parallelogram rule (see Fig-
ure 4). This fact will be very useful in Section 4 since it preserves
the polynomial patch structure of the limit surface at the boundaries
and avoids the handling of special cases.

Figure 3: Discarding the boundary triangles after each subdivision
step results in a “shrinking™ effect.
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Figure 4: Left: The original boundary is extended by a strip of
triangles (left). The new points are computed by the parallelogram
rule (right).

2.3 Patch structure

Each triangle A of a mesh M; converges to a triangular surface
patch @;(A) C Mo which we call a Loop patch. The notion of
(semi-,ir-)regularity is carried over from triangles to Loop patches.
Due to the finite size of the subdivision masks, a Loop patch is de-
fined by a finite part of M; which we call the control mesh of the
patch (see Figure 5). It consists of A itself and the directly adjacent
triangles. For Loop subdivision it is known that the patch ®;(A)
corresponding to a regular triangle A can be expressed as a single
polynomial patch of degree four (quartic Box-spline). As each sub-
division step introduces only regular vertices, the regular regions of
a mesh are constantly growing — yielding more and more polyno-
mial patches. Therefore any Loop patch ®;(A) consists of count-
ably many polynomial patches which are arranged as depicted in
Figure 6.

Figure 5: Control mesh of a Loop patch ®;(A) in the interior (left)
and at the boundary (right).



Figure 6: Piecewise polynomial structure of a Loop patch. For
irregular Loop patches every subdivision step adds another layer
of three polynomial patches at each irregular corner (depicted by
different shades of grey).

2.4 Chordal triangle mesh

The naive method for approximating a Loop patch works like this:
Given a target resolution r, subdivide the given mesh r times and
project the vertices of the resulting mesh M,. to the limit surface
M. We call the final mesh the chordal triangle mesh of reso-
lution r. Figure 7 depicts this procedure in the univariate setting.
Figure 8 shows the projection masks for Loop subdivision.

il

Figure 7: Chordal triangle mesh: original mesh and limit curve
(left), after subdivision (middle), after projection (right).
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Figure 8: Projection masks: These masks project the vertices of any
control mesh M; to the limit surface Moo yn = 8 an /(3 + 8 ).

3 EVALUATING POLYNOMIALS USING
FORWARD DIFFERENCES

Forward differences are well known to be the most efficient tech-
nique to evaluate polynomials (cf. e.g. [8]). However, the bivariate
case is hardly ever used to our knowledge. As this is the basic el-
ement of our algorithm, we recollect some of the relevant details
here.

3.1 Univariate polynomials

Let p(z) be a univariate polynomial of degree n. We denote by

A7 = p(i)

k k-1 k—1
Aj Ay — 4

the forward differences of p at the integer parameter values 7. Their
connections to derivatives reveal that A is constant for all 4. Ex-
ploiting this fact and rewriting the recurrence formula for the differ-
ences, we get the following simple scheme to evaluate the polyno-
mial at the integers p(i) = A, = 0,1, ... from the set of forward
differences AJ, A, ..., AD:

A AL AY
AR AR
A .. Al A? : ’
Lo N4
5 ... Az A5 X X f1
Afp = A7 + A
Except for the initial computation of A3, Aj, ..., AD this scheme

only requires n additions per point. The scheme can be parallelized
in a hardware implementation if we have n synchronous addition
units available (see Figure 9). Since all n additions can be exe-
cuted in parallel, every new sample point is computed in one clock
cycle. This means that although the total computation costs are n
additions, the critical costs (according to the depth of the data de-
pendence graph) are just one operation per sample.
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Figure 9: Parallelizing the forward difference scheme in the case of
quartic polynomials (n = 4).

Note that A3, A}, ..., AR are linear combinations of the coef-
ficients of p and can therefore be computed from any other basis
representation by a matrix multiplication. Consider for example the
quadratic polynomial p(z) = a + bz + c2>. If we want to eval-
uate p at the scaled integers ¢ h for a given step width h, we have
to compute the forward differences over the points p(0), p(h), and
p(2h). The resulting matrix that maps the monomial coefficients
to the differences is given by:

A3 1 0 0 a

A} =0 a & b .

A2 0 0 2n c
3.2 Bivariate polynomials

The forward difference technique also applies in the bivariate set-
ting. Let p(x,y) be a bivariate polynomial of total degree n. We
denote by

0,0 _ .
Ai,j = p(])

PR k-1, k=1, _  Ak,i—1 Bi—1
Ai,j - Ai-‘rl,j - Ai»j - Ai,j+1 - Ai,j

the mixed forward differences of p at the parameter values (z, j)
with integer 4, j. Similar to the univariate setting it follows that
Af,’jl = const. k+l=n

where the constant depends only on & and /. To compute the regular
sample points p(, j), 4,7 = 0,1, ... we arrange the mixed forward



differences in a triangular scheme
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and iterate the following two steps in a nested loop

. (Inner loop) Compute the points p(i,5) for a fixed ¢ and
j = 0,1,... by applying the univariate scheme to a copy
of the rlghtmost column of (x). This is possible since the
rightmost column of (*) coincides with a univariate forward
differencing scheme that can be used to compute the points in
the 4th column (cf. Figure 10).

e (Outer loop) Apply one step of the univariate scheme to each
row of (x). This shifts the whole configuration to the right
(# — 4 + 1) such that the next column can be computed in
the inner loop. Notice that the kth row of (x) corresponds to
a degree n — k polynomial.

y

inner

||
R

(%) B
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loop

Figure 10: Rendering a triangular polynomial patch using forward
differences. The triangle strips are rendered upwards while the tri-
angular scheme (x) is “moved” from left to right.

For the discussion of the numerical error in Section 5.3 the fol-
lowing observation will be helpful: For the evaluation of p at the
parameter value (%, j) the forward differencing algorithm first per-
forms ¢ steps of the outer loop and then j steps of the inner loop.
Each such step is called an extrapolation step and is the source of
possible roundoff errors. (Counting a step of the outer loop only
once is justified by the fact that the rows of (*) are computed in-
dependently from each other.) For evaluating p(i, j) at parameter
values (i, 7), 7+ j < K we therefore need at most K extrapolation
steps per computed value.

3.3 Implementation

In this section we describe a routine which renders the chordal trian-
gle mesh of a triangular polynomial patch of degree four using the

aforementioned scheme. The input consists of the appropriate for-
ward differences and the target resolution . The mesh is then ren-
dered in form of “vertical” triangle strips (see Figure 10). We use
two sets of register variables 1 0. . . 13 and r0...r3tosimulta-
neously compute the points p(z, ]) and p(i + 1 ] g =0,1,...
The triangle scheme () is stored in the variables A%, AO4.

render _forward differ ences( r,
A4’0, A3,0, A2,0’ A 0 AO’O,
A3,1’ Az,ly AI 1 AO’I,

A2’2, A12 A02

A13 AOS
A04)

for (i =0; i <27 i++)
10 = A% 11 = A% 12 = A% 13 = A% ]

A0’0+=A1’0; A1’0+=A2’0; A2’0+:A3’0; A3’0+:A4’0;
A0’1+:A1’1; A1’1+:A2’1; A2’1+:A3’1;

A0’2+=A1’2; A1’2+=A2’2;

A0’3+=A1’3;

ro = A% r1 = A% r2 = A%% 13 = A% ]

gl Begi n(G._TRI ANGLE_STRI P) ;

for (j =0; j <27 - i; j++)
gl Vertex3fv(l10); gl Vertex3fv(r0);
10+=11; 11+=12; 12+=13; 13 += A%
ro+=rl; rl+=r2; r2+=r3; r3 += A%,

gl Vertex3fv(l0);

gl End();

Note that this iterative procedure only needs 23 register variables
and is therefore well suited for hardware implementation. Note also
that the operations comprised by the brackets are independent and
could be executed in parallel for maximum performance.

The above procedure obviously computes every vertex twice:
once as r 0 and then as | O in the next column. We can reduce the
number of operations by the factor 2 if those intermediate values
are cached. However this would cause additional storage overhead.

Note that the target resolution r can be determined automati-
cally — the farther away the patch from the observer the lower the
its resolution. However, to avoid gaps between adjacent patches all
patches of an object should be rendered at the same target resolu-
tion.

Instead of creating triangle strips one can also use adaptive
forward differencing techniques to draw the patches pixel-wise
(cf. [20]).

4 EVALUATING LOOP SURFACES

In this section we describe the basic idea of our algorithm. The
implementation details and data structures are described in the ap-
pendix.

The algorithm consists of several routines that can be arranged
in the following hierarchy:

render _patch

render _sem _patch

render _reg_patch

render _forward_di fferences,
render _one_triangl e,

S, Pn, Py, P, P, Q.

PNWhS

The ordering is such that the higher procedures call the lower
ones. From top to bottom the number of special cases that have
to be handled within a procedure decreases while the number of
arithmetic operations increases. For a specific rendering system,



we can choose the extent to which the routines should be imple-
mented in hardware by first considering level 1 and then going
up the hierarchy. Higher levels could be implemented in software
without significant loss of efficiency. However, the routine r en-
der _f orwar d_di f f er ences should definitely be implemented
in hardware since the main work is done there.

The highest level API consists only of the routine r ender _-
pat ch, which provides the new graphics primitive. Given the con-
trol mesh of an arbitrary Loop patch it renders the corresponding
chordal triangle mesh with prescribed resolution.

The basic idea of our algorithm is as follows: The input control
mesh is subdivided by r ender _pat ch. According to the patch
structure described in Section 2 this gives rise to one regular and
three semi-regular patches. Those are handed over to the routines
render _reg_patch and render _sem _pat ch respectively.
The routine r ender _r eg_pat ch does some preprocessing and
then renders the patch using r ender f or war d_di f f er ences.
The routine r ender _sem _pat ch is more complex. First, the
control mesh is subdivided once more. As the original patch
was semi-regular this results in one semi-regular and three reg-
ular patches. The regular patches are rendered as above, while
the semi-regular mesh is further subdivided. This process is re-
peated with decreasing resolution until the chordal triangle mesh
consists of merely one triangle, which then is rendered via r en-
der _one_tri angl e.

In the following we explain the details for the different levels:

4.1 Levell

The routines S, P, Po, Pi, P>, and Q, implement the following
linear operators:

e The subdivision operator S maps the control mesh M of a
Loop patch to the subdivided mesh M’ (see Figure 11).

e The selection operators P,,, Py, Pi1, P> select parts of the
mesh M’ and orient it such that the irregular vertex is on top
(cf. Figure 12 and 14).

e The forward difference operator ), maps the control mesh
of a regular inner Loop patch to the forward differences of
the corresponding polynomial. This operator depends on the
target step width h = 27", The matrix Q. is given explicitly
in the Appendix.

Note that these operators could also be described as matrices but
the direct computation might be more efficient for hardware im-
plementation. The actual procedural formulations are given in the
Appendix.

M s M

Figure 11: The action of the subdivision operator S.

The input of render _one_tri angl e consists of the con-
trol mesh of an arbitrary Loop patch. The procedure projects the

Figure 12: The selection operators P,,, Po, Pi, P>. Note that the
resulting mesh has to be oriented such that the remaining irregular
vertex is on top (not shown here).

three corner vertices to the limit surface by using the rules of
Figure 8 and renders the triangle. The procedure r ender _f or -
war d_di f f er ences was explained in Section 3.

4.2 Level 2

The routine r ender _r egul ar _pat ch renders the chordal trian-
gle mesh of a regular Loop patch. Figure 13 shows typical input
meshes. As the patch may be a boundary patch, not all of the ver-
tices (like the ones marked by circles) might be present. However
we can construct the missing vertices by using the parallelogram
rule as described in Section 2. Since this is equivalent to the ap-
plication of the special boundary rules B2 and B3, we can forgo a
special treatment of the boundary!

render _regul ar _patch(r, M)
construct potentially missing vertices by parallelogram rule
f = Q. (M),

render _forward_di fferences(r, f);

Figure 13: Control mesh of a regular patch.

4.3 Level 3

The routine r ender _semi _pat ch renders the chordal triangle
mesh of a semi-regular Loop patch at resolution ». The input mesh
is supposed to be oriented such that the irregular vertex is on top
(see Figure 14).

render _sem _regul ar_patch(r, M)
if (r ==0)

render _one_triangl e( M)
i f ( top vertex is regular)

render _regul ar _patch(r, M)



el se
M' = S(M)
for (i =0; i <r i++4)

render _regul ar_patch(r-i, P,(M"))
render_regul ar_patch(r-i, Po(M'))
render _regul ar_patch(r-i, Pi(M"))
M" = Py(M")
M = S(M")

render_one_triangl e( M")

Figure 14: Orientation of semi-regular control meshes: The irregu-
lar vertex is on top.

4.4 Level 4

The routine r ender _pat ch covers the most general case, it ren-
ders the chordal triangle mesh of an arbitrary Loop patch at resolu-
tion r.

render _patch(r, M)

if (r ==0)
render _one_triangl e( M)

el se if ( all vertices are regular)
render _regul ar _patch(r, M)

el se
M = S(M)
render _regul ar_patch(r-1, P,(M"))
render_seni _patch(r-1, Py(M"))
render_seni _patch(r-1, Pi(M'))
render_seni _patch(r-1, P,(M'))

5 DISCUSSION

5.1 Memory requirements

The size of the data structure CMesh used for storing Loop con-
trol meshes is approximately three times the maximum valence of
the vertices (see the Appendix). By carefully programming we only
need three of those structures to run the evaluation procedure — one
on each of the levels 2, 3, and 4. This makes the overall memory
consumption constant and independent from the refinement depth
which means that there is virtually no upper bound for the maxi-
mum refinement. Even more important is the fact that the central
procedure r ender _f or war d_di f f er ences (level 1) uses only
23 register variables to store the necessary forward differences.

In contrast, the memory requirements for all the depth-first ap-
proaches is O(2") [9, 14] if subdivision down to the rth level is
computed. In addition our algorithm does not need to maintain lists
of control vertices from various levels of refinement.

5.2 Time requirements

We define a basic operation to be a vector-vector-addition or a
scalar-vector-multiplication. For large resolutions r the time for ini-
tializing the forward differences becomes neglegible compared to
the work done in the inner loop of r ender f orward_di ffer -
ences. In that procedure one needs 8 vector additions to render 2

triangles. Hence, for large » the ratio operations/rendered triangle
approaches 4 (without caching!). In a hardware implementation all
these four operations could be executed in parallel (cf. Section 3).

Let us now compute the number of operations for the naive im-
plementation: Let m be the number of vertices of the initial mesh.
This implies that we have approximately 4*m vertices on level s.
To compute the vertices on the next level 7 4 1 we have to “lift” the
4'*m old vertices using the mask V', which takes approximately 8
operations per vertex and compute the 3 - 4"m new vertices using
mask E, which takes 5 operations per vertex. In total we get

r—1

Z4im(8 +5-3)/4"m =8

=0

operations per vertex on the rth refinement level which means 4 op-
erations/triangle. If we want to project the resulting vertices even-
tually to the limit surface, we need another 8 operations per vertex
(4 operations per triangle) adding up to 8 operations per triangle
(however, the last step is omitted in many implementations).

This complexity estimate holds for the algorithms of Pulli/Segal-
type as well since they merely change the computation order from
breadth-first to depth-first. We conclude that both algorithm take
O(n) time where n is the number of rendered triangles.

Nevertheless, we believe that our algorithm will surely outper-
form the other ones for a variety of reasons:

e Our algorithm can be parallelized maximally, i.e. the inner
loop could be implemented in such a way that it needs only
one clock-cycle per triangle (cf. four synchronous adders in
Figure 9).

e We do not need to calculate additional entities, like indices or
addresses of memory locations.

e No memory management is necessary since we just have a
fixed number of register variables.

e \We do not need to do any preprocessing (patch clustering) of
the data.

5.3 Precision requirements

One potential weak point of our algorithm could be numerical pre-
cision — forward differences tend to become numerically instable
for extremely small step widths. The intrinsic difficulty with all
difference schemes is numerical cancellation when two large values
are subtracted yielding a result with small absolute value. However,
in our implementation we used single precision float variables and
did not experience severe problems up to reasonably large refine-
ment depths r. Bartels [1] analyzed the error of univariate cubic
forward differencing and concludes that one “is unlikely to have
problems” when the number of forward differencing steps is < 22
(using floating point arithmetic). Now, as far as the error analysis is
concerned, the bivariate extrapolation steps correspond exactly to
the univariate forward differencing steps, therefore the error prop-
agation of bivariate forward differencing is not worse than that of
univariate forward differencing. Following the lines of thought in
Section 3.2 we see that we will never perform more than 2" extrap-
olation steps! Thus for » < 8 we are unlikely to run into problems.

Noticeable roundoff errors can occur if the lengths of the edges
in the control mesh are several orders of magnitude smaller than
their distance to the origin. A simple technique to increase numer-
ical stability in such situations is to shift the center of gravity for
each Loop patch to the origin, run the evaluation procedure and
shift the surface samples back to their original position. This would
cause a computational overhead of one operation per triangle (with-
out caching).



Using double precision float variables reduces numerical errors
by several orders of magnitude but also doubles the memory re-
quirements. We used floating point arithmetic as this is less sensi-
tive to errors, however an implementation based on integers is also
possible (see e.g. [4]).

6 EXPERIMENTAL RESULTS

Experimental results are given for three control meshes (cf. Fig-
ure 15): A tetrahedron, which in some sense is a worst case exam-
ple as all vertices are irregular, a torus, which in the same sense is
optimal because all vertices are regular, and a reduced version of
the well-known Stanford bunny (130 triangles). In order to avoid
computational overhead for low refinement levels we implemented
a special subroutine that renders the chordal mesh of regular patches
at subdivision levels 1 and 2 by using explicit masks for the vertex
positions.

Figure 16 shows the number of operations per triangle which
asymptotically approaches four as we expected. While each of the
patches of the torus can immediately be rendered by forward differ-
encing the patches of the tetrahedron and the bunny contain irreg-
ular vertices and therefore show a patch structure like in Figure 6.
This is the reason for the peak at subdivision levels 1 and 2. For re-
finement levels 6 and higher our software implementation renders
about 500K triangles per second on an SGI O2.

Figure 17 shows the maximum relative deviation caused by
roundoff. For this we evaluated the corresponding polynomials at
the parameter values (0, 1), (1, 2) and (1, 0) once by using explicit
masks and once by using forward differences. To obtain the rela-
tive error we divided the norm of the difference by the norm of the
explicit solution and took the maximum.

Finally Figure 18 shows the reflection lines of the bunny at dif-
ferent subdivision levels. For high quality renderings of reflecting
objects (e.g. a car body) these lines are very important. Because
they are very sensitive to discontinuities of the surface (their conti-
nuity is in general one less than that of the surface, see [16]) they
are often used to measure the quality of a surface.

The left bunny was rendered at subdivision level three and the
vertex normals were not interpolated across the triangles. This is
therefore a C° surface which can clearly be seen as the reflection
lines are not even continuous. The middle bunny was also rendered
at subdivision level three but this time the vertex normals were in-
terpolated across the triangles (Phong shading). The resulting re-
flection lines are continuous but not smooth. The right bunny was
rendered at subdivision level seven and the vertex normals were not
interpolated. The smooth reflection lines indicate an approximate
C?-surface. We conclude that we can get rid of linear interpolation
and its artifacts by using high subdivision levels.

Figure 15: Example meshes: tetrahedron, torus, bunny.

7 CONCLUSION AND FUTURE WORK

We presented a new algorithm for evaluating and rendering Loop
subdivision surfaces. Its main advantages are

operations per A
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Figure 16: Operation count per triangle for a given subdivision
level.
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Figure 17: Maximal relative error for a given subdivision level.

e Speed: We only need four operations for each triangle. Addi-
tional speed-up can be obtained by executing these operations
in parallel or by caching intermediate results.

e Constant memory requirements: The central procedure uses
only (and exactly) 23 register variables.

e Simplicity: Both in the algorithmic structure and in the pro-
gramming interface.

We achieve this by specializing to Loop subdivision. The scheme
could be reformulated for the Doo/Sabin [6] and the Catmull/
Clark [3] scheme since those schemes also generate piecewise poly-
nomial limit surfaces. However, there is no way to generalize it to
non-polynomial subdivision schemes.

In the future we are planning to also include the computation
of the exact surface normals. Forward differences provide all the
local information to compute partial derivatives. This extension
would increase the number of register variables in the procedure
render f orwar d_di f f er ences to 29. Another feature which
could be included is to combine the evaluation algorithm with an
adaptive refinement strategy.



™ A 7 e v s—
Figure 18: Reflections lines for subdivision levels » = 3, without interpolation of vertex normals (left) » = 3, with interpolating vertex
normals (middle), and » = 7, without interpolation of vertex normals (right).
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A IMPLEMENTATION

A.1 Data structures

We need to store control meshes for arbitrary configurations of
Loop patches like the one in Figure 19 and control meshes that
result from a subdivision step of a Loop patch like the one in Fig-
ure 21. Our data structure stores for each of the three corners 0,1,2
of such a mesh the center vertex, the surrounding vertices, the va-
lence and the index of the boundary edges (if there are any):

struct { Vec3f c[3][MuxVal];
i nt n[ 3];

i nt h[3]; } CMesh;

The array c[ ][] holds the coordinate values for the center ver-
tex and the surrounding vertices (numerated counterclockwise) as
shown in Figure 19 and 21. Vertices that appear in more than one
neighborhood are stored multiple times. This is intentional as it
simplifies the algorithms. In particular we don’t need to deal with
special cases like vertices of valence 3.

The array n[] contains the vertex valences and the array
h[] contains the indices of the boundary edges. Note that
since we are dealing with manifolds, no more than two bound-
ary edges can emanate from a single vertex. The boundary
edges are coded by the following scheme: If h[i]==-1 there
are no boundary edges incident to center vertex i . Otherwise
theedges (c[i ] [h[i]-1],c[i][n[i]])and(c[i][n[i]],
c[i][h[i]]) are boundary edges. In the example of Figure 19
and 21 we have n[0] == 6, n[1] == 8, n[2] == 7 and
h[0] == 1,h[1] == 3,h[2] ==

We now give the procedural formulation of the matrix operators:

A.2 The operator S

Because of the cyclical arrangement of the coordinates in our data
structure the operator S can be implemented compactly:

L(N, C 9 = (l-aw) * C+ax* S/ N
E(A, B C D =(3*A+3*B+C+D [/ 8
B2( A, B) =(A+B) [/ 2
B3(A, B, O =(A+6*B+0C / 8
S(CMesh d, CMesh s)

for (i =0; i <3; i++)

n=dn[i] =s.n[i];

h =d. h[i] =s.h[i];

if (h==-1)

sum=s.c[i][0] +
d.c[i][n] = L(n,

. + s.c[i][n-1]
s.c[i][n], sum
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Figure 19: Control mesh used as input for S, @, and as output of
Pp, Py, P, Ps.

el se
d.c[i][n] = B3(s.c[i][h-1], s.c[i][n],
. ~ s.clil[h));
for (j =0; j <n; j++)
if (j ==h || j ==h-1)
d.clill[j] = B2(s.c[i][n],
s.clillil);
el se

d.clillil = E(s.c[i][n], s.c[illil,
s.c[i][(j+1) %n],
s.c[i][(j-1) %n]);

Note that the definitions of L, E, B3 and B2 correspond to the Loop
masks in Figure 2.

A.3 The operators P,,, Py, Pi, P,

The operators P,,,, Py, P1 and P> merely select some vertices of
a Cvesh and permute them such that the irregular vertex and its
neighbors are stored in c[ 2] []. This can be done without any
calculations and is not carried out here.

A.4 The operator @,

The operator ), maps a regular Loop control mesh to the cor-
responding mixed forward differences. This can be written as a
matrix-vector-multiplication (see Figure 20). We use the following
abbreviations:
a=2", b=4", c=8", d=16"

Note that the entries of the matrix @, depend on the refinement
level r since the original forward difference scheme computes sam-
ple values at the integer parameter values (3, j) € Z2. In order to
evaluate at (i,§) € 27" Z* we have to reparameterize the surface
patch.

As the tenth row of @, consists only of zero entries, the mixed
forward difference Ag;g is constant zero, so we can save a register
variable here.
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Figure 20: Matrix Q.
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Figure 21: Control mesh used as output of S and as input for Pp,,

Py, Py, Ps.

A5 The routine render one_tri angl e

The routine render _one_tri angl e gets the control mesh
of a Loop patch as in Figure 19 as input, projects the vertices
c[O0][n[0]],c[21[n[1]].,c[2][n[2]] to the limitsurface

and renders the corresponding triangle.

render _one_triangl e(Cvesh m

for (i =0; i < 3; i++)
if (mh[i] > -2)
x[i] = ( mec[i][mh[i]] +
A*mc[i][mn[i]] +
mcl[i][mh[i]+1])/6
el se
X[1] = (1 e *clil[mn[i]] +
Yaap Mn[i] * (mc[i][0]+. ..+
mcli][mn[i]-1])
render the triangle (x[ 0], x[1], Xx[2])



