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Abstract

This paper provides a consistent set of flexible tools to approximate important
geometric attributes, including normal vectors and curvatures, on arbitrary 2D and
3D meshes embedded inn dimensions. We present a consistent derivation of these
first and second order differential properties using Voronoi cells and the mixed Finite-
Element/Finite-Volume method. The new operators are closely related to the contin-
uous case, guaranteeing an appropriate extension from the continuous to the discrete
setting: they respect the intrinsic properties of the continuous differential operators.
We show that these estimates are optimal in accuracy under mild smoothness condi-
tions, and demonstrate their numerical quality.

We finally present applications of these operators, such as mesh smoothing and
enhancement, quality checking, and denoising of arbitrary vectors fields, such as flow
fields or tensor images.

1 Introduction

Despite extensive use of triangle meshes in Computer Graphics, there is no consensus on
the most appropriate way to estimate simple geometric attributes such as normal vectors
and curvatures on discrete surfaces. Many surface-oriented applications require an approx-
imation of the first and second order properties with as much accuracy as possible. This
could be done by polynomial reconstruction and analytical evaluation, but this often intro-
duces overshooting or unexpected surface behavior between sample points. The triangle
mesh is thus often the only “reliable” approximation of the continuous surface at hand.
Unfortunately, since meshes are piecewise linear surfaces, the notion of continuous normal
vectors or curvatures is non trivial.

It is fundamental to guarantee accuracy in the treatment of discrete surfaces in many
applications. For example, robust curvature estimates are important in the context of mesh
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simplification to guarantee optimal triangulations [HG99]. Even if the quadric error defined
in [GH97] measures the Gaussian curvature on an infinitely subdivided mesh, the approx-
imation becomes rapidly unreliable for sparse sampling. In surface modeling, a number
of other techniques are designed to create very smooth surfaces from coarse meshes, and
use discrete curvature approximations to measure the quality of the current approximation
(for example, see [MS92]). Accurate curvature normals are also essential to the problem of
surface denoising [DMSB99, GSS99] where good estimates of mean curvatures and nor-
mals are the key to undistorted smoothing. More generally, discrete operators satisfying
appropriate discrete versions of continuous properties would guarantee reliable numerical
behavior.

1.1 Previous work

Many expressions of different surface properties have been designed. For instance, we
often see the normal vector at a vertex defined as a (sometimes weighted) average of the
adjacent faces of a mesh. Th¨urmer and W¨urthrich [TW98] use the incident angle of each
face at a vertex as the weights, since they claim the normal vector should only be defined
very locally, independent of the shape or length of the adjacent faces. However, this normal
remains consistent only if the faces are subdivided linearly, introducing vertices which are
not on a smooth surface. Max [Max99] derived weights by assuming that the surface locally
approximates a sphere. These weights are therefore exact if the object is a (even irregular)
tesselation of a sphere. However, it is unclear how this approximation behaves on more
complex meshes, since no error bounds are defined. Additionally, many meshes have local
sampling adapted to local flatness, contradicting the main property of this approach.

Taubin proposed a more complete derivation, leading to a discrete approximation of the
curvature tensors for polyhedral surfaces [Tau95]. Similarly, Hamann [Ham93] proposed
a simple way of determining the principle curvatures and their associated directions by a
least-squares paraboloid fitting of the adjacent vertices, though the difficult task of selecting
an appropriate tangent plane was left to the user. Our paper is closely related to these
works since we also derive all first and second order properties for triangulated surfaces.
However, many of the previous approaches do not preserve important differential geometry
properties onC 0 surfaces such as polyhedral meshes. In order to preserve such quantities,
we have also followed a path similar to that of Polthier [PP93, PS98]. He and his coauthors
proposed simple expressions for the total curvature, as well as the Dirichlet energy for
triangle meshes, and derived discrete methods to compute minimal surfaces or geodesics.
Our work offers a unified derivation that ensures accuracy and tight error bounds, leading
to simple formulæ that are straightforward to implement.
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(a) (b)

(c) (d)
Figure 1: Some applications of our discrete operators: (a) mean curvature plot for a
discrete surface, (b) principal curvature directions on a triangle mesh, (c-d) automatic
feature-preserving denoising of a noisy mesh using anisotropic smoothing.

Contributions

In this paper we define and derive the first and second order differential attributes (nor-
mal vectorn, mean curvatureκ, Gaussian curvatureκG, principal curvaturesκ1 andκ2,
and principal directionse1 ande2) for piecewise linear surfaces such as arbitrary triangle
meshes. Details of why a local spatial average of these attributes over the immediate 1-ring
neighborhood is a good choice to extend the continuous definition to the discrete setting
is given in Section 2. We then present a formal derivation of these quantities for triangle
meshes using the mixed Finite-Element/Finite-Volume paradigm in Sections 3, 4 and 5.
The relevance of our approach is demonstrated by showing the optimality of our operators
under mild smoothness conditions. We demonstrate the accuracy and the use of these op-
erators in different applications, including the smoothing and enhancement of meshes in
Section 6. In Section 7, we generalize these operators to any 2-manifold or 3-manifold
in an arbitrary dimension embedding space, offering tools for smoothing vector fields and
volume data. Conclusions and perspectives are given in Section 8.
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2 Defining Discrete Operators

In this section, we describe a general approach to define a number of useful differential
quantities associated with a surface represented by a discrete triangular mesh. We begin
with a review of several important quantities from differential geometry. This is followed
by a technique for extending these quantities to the discrete domain using spatial averaging.
Concluding this section is a general framework, used in the remaining sections, for deriving
first and second order operators at the vertices of a mesh.

2.1 Notions from Differential Geometry

LetSbe a surface (2-manifold) embedded in IR3, described by an arbitrary parameterization
of 2 variables. For each point on the surfaceS, we can locally approximate the surface
by its tangent plane, orthogonal to thenormal vectorn. Local bending of the surface
is measured bycurvatures. For every unit directioneθ in the tangent plane, the normal
curvatureκN(θ) is defined as the curvature of the curve that belongs to both the surface
itself and a perpendicular plane containing bothn andeθ. The twoprincipal curvatures
κ1 andκ2 of the surfaceS, with their associated orthogonal directionse1 ande2 are the
extremum values of all the normal curvatures (see Figure 2(a)). We have the property:
κN(θ) = κ1cos2(θ)+κ2sin2(θ). Themean curvatureκ is then defined as the average of the
normal curvatures:

κ =
1

2π

∫ 2π

0
κN(θ)dθ. (1)

Using the two previous equations, calculus leads to the well-known definition:κ = (κ1 +
κ2)/2. TheGaussian curvatureκG is defined as the product of the two principle curvatures:
κG = κ1κ2.

These latter two curvatures represent important local properties of a surface. Lagrange
noticed thatκ = 0 is the Euler-Lagrange equation for surface area minimization. This
implies a direct relation between surface area minimization and mean curvature flow, which
gave rise to a considerable body of literature on minimal surfaces:

2κ n = lim
diam(A)→0

∇A
A

whereA is a infinitesimal area around a pointP on the surface,diam(A) its diameter, and∇
is the gradient with respect toP. We will make extensive use of the mean curvature normal
κ n. Therefore, we will denote byK the operator that maps a pointP on the surface to
the vectorK(P) = 2κP nP. K is the Laplace-Beltrami operator for the surfaceS. Gaussian
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curvature can also be expressed as a limit:

κG = lim
diam(A)→0

AG

A
(2)

whereAG is the area of the Gauss map (also called spherical image) associated to the
infinitesimal surfaceA . The above definitions, as well as many more details can be found
in various sources [Gra98, DHKW92].

n

1e1κ
e2κ 2

(a) (b) (c)

Figure 2:Local regions: (a) an infinitesimal neighborhood on a continuous surface patch;
(b) a finite-volume region on a triangulated surface using Voronoi cells, or (c) Barycentric
cells.

2.2 Discrete Properties as Spatial Averages

A mesh can be considered either as a limit of a family of smooth surfaces, or as a linear (yet
assumedly “good”) approximation of an arbitrary surface. However, most of the continuous
definitions described above have to be reformulated forC 0 surfaces. We choose to define
properties (geometric quantities) of the surface at a vertex asspatial averagesaround this
vertex. If these averages are made consistently, a property at a given vertex will converge
to the pointwise definition as the local sampling increases. Thus, by using these spatial
averages, we extend the definition of curvature or normal vector from the continuous case
to discrete meshes. Moreover, this definition is appropriate when, for example, geometric
flows must be integrated over time on a mesh: a vertex will be updated according to the
average behavior of the surface around it. Therefore, the piecewise linear result will be
a correct approximation of the smoothed surface if the initial triangle mesh was a good
approximation of the initial surface. Since we make no assumption on the smoothness of
the surface, we will restrict the average to be within the immediately neighboring triangles,
often referred as the 1-ring neighborhood. As a consequence, for example the average
Gaussian curvature at a vertexP will be defined in its discrete form̂κG as:

κ̂G =
1
A

∫∫
A

κG dA
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for a given areaA properly selected aroundP. Note however that we will not distinguish
between the pointwise continuous and the spatially averaged notation, except if there may
be ambiguity.

2.3 General Procedure Overview

The next three sections describe how we derive accurate numerical estimates of the first
and second order operators at any vertex on an arbitrary mesh. We first restrict the aver-
aging area to a family of special local surface patches denotedAM. These regions will be
contained within the 1-ring neighborhood of each vertex, with piecewise linear boundaries
crossing the mesh edges at their midpoints (Figures 2(b) and (c)). We show that this choice
guarantees strong analogies between the continuous and the discrete case. The precise
surface patch that optimizes the accuracy of our operators is then found, completing the
operator derivation. These steps will be explained in detail for the first operator, the mean
curvature normal,K , and a more direct derivation will be used for the Gaussian curvature
operatorκG, the two principal curvature operatorsκ1 andκ2, and the two principal direc-
tion operatorse1 ande2. All these operators take a vertexxi and its 1-ring neighborhood
as input, and provide an estimate in the form of a simple formula that we will frame for
clarity.

3 Discrete Mean Curvature Normal

We now provide a simple and accurate numerical approximation for both the normal vector,
and the mean curvature for surface meshes in 3D.

3.1 Derivation of Local Integral using FE/FV

To derive a spatial average of geometric properties, we use a systematic approach which
mixes finite elements and finite volumes. Since the triangle mesh is meant to visually
represent the surface, we select a linear finite element on each triangle, that is, a linear
interpolation between the three vertices corresponding to each triangle. Then, for each
vertex, an associated surface patch (so-called finite volume in the Mechanics literature)
over which the average will be computed is chosen. Two main types of finite volumes are
usually used in practice, see Figure 2(b-c). In each case, their piecewise linear boundaries
intersect the edges emanating from the center vertex at their midpoints. As for the point
inside each adjacent triangle, we can either use the barycenter or the circumcenter. The
surface area formed from using the barycenters is denotedABarycenterwhile the latter surface
area is recognized as the local Voronoi cell and denotedAVoronoi. In the general case when
this point could be anywhere, we will denote the surface area asAM.
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Since the mean curvature normal operator, also known as Laplace-Beltrami operator, is
a generalization of the Laplacian from flat spaces to manifolds [DHKW92], we first com-
pute the Laplacian of the surface with respect to theconformal spaceparametersu andv.
As in [Dzi91] and [PP93], we use the current surface discretization as being the conformal
parameter space, that is, for each triangle of the mesh, the triangle itself defines the local
surface metric. With such an induced metric, the Laplace-Beltrami operator simply turns
into a Laplacian∆u,vx = xuu+xvv [DHKW92]:∫∫

AM

K(x) dA=
∫∫

AM

∆u,vx du dv. (3)

Using Gauss’s theorem as described in Appendix A, the integral of the Laplacian over
a surface going through the midpoint of each 1-ring edge of a triangulated domain can be
expressed as a function of the node values and the angles of the triangulation. The integral
of the Laplace-Beltrami operator turns into the following simple form:∫∫

AM

K(x)dA=
1
2 ∑

j∈N1(i)

(cot αi j +cot βi j ) (xi−x j), (4)

whereαi j andβi j are the two angles opposite to the edge in the two triangles sharing the
edge(xi,x j) as depicted in Figure 3(a), andN1(i) is the set of 1-ring neighbor vertices of
vertexi.

Note that this result is similar to results obtained by minimizing the Dirichlet energy
over a triangulation [PP93, DCDS97]. More importantly, it is exactly the formula estab-
lished in [DMSB99] for the gradient of surface area for the entire 1-ring neighborhood.
This confirms, in the discrete setting, the area minimization nature of the mean curvature
normal as derived by Lagrange. We can therefore express our previous result using the
following general formula, valid forany triangulation:∫∫

AM

K(x)dA= ∇A1-ring. (5)

Notice that the formula results in a zero value for any flat triangulation, regardless of the
shape or size of the triangles of the locally-flat (zero curvature) mesh: the gradient of the
area is zero for any locally flat region.

Although we have found an expression for the integral of the mean curvature normal
independent of which of the two finite volume discretizations is used, one finite volume
region must be chosen in order to provide an accurate estimate of the spatial average. We
show next that the Voronoi cells provide provably tight error bounds under reasonable as-
sumptions of smoothness.
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3.2 Voronoi Regions for Tight Error Bounds

Given aC 2 surface let us compare the local spatial average of mean curvature with the
actual pointwise value. If our surface is tiled by small patchesAi aroundn sample points
xi , we can define the errorE created by local averaging of the mean curvature normal
compared to its pointwise value atxi as:

E = ∑
i

∥∥∫∫
Ai

K(x)dA−AiK(xi))
∥∥2

= ∑
i

∥∥∫∫
Ai

(K(x)−K(xi)) dA
∥∥2

≤ ∑
i

∫∫
Ai

Ci‖x−xi‖2 dA ≤ Cmax∑
i

∫∫
Ai

‖x−xi‖2 dA,

whereCi is the Lipschitz constant of the Beltrami operator over the smooth surface patch
Ai , andCmax the maximum of the Lipschitz constants. Therefore, the Voronoi region of
each sample pointby definitionminimizes the bound on the errorE due to spatial averag-
ing [DFG99], since they contain the closest points to each sample. Furthermore, if we add
an extra assumption on the sampling rate with respect to the curvature such that the Lips-
chitz constants from patch to patch vary slowly with a ratioε, we can actually guarantee
that the Voronoi cell borders are less thanε away from the optimal borders. As this still
holds in the limit for a triangle mesh, we use the vertices of the mesh as sample points, and
pick the Voronoi cells of the vertices as associated finite-volume regions. This will guar-
antee optimized numerical estimates and, as we will see, computing these voronoi cells
requires few extra computations.

x i
βij

jx
ijα a

c
P Q

c

R

b

O

a

b

ii
εθ

(a) (b) (c)

Figure 3: (a) 1-ring neighbors and angles opposite to an edge; (b) Voronoi region on a
non-obtuse triangle; (c) External angles of a Voronoi region.

3.3 Voronoi Region Area

Suppose a non-obtuse triangleP,Q,R with circumcenterO, as depicted in Figure 3(b).
Using the properties of perpendicular bisectors, we find :a+ b+ c = π/2, and therefore,
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a = π/2− 6 Q andc = π/2− 6 R. The Voronoi area for pointP lies within this triangle if
the triangle is non-obtuse, and is thus:1

8(|PR|2cot6 Q+ |PQ|2cot6 R). Summing these areas
for the whole 1-ring neighborhood, we write the non-obtuse Voronoi area for a vertexxi as
a function of the neighborsx j :

AVoronoi =
1
8 ∑

j∈N1(i)

(cot αi j +cot βi j ) ‖xi−x j‖2.

Since the cotangent terms were already computed for Eq. (4), the voronoi area can be
computed very efficiently. However, if there is an obtuse triangle among the 1-ring neigh-
borhood or among the triangles edge-adjacent to the 1-ring triangles, the Voronoi region
either extends beyond the 1-ring, or is truncated compared to our area computation. In
either case our derived formula no longer stands.

3.4 Extension to Arbitrary Meshes

The previous expression for the Voronoi finite-volume area does not hold in the presence
of obtuse angles. However, Equation (5) holds even for obtuse 1-ring neighborhoods: the
only assumption used is that the finite-volume region goes through the midpoint of the
edges. It is thusstill valid even in obtuse triangulations. Therefore, we could simply divide
the integral evaluation by the barycenter finite-volume area in lieu of the Voronoi area for
vertices near obtuse angles to determine the spatial average value. We opted for using a
slightly more subtle area, to guarantee a perfect tiling of our surface, and therefore, an
optimized accuracy.

We define a new surface area for each vertexx, denotedAMixed, which can be easily
computed as follows:

AMixed = 0
For each triangleT from the 1-ring neighborhood ofx

If T is non-obtuse, // Voronoi safe
// Add Voronoi formula (see Section 3.3)
AMixed+ = Voronoi region ofx in T

Else // Voronoi inappropriate
// Add area(T)/3
AMixed+ = Barycenter region ofx in T

Figure 4:Pseudo-code for regionAMixed on an arbitrary mesh
Note that the derivation for the integral of the mean curvature normal is still valid for this
mixed area since the boundaries of the area remain inside the 1-ring neighborhood and go
through the midpoint of each edge. Moreover, these mixed areas tile the surface without
overlapping. This new cell definition is thus equivalent to a local adjustment of the diagonal
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mass matrix in a finite element framework in order to ensure a correct evaluation. The
error bounds are not as tight when local angles are more thanπ/2, and therefore, numerical
experiments are expected to be worse in areas with obtuse triangles. Finally, notice that
other mixed areas can be defined. For instance, if our operator needs to be defined on
a mesh moving over time, the current mixed area may create numerical difficulties since
the mixed area can vary slightly when an angle just exceedsπ/2. In such a case, we
recommend defining the mixed area over obtuse triangles using neither the barycenter, nor
the circumcenter, but the midpoint of the edge opposite the obtuse angle. This area does
not suffer from any discontinuities aroundπ/2, and is therefore more appropriate in some
cases.

3.5 Discrete Mean Curvature Normal Operator

Now that the mixed area is defined, we can express the mean curvature normal operatorK
defined in Section 2.1 using the following expression:

Mean Curvature Normal Operator

K(xi) =
1

2AMixed
∑

j∈N1(i)

(cot α j +cot β j) (x j −xi) (6)

From this expression, we can easily compute the mean curvature valueκ by taking half
of the magnitude of this last expression. As for the normal vector, we can just normalize
the resulting vectorK(xi). In the special rare case where the mean curvature is zero (flat
plane or saddle point), we simply average the 1-ring face normal vectors to evaluaten
appropriately.

It is interesting to notice at this point that in the (extremely rare) case of only obtuse
triangles, this new operator is very similar to the definition of the mean curvature normal
by Desbrunet al. [DMSB99], sinceABarycenter is a third of the whole 1-ring areaA1-ring used
in their derivation. We will give numerical results in Section 6.1 showing the improved
quality of our new estimate.

4 Discrete Gaussian Curvature

In this section, the Gaussian curvatureκG for bivariate (2D) meshes in 3D is studied. We
will demonstrate that a similar derivation can be obtained easily.
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4.1 Expression of the Local Integral ofκG

Similar to what was done for the mean curvature normal operator, we first need to find an
exact value of the integral of the Gaussian curvatureκG over a finite-volume region on a
piecewise linear surface. From Eq. (2), we could compute the integral over an areaAM as
the associated spherical image area (also called the Gauss map). Instead, we prefer using
theGauss-Bonnet theorem[DHKW92, Gra98] that proposes a very simple equality, valid
over any surface patch. Applied to our local finite-volume regions, and since the extra
integral of geodesic curvatures is zero on the piece-wise linear boundaries of our regions,
the Gauss-Bonnet theorem simply states:∫∫

AM

κG dA= 2π−∑
j

ε j .

The ε j are the external angles of the boundary, as indicated in Figure 3(c). If we use
this expression on a Voronoi region, the external angles are zero across each edge (since
the boundary stays perpendicular to the edge), and the external angle at a circumcenter is
simply equal toθ j , the angle of the triangle at the vertexP. Therefore, the integral of the
Gaussian curvature (also called total curvature) for non-obtuse triangulations is: 2π−∑ j θ j .
This result actually extends to the barycenter region and the mixed region using the same
kind of simple geometric consideration. This result has already been proven by Polthier
and Schmies [PS98], by considering the area of the Gauss map for a vertex on a polyhedral
surface. Therefore, analogous to Eq. (5), we can now write for the 1-ring neighborhood of
a vertexxi :

∫∫
AM

κGdA= 2π−
# f

∑
j=1

θ j

whereθ j is the angle of thej-th face at the vertexxi , and #f denotes the number of faces
around this vertex. Note again that this formula holds for any surface patchAM within the
1-ring neighborhood whose boundary crosses the edges at their midpoint.

4.2 Discrete Gaussian Curvature Operator

To estimate the local spatial average of the Gaussian curvature, we use the same arguments
as in 3.2 to claim that the Voronoi cell of each vertex is an appropriate local region to use
for guaranteed error bounds. In practice, we use the mixed areaAMixed to account for obtuse
triangulations. Since the mixed area cells tile the whole surface without any overlap, we
will satisfy the Gauss-Bonnet (continuous) theorem: the integral of the discrete Gaussian
curvature over an entire sphere for example will be equal to 4π whatever the discretization
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(a) (b) (c) (d)
Figure 5: Curvature plots of a triangulated saddle using pseudo-colors: (a) Mean, (b)
Gaussian, (c) Minimum, (d) Maximum.

usedsince the sphere is a closed object of genus one. This result ensures a robust numeri-
cal behavior of our discrete operator. Our Gaussian curvature discrete operator can thus be
expressed as:

Gaussian Curvature Operator

κG(xi) = (2π−
# f

∑
j=1

θ j)/AMixed (7)

Notice that this operator will return zero for any flat surface, as well as any roof-shaped
1-ring neighborhood, guaranteeing a satisfactory behavior for trivial cases. We postpone
the numerical tests until Section 6.1.

5 Discrete Principal Curvatures

We now wish to robustly determine the two principal curvatures, along with their associ-
ated directions. Since the previous derivations give estimates of both Gaussian and mean
curvature, the only additional information that must be sought are the principal directions
since the principal curvatures are, as we are about to see, easy to determine.

5.1 Principal Curvatures

We have seen in Section 2.1 that the mean and Gaussian curvatures are easy to express in
terms of the two principal curvaturesκ1 andκ2. Therefore, since bothκ andκG have been
derived for triangulated surfaces, we can define the discrete principal curvatures as:
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Principal Curvature Operators

κ1(xi) = κ(xi) +
√

∆(xi) (8)

κ2(xi) = κ(xi)−
√

∆(xi) (9)

with: ∆(xi) = κ2(xi)−κG(xi) andκ(xi) =
1
2
‖K(xi)‖.

Unlike the continuous case where∆ is always positive, we must make sure thatκ2 is always
larger thanκG to avoid any numerical problems, and threshold∆ to zero if it is not the case
(extremely rare occurrence).

5.2 Mean Curvature as a Quadrature

We must find the principal axes at a vertex to complete the analogy between smooth and
polyhedral surfaces. Starting from our previous expression for the mean curvature normal,
we show that more information about local curvatures is already available:

κi =
1

4AMixed
∑

j∈N1(i)

(cot α j +cot β j) (xi−x j) ·n

=
1

4AMixed
∑

j∈N1(i)

(cot α j +cot β j)
‖xi−x j‖2
‖xi−x j‖2

(xi−x j) ·n

=
1

AMixed
∑

j∈N1(i)

[
1
8

(cot α j +cot β j) ‖xi−x j‖2
]

κN
i, j , (10)

where we define:

κN
i, j = 2

(xi−x j) ·n
‖xi−x j‖2

.

This κN
i, j turns out to be an estimate of the normal curvature along the edge (the inverse of

the radius of the osculating circle)xix j as defined in Section 2.1. The radiusRof the oscu-
lating circle going through the verticesxi andx j is easily found using the mean curvature
normal estimate as illustrated in Figure 9(a). We must have a right angle at the neighbor
vertexx j , yielding:

(xi−x j) · (xi−x j −2Rn) = 0.

This impliesR= ‖xi−x j‖2/(2(xi−x j) ·n), proving thatκN
i, j is a normal curvature estimate

in the direction of edgexix j . This expression was already mentioned in the context of
curvature approximation in [MS92].
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Therefore, Eq. (10) can be interpreted as a quadrature of the integral from Eq. (1), with
weightswi j :

κi = ∑
j∈N1(i)

wi j κN
i, j ,

where thewi j = 1
AMixed

[
1
8(cot α j +cot β j) ‖xi−x j‖2

]
sum to one for eachi on a non-obtuse

triangulation.

5.3 Least-Square Fitting for Directions

To mimic the continuous case, we must find the two principal curvatures such that their
associated directions are orthogonal. Since the mean curvature obtained from our derivation
can be seen as a Gaussian quadrature using each edge as a sample, we decide to use these
samples to find the best fitting ellipse, in order to fully determine the curvature tensor. In
practice, we select the symmetric curvature tensorB as being defined by three unknowns
a,b, andc:

B =

(
a b
b c

)
.

This tensor will provide the normal curvature in any direction in the tangent plane. There-
fore, when we use the direction of the edges of the 1-ring neighborhood, we should find:

dT
i, j B di, j = κN

i, j ,

wheredi, j is the unit directionin the tangent planeof the edgexix j . Since we know the
normal vectorn to the tangent plane, this direction is calculated using a simple projection
onto the tangent plane:

di, j = (x j −xi)− [(x j −xi) ·n] n.

A conventional least-square approximation can be obtained by minimizing the errorE:

E(a,b,c) = ∑
j

wj | dT
i, j B di, j−κN

i, j |.

Adding the two constraintsa+ b = 2κ andac−b2 = κG, to ensure coherent results, turns
the minimization problem into a third degree polynomial root-finding problem. Once the
three coefficients of the matrixB are found, we find the two principal axese1 ande2 as the
two (orthogonal) eigenvectors ofB. In practice, all our experiments have demonstrated that
the non-linear constraint on the determinant is not really necessary. An example of these
principal directions can be found on Figure 1(b).
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6 Results & Applications

With robust estimates at our disposal, we propose some applications such as quality check-
ing for surface design and tools for smoothing and enhancement of meshes.

6.1 Numerical Quality of our Operators

We performed a number of tests to confirm the validity of our approach. A first round
was made on discrete meshes approximating simple surfaces like spheres, or hyperboloids,
where the curvatures are known analytically. To be able to accurately gauge how well our
operators perform, we also used special meshes defined as height fields over a flat regular
grid: by proceeding this way, Finite Difference (FD) approximations can also be computed
and tested against our results. The array below demonstrates the accuracy of our operators
by giving the mean percent error for analytically defined surfaces compared to the exact,
known curvatures:

%m FD κ [DMSB99] κ ourκ FD κG ourκG

Sphere 0.20 0.17 0.16 0.4 1.2
Paraboloid 0.0055 0.0038 0.0038 0.01 0.02

Torus - 0.047 0.036 - 0.05

The dashes “-” indicate that the FD tests cannot be performed since the triangulation is
arbitrary. We must indicate that the anglesθ j needed for the Gaussian curvature were
computed using the C functionatan2 , much preferable over anarcos or anarcsin
that would significantly deteriorate the precision of the results.

6.2 Geometric Quality of Meshes

Producing high quality meshes is not an easy task. Checking if a given mesh is appro-
priately smooth requires a long inspection with directional or point light sources to detect
any visually unpleasant discontinuities on the surface. Curvature plots (see Figure 5), us-
ing false color to texture the mesh according to the different curvatures, can immediately
show problems or potential problems since they will reveal the variation of curvatures in
an obvious way. Figure 6 demonstrates that even if a surface (obtained by a subdivision
scheme) looks very smooth, a look at the mean curvature map reveals flaws such as dis-
continuities in the variation of curvature across the surface. Conversely, curvature plots can
reveal unsuspected details on existing scanned meshes, like the veins on the horse.
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(a) (b)

Figure 6:Mean curvature plots revealing surface details for: (a) a Loop surface from an
8-neighbor ring, (b) a horse mesh.

6.3 Denoising and Enhancement of a Mesh

If the quality of a mesh is not sufficient (due to noise resulting from inaccurate scans for
instance), denoising and enhancements can be performed using our discrete operators.

6.3.1 Isotropic Shape Smoothing

Just like Laplacian filtering in image processing, a mean curvature flow will disperse
the noise of a smooth mesh appropriately by minimizing the surface area as reported
in [DMSB99]. We implemented this implicit fairing technique using our new operators
with success. However, since our mesh can represent a surface with sharp edges, we some-
times experienced a dilemma: how can one get rid of the noise by smoothing the surface,
while preserving sharp edges to keep the underlying geometry intact? We would like to
smooth a noisy cube, for example, without turning it into a cushion-like shape (Figure 7(a)
and (b)). A possible solution is to manually spray-paint the desired value of smoothing on
the vertices [DMSB99], making the preservation of sharp edges possible while suppressing
noise. But it is a rather time-consuming task for big meshes, and it will leave ragged edges
on the vertices forced to a low smoothing amount.

6.3.2 Enhancement of Meshes

We would like to automate the previous process, providing a way to smooth meshes while
keeping clear features (like sharp edges) intact. This relates closely to the specific prob-
lem of image denoising, where clear features like object boundaries should be kept, while
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(a) (b) (c)

Figure 7: Cube: (a) Original, noisy mesh (±3% uniform noise added along the normal
direction). (b) Isotropic smoothing. (c) Anisotropic smoothing defined in Section 6.3.3.

noisy, yet homogeneous regions should be smoothed. Different forms of anisotropic dif-
fusion have shown good results for this problem in image processing [PM90] and in flow
visualization [PR99]. The underlying idea is to still diffuse the noise, but with an adaptive
conductance over the image in order to preserve edges. We experimented with a simple
technique to achieve similar results on meshes. Additionally, an enhancement procedure to
help straighten up edges has been designed.

An isotropic implicit curvature flow on regions uniformly noisy is desired, while spe-
cial treatment must be applied for obvious edges and corners to prevent them from being
smoothed away. In our previous work [DMSB00], we proposed a weighted mean curvature
smoothing, where the weights are computed using the first fundamental form to preserve
height field discontinuities. However, even if such an approach is appropriate for height
fields, it does not capture enough information to perform adequately on a general mesh.
The second fundamental form, i.e., local curvature, provides more information on the local
variations of the surface, and therefore, will be more accurate for the weighting.

6.3.3 An Anisotropic Smoothing Technique

Most of the meshes issued from real object scans contain corners and ridges, which will
be lost if isotropic denoising is used. Therefore, if these sharp edges are necessary fea-
tures of a noisy mesh, the noise should be only directionally diffused in order to keep the
characteristics intact. Presence of such features can be determined using the second-order
properties of the surface. Indeed, in the case of an edge between two faces of a cube mesh,
the minimum curvature is zero along the edge, while the maximum curvature is perpendic-
ular to this edge. An immediate idea is thus to perform a weighted mean curvature flow
that penalizes vertices that have a large ratio between their two principal curvatures: this
way, clear features like sharp edges will remain present while noise, more symmetric by
nature, will be greatly reduced.

17



We define the smoothing weight at a vertexxi as being:

wi =


1 if |κ1| ≤ T and|κ2| ≤ T
0 if |κ1|> T and|κ2|> T andκ1κ2 > 0
κ1/κ if |κ1|= min(|κ1|, |κ2|, |κ|)
κ2/κ if |κ2|= min(|κ1|, |κ2|, |κ|)
1 if |κ| = min(|κ1|, |κ2|, |κ|)

.

The parameterT is a user defined value determining edges. The general smoothing flow
is then:∂xi/∂t = −wi κi ni . As we can see, corners will not move, while uniformly noisy
regions will be smoothed isotropically. For edges, we smooth with a speed proportional to
the minimum curvature, to be assured not to smooth ridges. The caveat is that this smooth-
ing is not well-posed anymore: we try to enhance edges, and this is by definition a very
unstable process. Pre-mollification techniques have been reported successful in [PR99],
and could be used in our case. However, we had good results by just thresholding the
weightswi to be no less than−0.1 to avoid strong inverse diffusion, and using implicit
fairing to integrate the flow. As Figure 7 demonstrates, a noisy cube can be smoothed and
enhanced into an almost perfect cube using our technique. For more complicated objects
(see Figure 1(c-d)), a pass of curve smoothing (also using implicit curvature flow) has been
added to help straighten the edges.

7 Discrete Operators innD

Up to this point, we defined and used our geometric operators for bivariate (2D) surfaces
embedded in 3D. We propose in this section to generalize our tools for 2D surfaces to any
embedding space dimensionality, as well as extending the formulæ to 3-manifolds (vol-
umes) inn dimensions. This will allow us to apply the same kind of smoothing techniques
on datasets such as vector fields, tensor images, or volume data.

7.1 Operators for 2-Manifolds in nD

We here extend our operators for 2-parameter surfaces embedded in an arbitrary dimen-
sional space, such as color images (2D surface in 5D), or bivariate vector field (2D surface
in 4D).

Beltrami Operator

As we have seen in Sections 2.1 and 3.1, the Beltrami operator is in the direction of surface
area minimization. In order to extend this operator to higher dimensional space, we must
first derive the expression for a surface area innD. The area of a triangle formed by two
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vectorsu andv in 3D is 2A = ||u×v||. Being proportional to the sine of the angle between
vectors, we can also express it as:

A =
1
2
||u||||v||sin(u,v) =

1
2
||u||||v||

√
1−cos2(u,v)

=
1
2

√
||u||2||v||2− (u ·v)2. (11)

This latter expression is now valid innD, and is particularly easy to evaluate in any dimen-
sion.

We can now derive the gradient of the 1-ring area with respect to the central vertex
to find the analog of Eq. (4) innD. We detail this proof in Appendix B, but the result is
very simple: the previous cotangent formula is still valid innD if we define the cotangent
between two vectorsu andv as:

cot(a,b) =
cos(a,b)

sin(a,b)
=

a ·b√
||a||2||b||2− (a ·b)2

.

With this definition, the implementation innD space is straightforward and efficient, as dot
products require little computation.

Gaussian Curvature Operator

The expression of the Gaussian curvature operator Eq. (7) still holds innD. Indeed, the
Gaussian curvature is an intrinsic attribute of a 2-manifold, and does not depend on the
embedding.

7.2 Operators for 3-Manifolds in nD

We also extend the previous operators, valid on triangulated surfaces, to tetrahedralized
volumes which are 3-parameter volumes in an embedding space of arbitrary dimension.
This will be used for example for any MRI volume data (intensity, vector field or even
tensor fields). For these 3-manifolds, we can compute the gradient of the 1-ring volume
this time to extend the Beltrami operator. Once again, the cotangent formula turns out to
be still valid, but this time for the dihedral angles of the tetrahedrons. Appendix C details
the derivation to prove this result. This Beltrami operator can still be used to denoise
volume data as it minimizes volume just like we denoised meshes through a surface area
minimization.

7.3 Denoising of Arbitrary Fields

The extension of our geometric operator to higher dimensional embedding spaces allows
us to use the same smoothing technology used on meshes for vector fields or tensor images.
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(a) (b) (c)

Figure 8:Vector field denoising: (a) Original, noisy vector field; (b) Smoothed using Bel-
trami flow; (c) Smoothed using anisotropic weighted flow to automatically preserve the
vortex region.

To prove the validity of our operator, we performed different smoothings on higher dimen-
sional spaces. For instance, Figure 8 demonstrates how our operators can smooth a vector
field, with or without preservation of features. Anisotropic smoothing can indeed preserve
significant discontinuities such as the boundary between the straight flow and the vortex,
just as we preserved edges during mesh smoothing in 3D.

8 Conclusion

A complete set of accurate differential operators for any triangulated surface have been pre-
sented. We consistently derived estimates for normal vectors and mean curvatures (Eq. (6)),
Gaussian curvatures (Eq. (7)), principal curvatures (Eq. (8) and (9)) , and principal di-
rections (Section 5.3), and numerically showed their quality. Extended versions of our
operator for surfaces and volumes in higher dimension embedding spaces have also been
provided. Moreover, we described how to use these simple, local operators to denoise
arbitrary meshes or vector fields, including preservation and/or enhancement of features.
These methods form a family of robust tools to help with processing noisy data, or simply
to build a scale space out of a dataset to offer an adaptive description of the data. With little
user interaction to select (and direct) the appropriate tools, noisy scanned meshes can be
turned into high-quality meshes, vector fields can be smoothed to later segment the general
flow, or MRI multi-valued images can be denoised. However, smoothing techniques do not
deal well with large amounts of noise. Multiplicative noise, for example, can create large
dents in a dataset, that only statistical techniques using local averages ofn neighbors can
try to deal with [MS96], often without guarantee of success. Yet we believe that, as in im-
age processing, our global framework can give rise to other anisotropic diffusion equations
particularly designed for specific noise models.

We have confidence in the adequacy and efficiency of our simple discrete operators in
numerous other surface-based applications. The mean curvature normal operator for in-
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stance can be easily applied to function values on the surface, and it will define a Laplacian
operator for the “natural” metric of the mesh. We are currently exploring other applica-
tions of these operators such as reparameterization, geometry based subdivision schemes,
and mesh simplification along the lines of [HG99].
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Appendix

In this appendix, we will make heavy use of Einstein summation notation for conciseness.
For an introduction, see [Bar89].
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A Laplacian on a triangulated domain

From Gauss’s theorem, we can turn the integral of a Laplacian over a region into a line
integral over the boundary of the region:

∫∫
AM

∆u,vx du dv=
∫

∂AM

∇u,vx ·nu,v dl, (12)

where the the subscriptu,v indicates that the operator or vector must be with respect to the
parameter space.

Since we assumed our surface to be piecewise linear, its gradient∇u,vx is constant over each
triangle of the mesh. As a consequence, whatever the type of finite-volume discretization
we use, the integral of the normal vector along the border∂AM within a triangle will result
in the same expression since the border of both regions passes through the edge midpoints
as sketched in Figure 9(b). Inside a triangleT = (xi,x j ,xk), we can thus write:∫

∂AM∩T
∇u,vx ·nu,v dl = ∇u,vx · [a−b]⊥u,v =

1
2

∇u,vx · [x j −xk]
⊥
u,v

n

C

xj
xi

bX

X

Xi

j

k

a

(a) (b)

Figure 9: (a) Osculating circle for edgexix j . (b) The integration of the surface gradient
dotted with the normal of the region contour does not depend on the finite volume dis-
cretization used.

Since the functionx is linear over any triangleT, using the linear basis functions over the
triangleBl , it follows:

x = xi Bi(u,v) +x j Bj(u,v) +xk Bk(u,v)

∇u,vx = xi ∇u,vBi(u,v) +x j ∇u,vBj(u,v) +xk ∇u,vBk(u,v)

Using the fact that the gradients of the 3 basis functions of any triangleT sum to zero
and rearranging terms, the gradient ofx over the triangle can be expressed as∇u,vx =
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1
2AT

[(x j −xi)[xi−xk]
⊥
u,v +(xk−xi)[x j−xi]

⊥
u,v]. The previous integral can then be rewritten

as: ∫
∂A∩T

∇u,vx ·nu,v dl =
1

4AT

[
([xi−xk] · [x j−xk])u,v (x j −xi)

+([x j −xi] · [x j−xk])u,v (xk−xi)
]
.

Moreover, the areaAT is proportional to the sine of any angle of the triangle. Therefore,
we can use the cotangent of the 2 opposite angles toxi to simplify the parameter space
coefficients and write:∫

∂A∩T
∇u,vx ·nu,v dl =

1
2

[cotu,v 6 (xk)(xi−xk) +cotu,v 6 (x j) (xi−x j)].

Combining the previous equation with Eq. (3) and (12), using the current surface discretiza-
tion as the conformal parameter space, and reorganizing terms by edge contribution, we
obtain: ∫∫

A
K(x)dA=

1
2 ∑

j∈N1(i)

(cot αi j +cot βi j ) (xi−x j)

whereαi j andβi j are the two angles opposite to the edge in the two triangles sharing the
edge(x j ,xi) as depicted in Figure 3(a).

B Surface Area Minimization in nD

Consider 3 pointsA,B,C in a space of arbitrary dimensionn> 2. As mentioned in Sec-
tion 7.1, we can write the area formed by the triangle(A,B,C) as follows:

A2 =
1
4

(
ABiABiACjACj −ABiACiABjACj

)
.

Straightforward term by term differentiation with respect toA yields:

4
∂A2

∂Aq
= −δiqABiACjACj −δiqABiACjACj

−δ jqABiABiACj −δ jqABiABiACj

+δiqACiABjACj + δiqABiABjACj

+δ jqABiACiACj + δ jqABiACiABj

= −2ABqACjACj −2ABiABiACq + ACqABjACj

+ABqABjACj + ABiACiACq + ABiACiABq

= 2[ABq(AB·AC−AC·AC)+ ACq(AB·AC−AB·AB)]

= 2[BAq(BC·CA)+CAq(AB·BC)] .
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Additionally, we have:
∂A2

∂Aq
= 2A

∂A
∂Aq

.

Using Eq. (11), and defining the cotangent of an angle between twonD vectorsu andv as:

cot(u,v) =
u ·v√

‖u‖2‖v‖2− (u ·v)2
,

the gradient of the surface area can be expressed exactly as in Eq. (4), extending nicely the
3D case tonD.

C Volume minimization in nD

Let A,B,C, andD be fourn-dimensional points. As mentioned in Section 7.2, we want to
calculate the volume of the region (tetrahedron in 3D) formed by the three vectors origi-
nating at A:

a = AB b= AC c= AD.

We define a transformation of a 3D unit cube with axesu,v,w: T(u,v,w) = au+ bv+ cw.
The Jacobian matrixJ of this transformation is composed of three columns,a,b, andc:

J =
(
a|b|c

)
(13)

The volume of the transformed unit cube is:
∫∫∫ √

det G dudvdw, whereGi j = JimJjm is
the 3x3 metric tensor of the transformation.

The volumeV we are looking for is therefore16 of the square root of determinant of
G (ratio between the untransformed and transformed cube). We can obtain this latter term
through the standard formulation:

det G= εi jkJ1uJ2vJ3wJiuJjvJkw.

Expanding this expression, we find the following terms involving dot products:

det G= 2(a ·b)(a ·c)(b ·c) +(a ·a)(b·b)(c·c)

−(a ·b)2(c·c)− (a ·a)(b ·c)2− (a ·c)2(b ·b).

From now on, the rest of the derivation is very similar to the surface area minimization in
nD, detailed in the previous Section. So, using the fact that:

∂V 2

∂Aq
= 2V

∂V
∂Aq

and that we have, as a consequence of Eq. (13):∂Ji j
∂Aq

=−δ jq, we finally get the following
terms for the gradient:
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∂V
∂Aq

= 1
V ( aq ((a ·c)(b ·b) +(b ·c)2+(a ·b)(c·c)

−(b ·b)(c·c)− (a ·c)(b ·c)− (a ·b)(b ·c))
+bq ((b ·c)(a ·a) +(a ·c)2+(a ·b)(c·c)

−(a ·a)(c·c)− (b ·c)(a ·c)− (a ·b)(a ·c))
+cq ((a ·c)(b ·b) +(a ·b)2+(a ·a)(b ·c)

−(a ·a)(b ·b)− (a ·b)(b ·c)− (a·b)(a·c))).

Although we can use this expression to compute the gradient of the volume, it turns out
we can simplify it using Lagrange’s identity to get a better insight of what these terms are.
Lagrange’s identity in 3D can be written as:

(s·u)(t ·v)− (s·v)(t ·u) = (s∧ t) · (u∧v).

The multiplicative term in front ofcq is then(AB∧AC) · (DC∧DB), representing (up to
the product of the norm of these vectors) the cosine of the dihedral angle between the two
opposite faces to the edgec. As the volume is proportional to the sine of this angle, we can
see that we once again have the same formula as Eq. (4), this time with cotangents of the
dihedral angles opposite to the edge. Note that there are generally more than two tetrahedra
sharing the same edge.
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