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Abstract

In recent years, geometry processing algorithms that directly operate on polygonal meshes have become an indispensable tool in computer

graphics, CAD/CAM applications, numerical simulations, and medical imaging. Because the demand for people that are specialized in these

techniques increases steadily the topic is finding its way into the standard curricula of related lectures on computer graphics and geometric

modeling and is often the subject of seminars and presentations. In this article we suggest a toolbox to educators who are planning to set up a

lecture or talk about geometry processing for a specific audience. For this we propose a set of teaching blocks, each of which covers a specific

subtopic. These teaching blocks can be assembled so as to fit different occasions like lectures, courses, seminars and talks and different

audiences like students and industrial practitioners. We also provide examples that can be used to deepen the subject matter and give

references to the most relevant work.
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1. Introduction

In the last decade the processing of polygonal meshes has

emerged as an active and very productive research area.

This can basically be attributed to two developments:

† Modern geometry acquisition devices, like laser scanners

and MRI, easily produce raw polygonal meshes of ever

growing complexity.

† Downstream applications like analysis tools (medical

imaging), computer aided manufacturing, or numerical

simulations all require high quality polygonal meshes as

input.

The need to bridge the gap between raw triangle soup

data and high-quality polygon meshes has driven the

research on efficient data structures and algorithms that

directly operate on polygonal meshes rather than on a (most

often not feasible) intermediate CAD representation.

We roughly structure the main area of geometry processing

into three major sub-topics: meshes, subdivision and multi-

resolution techniques. The topic meshes covers the basic data

structures and algorithms that are used for representing and

modifying polygonal geometry. Here we find algorithms that

are used to create, analyze, smooth, decimate or parameterize

polygonal meshes. Subdivision methods provide a link

between (discrete) polygonal meshes and conventional

(continuous) spline surface representations. Their main

application is geometric modeling and adaptive meshing for

finite element computations. Multiresolution techniques

decompose the model into a hierarchy of meshes that represent

different levels of detail. Technically this hierarchy can be

exploited in order to significantly speed up many algorithms.

More important, however, is the semantic effect in that such

hierarchies can be used for intuitive modeling metaphors or

highly efficient geometry compression algorithms.

Due to the increasing demand for people that are

specialized in geometry processing, the topic is finding its

way into related lectures and is also the subject of many

seminars and talks. There is, however, no canonical

curriculum to draw from. In this article we propose to

alleviate this problem by structuring the subject into a set of

teaching blocks each of which covers a certain subtopic.

Each teaching block consists of…

† …a number of keywords that compactly describe the

essence of the block. After teaching a teaching block
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the students should be able to reconstruct the contents by

means of the keywords.

† …a list of references to recent publications.

† …the actual contents of the block in form of a short

description. This description is not meant to be tutorial in

nature but as a rough guideline for lecturers.

The idea is that these teaching blocks can be put together

in various ways such as to accommodate different audiences

and occasions:

† A one-semester general course on geometry processing

would comprise all of the presented blocks and combine

it with more classical material on spline theory and

NURBS.

† As part of an advanced course on computer graphics,

geometry processing can be covered by the more

practical blocks on meshes and subdivision.

† An advanced and more specialized course on geometric

modeling would focus on the subdivision and multi-

resolution blocks, possibly including the more theoretical

material on the convergence analysis.

† A seminar for industrial practitioners would primarily

focus on the practical blocks and the examples.

Fig. 1 gives an overview of all the blocks and their

relationships.

2. Preliminaries

In this paper we will only deal with the core topics in

geometry processing. However, for many of these topics

some previous knowledge in mathematics and/or geometric

modeling is indispensable for the students.

Concepts that should be known from calculus include

continuity/differentiability of functions, sequences of func-

tions, convergence criteria, Taylor expansion and approxi-

mation power. From linear algebra the basic concepts of

vector spaces, linear maps and spectral theory should be

available as well as knowledge of notions from affine

geometry.

We have also experienced that students benefit from

setting the topic into the broader view of computer

graphics/geometric modeling. In particular the students

should be familiar with the different approaches to represent

surface geometry either explicitly, parametrically or

implicitly and to use points, patches or volume elements

as the basic structural primitive.

3. Meshes

In the following discussion we will describe the basic

data structures and algorithms that are used to process

polygonal meshes. Most of these data structures and

algorithms can be understood without previous knowledge.

As the implementation of the algorithms is often straight-

forward they are well-suited as practical exercises.

3.1. Data structures

M winged-edge, halfedge

M [1–6]

The many data structures that are available for

representing polygonal meshes are designed such as to

facilitate the access to local neighborhood information, e.g.

enumerating the 1-ring of a vertex. Furthermore, as

constant-size data structures can be stored more compactly

one often restricts oneself to triangle meshes or uses edges

as the topological primitive.

Example 1. (Winged- and Halfedge) The prevalent data

structures for representing orientable two-manifold poly-

gonal meshes are the winged-edge [1] and the halfedge

data structures. In contrast to a simple shared vertex

representation, they provide easy access to neighborhood

information.

The winged-edge data structure associates with each edge

eight references: two vertices, two faces and four incident

Fig. 1. Teaching block overview. For the sake of completeness we have also

included a ‘mathematics’ block that is, however, not further explained in

this paper.
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edges. Since edges cannot be oriented globally consistent, a

case distinction is necessary during traversal.

Splitting an edge into two neighboring halfedges results in

the halfedge data structure, where each halfedge stores four

pointers to a vertex, its next and opposite halfedge and to

a face.

Example 2. (Face based data structures) Face-based data

structures are especially convenient for subdivision and

multiresolution hierarchies [6]. Here the basic structuring

element is a face that contains pointers to its adjacent

vertices and faces and for each adjacent face the index of the

adjacent edge. Like in a quadtree one can additionally store

pointers to child faces.

Example 3. (Others) There are a number of less commonly

used data structures [3], including quad edge that simul-

taneously encodes a mesh and its dual and is able to

represent non-orientable manifolds, radial edge [5] for

handling non-manifold meshes and directed edges [2] which

is very memory efficient but restricted to triangular meshes.

3.2. Voronoi diagram and Delaunay triangulation

M Voronoi diagram, Delaunay triangulation

M [7–13]

Given n points pi [ Rd the Voronoi region correspond-

ing to pi is defined as

Vi ¼ {p : distðp; piÞ # distðp;pjÞ for all j – i}

resulting in a partition of Rd into Voronoi regions.

The dual of the Voronoi diagram is called the Delaunay

triangulation. For d ¼ 2 we have that a triangulation is

Delaunay iff for each edge the circle circumscribing one

adjacent triangle does not contain the opposite vertex.

Among all possible triangulations, the Delaunay triangu-

lation is the one that maximizes the smallest angle.

Example 4. (Fortune’s sweep-line algorithm) In case d ¼ 2

a nice visual interpretation of the Voronoi diagram can be

given as follows [10]. Embed R2 as the z ¼ 0 plane into R3

and locate on each point pi a cone of opening angle 458.

If one then views the configuration from z ¼ 21;

the Voronoi diagram is given by the visible parts of the

cones. Fortune’s algorithm exploits this observation by

sweeping a slanted plane over the points thereby succes-

sively constructing the Voronoi diagram or the Delaunay

triangulation.

Example 5. (Delaunay triangulation from convex hulls)

Any algorithm for computing the convex hull of an object

can also be used to compute Delaunay triangulations [13].

For this one embeds the points pi in Rdþ1 by projecting them

onto the parabola P : xdþ1 ¼ x2
1 þ · · · þ x2

d: From the

convex hull of P we remove the faces whose normals

point in the d þ 1 direction. The Delaunay triangulation is

then obtained by projecting back the remaining polyhedron

into Rd:

3.3. Conversion: implicit representations ! meshes

M signed distance field, marching cubes

M [14–17]

A surface S can be represented as the kernel of a signed

distance function dðx; y; zÞ; i.e.

S ¼ {½x; y; z� : dðx; y; zÞ ¼ 0}

In typical applications (e.g. medical imaging) d is sampled

on a regular grid, dijk ¼ dði; j; kÞ; and interpolated by a

piecewise tri-linear function.

Example 6. (Marching Cubes) The marching cubes

algorithm [17] extracts a polygonal representation from

the grid dijk by generating a vertex for each edge that

intersects S and connects these vertices to a (triangulated)

polygon. If additional (Hermite-) data is available at the grid

points, one can use the extended marching cubes algorithm

[16] in order to reconstruct sharp features.

Example 7. (Surface Nets) Dual methods like the surface

nets algorithm [14] compute a face for each edge that

intersects S: This method can also be extended to

reconstruct sharp features when Hermite data is

available [15].

S. Bischoff, L. Kobbelt / Computer-Aided Design 36 (2004) 1483–1500 1485



3.4. Conversion: point clouds ! meshes

M organized/unorganized point clouds, power crust,

volumetric approach

M [18–22]

Given a set of points pi [ R3 sampled from a surface S

we search for a triangle mesh that interpolates or

approximates these points. The various algorithms that

have been proposed for this task can be classified according

to whether they accept unstructured point clouds as input,

whether the reconstruction is based on a signed

distance function and whether they are interpolatory or

approximating.

Example 8. Hoppe et al. [20] estimate a normal ni for each

point pi by fitting a (tangent) plane to the k-neighborhood

of pi: In order to consistently orient the normals, the

normal orientation is propagated along an extended

Euclidean minimum spanning tree. The signed distance

of an arbitrary point p to the object is then estimated as the

distance to the tangent plane associated with the nearest pi:

Finally a triangle mesh is extracted via the marching cubes

algorithm.

Example 9. (Volumetric approach) Curless et al.’s volu-

metric method [19] takes as input a set of range images, i.e.

point clouds that are organized according to a regular grid,

as they are produced e.g. by laser range scanners. Each

range image is scan converted to a cumulative weighted

signed distance function. Time and space efficiency is

achieved by resampling the range image according to the

voxel ordering and by run-length encoding the volume.

Finally an explicit polygonal mesh is extracted via the

marching cubes algorithm. This algorithm is also able to

automatically fill in gaps and hence produces watertight

models.

Example 10. (Voronoi/Delaunay filtering algorithms) If the

points pi are sufficiently dense samples of a surface S then S

can be reconstructed via filtering as a subset of the Delaunay

triangulation of the pi [9,21,22]. As an advanced example,

Amenta et al.’s power crust algorithm [18] proceeds as

follows: First the Voronoi diagram of all sample points pi is

computed. If the pi are sufficiently dense, the Voronoi cells

will be needle-like polyhedra orthogonal to the surface S:

The two vertices of the Voronoi cell that are farthest away

from pi in positive and negative direction are called the poles

of the cell. Let ai be the set of all poles and ri the radii of

their corresponding Voronoi balls. Then the power diagram

of all poles is defined as the Voronoi diagram with respect to

the power-distance

dpowðx; aiÞ ¼ kx 2 aik
2
2 r2

i :

Inside/outside information is propagated over the poles using

the fact that two poles corresponding to the same sample

point are on different sides of the surface and that an inner and

an outer polar ball can only intersect shallowly. The output of

the algorithm is the power crust, i.e. those cells of the power

diagram that separate inside and outside poles.

3.5. Mesh decimation

M vertex clustering, incremental decimation, edge col-

lapse, quadric error metrics, progressive meshes, view-

dependent refinement

M [23–30]

Mesh decimation algorithms simplify polygonal meshes

by reducing their number of vertices while preserving as

much of their shape and appearance as possible. One can

distinguish two classes.

Vertex clustering algorithms set up a voxel grid and

combine vertices that lie in the same voxel. These

algorithms are typically applied in an out-of-core fashion,

but provide only limited control on the resulting mesh

complexity, topology or quality.

Incremental decimation algorithms repeatedly remove

the geometrically least important vertex from the mesh. This

is done by either deleting a vertex together with its incident

faces followed by a retriangulation of the resulting hole

(vertex removal) or by collapsing two vertices along a

common edge (edge collapse).
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The decimation order is determined by an error metric

like the Hausdorff distance or quadric error metrics.

Example 11. (Quadric error metric) Quadric error metrics

[23] measure the squared distance of a vertex from all of its

supporting planes. For this a quadric Qi is associated with

each vertex i: Let nT
j x ¼ 0 be the homogeneous Hessian

normal form of the planes supporting the faces adjacent to

vertex i; then Qi is initialized as

Qi ¼
X

j

njn
T
j

Whenever two vertices i and j are collapsed into a new

vertex k the quadric Qk associated with k is computed as

Qk ¼ Qi þ Qj

and k’s position xk is determined such as to minimize

the quadratic equation xT Qkx; i.e. by solving a linear

system.

Example 12. (Progressive Meshes and view-dependent

refinement) Halfedge collapses can be easily reversed

(vertex split) resulting in a so-called progressive mesh

representation [25]. Arranging the vertex collapses/splits in

a forest allows to selectively refine a mesh based on view-

frustum, screen-space error etc. [29,30]

3.6. Mesh smoothing

M Taubin’s smoothing, curvature flow

M [31–33]

Data that is acquired by physical measurement often

exhibits noise. The removal of this noise is called mesh

smoothing. In the following discussion let x ¼ ½x1;…; xn� be

the positions of the n vertices of a triangle mesh M: We

further need a discretization of the Laplacian D to triangle

meshes

Dxi ¼
X

j neighbor of i

wijðxj 2 xiÞ

where wij are some weight coefficients reflecting edge-

lengths or angles (see also Section 3.7). The discrete

Laplacian can then be written in matrix form as Dx:

Example 13. (Taubin’s signal processing approach) The

matrix K U I 2 D has real eigenvalues 0 # k1 # · · · #

kn # 2 and the corresponding eigenvectors e1;…; en can be

considered as the natural vibration modes of the mesh. Let

x ¼
P

x̂iei be the discrete Fourier transform of x and let f ðkÞ

be an arbitrary polynomial, then we have

f ðKÞx ¼
X

x̂if ðkiÞei

Hence f ðkÞ can be considered as the transfer function of the

filter f ðKÞ: Taubin proposes to set f ðkÞ ¼ ð1 2 lkÞð1 2 mkÞ

where m , 2l , 0 in order to get a non-shrinking

filter [33].

Example 14. (Curvature flow approach) Desbrun et al. [31]

consider mesh smoothing as a diffusion process

›x

›t
¼ l Dx

This system becomes stationary when ›x=›t ¼ 0; i.e. when

Dx ¼ 0: Instead of an explicit forward Euler method where

the time steps have to be chosen small enough to guarantee

stability one uses an implicit scheme

ðI 2 l dtDÞxnþ1 ¼ xn

to iteratively solve the equation with a timestep l dt that can

be arbitrarily large.

Example 15. (Energy minimization approach) A standard

measure for the global surface stretching and bending

energy are the membrane and thin-plate energies resp.:ð
f2

u þ f2
v and

ð
f2

uu þ 2f2
uv þ f2

vv

Applying variational calculus we obtain the necessary

conditions (see Kobbelt [34]):

Dx ¼ 0 and D
2x ¼ 0

These equations can be solved iteratively by e.g. a Gauss-

Seidel solver, possibly accelerated by multigrid methods.

The solution is identical to the stationary configuration in

the curvature flow setting.

3.7. Discrete differential geometry

M tangent, (Gaussian, mean, principal) curvature, princi-

pal directions

M [35–41]

Let S be a smooth surface in space, p a point on this

surface and n its normal vector, i.e. n is orthogonal to the

tangent plane at p: For every unit direction e ¼ eðuÞ in the

tangent plane given by an angle u the normal curvature kðuÞ

is defined as the curvature of the intersection of S with the

plane spanned by n and e:

The normal curvature takes on two extremal principal

curvatures k1;k2 at orthogonal principal directions e1; e2:
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The mean and Gaussian curvatures are then defined as kH ¼

ðk1 þ k2Þ=2 and kG ¼ k1k2; respectively. Note that kH can

also be defined as kH ¼ 1=ð2pÞ
Ð
kðuÞdu:

It is not easy to carry over these notions to non-

differentiable triangle meshes. There are many ad-hoc

solutions, but these are often not consistent, i.e. they do not

converge to the pointwise properties of S when the triangle

mesh is considered as an approximation of S:

Example 16. Pinkall and Polthier [41] propose the

following consistent formulas: Let xi be a vertex, uj

the adjacent angles and xj the adjacent vertices. Then the

associated normal ni and curvatures can be computed by

kHðxiÞni ¼
1

2A

X
j

ðcot aij þ cot bijÞðxj 2 xiÞ;

kGðxiÞ ¼ ð2p2
X

ujÞ=A;

where A is some area around the center vertex and aij;bij

are the two angles opposite to the edge xixj:

Example 17. The usual definition of geodesic as a locally

shortest path fails on the vertices of triangle meshes.

Polthier et al. [39,40] propose to use the notion of straightest

geodesics, where the sum of angles on each side of the line

is equal.

3.8. Parameterization

M parameterization, conformal maps

M [42–54]

Parameterization is the process of assigning two-

dimensional coordinates ui to the vertices xi of a triangle

mesh such that the resulting piecewise linear map becomes

injective and hence invertible. Parameterizations are used

e.g. for remeshing and texture mapping. Two problems have

to be solved:

First, a triangle mesh can only be parameterized when it

is topologically equivalent to a disk, i.e. when it has a

boundary and is of genus 0. This has led to the development

of various algorithms that subdivide a given mesh into

patches that are homeomorphic to a disk [44,51,53].

Second, only developable surfaces can be parameterized

without distortion. Therefore one tries to preserve alterna-

tive properties like (generalized) barycentric coordinates,

angles (conformal parameterization), or area (authalic

parameterization) as good as possible or to minimize the

geometric stretch. Note that no mapping can be conformal

and authalic at the same time unless the surface is

developable.

One can distinguish between non-linear methods that

solve the parameterization problem iteratively [48–50] and

linear methods. The latter amount to solve a linear system

Au ¼ b; where the matrix A and b depend on the vertex

positions xi; and u ¼ ½ux;0…ux;nuy;0…uy;n�: Whether this

system leads to an admissible solution depends on the

boundary conditions: if A ¼ ½aij� is a matrix with
P

j aij ¼ 0

and non-negative weights aij; i – j and if the boundary of

the parameterization is convex then the solution of the linear

system results in an injective mapping.

Example 18. (Floater’s weights) Floater constructs a

shape-preserving parameterization as follows [43]: The

1-ring xj of each interior vertex xi is mapped onto the plane

via an exponential map. In a second step, the barycentric

coordinates of ui with respect to every triangle uj0
; uj1

; uj2

that contains ui are determined, summed up and normal-

ized. This leads to a convex combination ui ¼
P

j lijuj for

the interior vertices. The boundary vertices are heuristi-

cally distributed on some convex shape and kept fixed, i.e.

they affect only the right hand side b: The resulting linear

system is then described by the matrix A ¼ I 2 ½lij�: More

recently, Floater [54] presented the so-called mean value

coordinates which are motivated by the mean value

theorem.

Example 19. (Least Squares Conformal Maps) Levy et al.

[46] determine a parameterization as follows: Let X :

R2 ! M be a parameterization of a triangle mesh M and let

U : M ! R2 be its inverse (local coordinates). Consider a

triangle T [ M and represent UlT with respect to a x; y-

coordinate frame that lies within T ; i.e.

UlT : T ! R2 ðx; yÞ 7! ðuðx; yÞ; vðx; yÞÞ

UlT is conformal, if

›U=›x ’ ›U=›y;

and

›U

›x

���� ���� ¼ ›U

›y

���� ����;
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i.e. if

cðUlT Þ ¼
›u

›y
þ

›v

›x
;
›v

›y
2

›u

›x

� �
¼ ð0; 0Þ

Note that UlT is linear and hence cðUlT Þ is actually a

constant. The deviation of U resp. X from a conformal map

can thus be measured asX
T[M

ð
T
kcðUlT Þk

2
dx dy ¼

X
T[M

kcðUlT Þk
2
AT

where AT is the area of T : This is a quadratic equation that

can be minimized using the conjugate gradients algorithm.

LSCM can also handle free boundaries. Furthermore, Levy

et al. proposed a multigrid framework to compute the LSCM

for very large meshes [47].

Example 20. (Others) Desbrun et al. [42] derived a map

that is equivalent to the least squares map by way of

minimizing the Dirichlet energy and called it discrete

conformal map. Sander et al. [48] minimize the geometric

stretch of a parameterization and extend their method

such that the approximation of signals that are defined on

the surface is optimized [49]. Gu et al. [44] produce

geometry images by parameterizing the whole surface

over a square.

3.9. Mesh compression

M cut-border, connectivity vs. geometry compression

M [55–63]

3.9.1. Connectivity coding

Let M be a mesh with n vertices. If M is given in shared

vertex representation, one needs logðnÞ bits per vertex for

storing the mesh connectivity, i.e. the indices referencing the

point list with n entries. In contrast, the algorithms presented

in this section are based on traversal strategies that encode

the mesh connectivity as a command sequence for a

reconstruction automaton. Due to the strong clustering of

vertex valences around the value 6 (Euler’s formula applied

to triangle meshes), these programs have low entropy

and can be efficiently encoded using only a constant number

of bits per vertex.

Most connectivity coding algorithms encode mesh

elements and their incidence relation with respect to one

or more cut-borders that are propagated over the mesh. The

cut-borders are stored in a stack, the top element being the

active cut-border.

One can distinguish growing operations that process the

current face and advance the cut-border (see examples

below) and the special operations split and merge. The split

operation Si is performed when the current cut-border

touches itself at the ith vertex, a merge operation Ms;i is

performed when the current cut-border touches the sth cut-

border from the stack at vertex i (once per handle).

Example 21. (Valence-based coding) Touma and Gotsman

[59] proposed a valence-based coding scheme for triangle

meshes that achieves less than 2 bit/vertex on the average.

To avoid the handling of special cases all holes are first

closed by triangle fans around a dummy vertex. The add

operation Ai introduces a vertex of valence i: If a vertex has

no more free edges, its neighborhood can be completed.

This method was further improved by Alliez and

Desbrun [63].

Example 22. (Edge-based methods) Face Fixer [57] is an

edge-based scheme that encodes arbitrary polygonal meshes

with an average of 2–3 bits/vertex. The face/hole operations

Fl=Hl attach a face/hole with l edges to the gate. The glue

operations L and R identify the gate with the next/previous

edge on the cut-border. The decoding proceeds in reverse

order.
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Example 23. (Others) The original cut-border machine [56]

and the edge-breaker algorithm [58] are examples of face-

based methods. Alliez et al. proposed a progressive

encoding scheme [55]. The forest split scheme [60] is also

progressive and is used in the MPEG 4 standard.

3.9.2. Geometry compression

The mesh geometry (i.e. the vertex positions) is first

quantized (usually to 10–12 bits) and then encoded

losslessly using a predictive scheme, like the parallelogram

rule. Huffman or arithmetic coders can then take advantage

of the low entropy of the prediction errors.

Example 24. (Normal meshes) Guskov et al. [61] propose a

geometry representation called normal meshes. These meshes

are semi-regular and hence need no explicit connectivity

information (except for the base mesh that is encoded

traditionally). Vertex positions are predicted using a subdivi-

sion scheme and displaced in normal direction, i.e. the

tangential components are zero and one only needs to store one

scalar value per vertex for the normal component. Applying

wavelet compression to normal meshes, Khodakovsky et al.

[62] achieve significant geometry compression rates.

3.10. Remeshing

M irregular, semi-regular, regular connectivity

M [44,45,64–66]

Remeshing is the process of approximating a given

geometry by a mesh with a special connectivity. The resulting

meshes are categorized as irregular, semi-regular or regular.

Example 25. (Irregular remeshing) Turk’s remesher [66]

distributes points on the original geometry and then

relaxates them via repulsion forces. When in equilibrium

state, the points are connected to form a triangle mesh.

Surazhsky et al. [67] describe a remesher including a post-

processing step, that reduces the number of irregular

vertices by propagating edge flips over the mesh. Further-

more, each mesh decimation algorithm can be considered as

a special remeshing operation that produces irregular

meshes.

Example 26. (Semi-regular remeshing) A mesh is called

semi-regular (or of subdivision-connectivity), if its connec-

tivity can be obtained by uniformly subdividing some

(coarse) base mesh. This type of connectivity is the basis for

many multi-resolution algorithms. Eck et al. [65] describe a

remeshing algorithm that works on arbitrary input meshes.

First the mesh is partitioned into triangular patches by
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taking the dual of a Voronoi-like partitioning. Each patch is

then parameterized in the plane and resampled to produce a

semi-regular mesh. The MAPS [45] algorithm tracks

vertices through a mesh decimation hierarchy to produce a

parameterization over a suitable base mesh. Regular

resampling of the base mesh again leads to a semi-regular

mesh.

Example 27. (Regular remeshing) Regular meshes can

efficiently be stored and transmitted as the vertex positions

can be arranged in matrix form and no connectivity

information is needed. Geometry images [44] are produced

by successively introducing cuts into a mesh in order to

open it into a topological disk and to reduce the distortion of

the subsequent parameterization.

Example 28. (Others) Alliez et al. [64] create an atlas of the

mesh and conformally parameterize each patch over the unit

square. Then they use standard image processing operations

on these images instead of on the mesh. Approaches that

do not need a parameterization of the mesh include the

shrink-wrapping algorithm [68] and the Anisotropic

Polygonal Remeshing method [69].

4. Subdivision

Subdivision schemes have become increasingly popular

in recent years because they provide a simple and efficient

construction of smooth curves and surfaces. In contrast to

plain piecewise polynomial representations like Bézier

patches and NURBS, subdivision schemes can easily

represent smooth surfaces of arbitrary topology.

Implementation and application of subdivision surfaces

is straightforward and intuitive, hence these topics can be

taught in a basic computer graphics course or to industrial

practitioners who might not be interested in the mathemat-

ical background. The analysis of subdivision schemes,

however, is mathematically involved and therefore better

suited for in-depth courses on geometric modeling or for a

seminar.

In the following sections, ck
i generally signifies the ith

control point of a control polygon or of a control mesh on

subdivision level k: We will also freely move forth and back

from the curve to the surface setting, depending on which of

the two is better suited for presenting the concepts.

4.1. Subdivision schemes

M 2-scale relation, subdivision mask, scaling function

M [6,70–72]

We start out with curves of the type
P

i ck
i fiðxÞ where

fiðxÞ ¼ fðx 2 iÞ are integer shifts of some scaling function

fðxÞ; and the points ck
i make up the control polygon of

the curve. If the fi satisfy a 2-scale-relation

fiðxÞ ¼
X

ajf2iþjð2xÞ ðpÞ

it follows that
P

ck
i fiðxÞ ¼

P
ckþ1

j fjð2xÞ for a certain

subdivided control polygon ckþ1
j ; where

ckþ1
j ¼

X
aj22ic

k
i ðppÞ

Examples and notations:

† The 2-scale relation ( p ) can most easily be demon-

strated for linear B-splines.

† Formula ( pp ) can be split for the even and odd control

points as

ckþ1
2j ¼

X
a2ic

k
j2i and ckþ1

2jþ1 ¼
X

a2i21ck
j2i

† A more graphical way to give the coefficients ai is by

means of subdivision masks

† Given a set of subdivision coefficients ai; it is in general

not possible to find a closed form expression for the basis

function fðxÞ: However, if the basis function exists, it

can be approximated by applying the subdivision scheme

to the Dirac vector ð…; 0; 0; 1; 0; 0;…Þ:

Example 29. (Lane – Riesenfeld scheme) Lane and

Riesenfeld [73] give an algorithmic formulation for uniform

B-spline subdivision. A single subdivision step is performed

by first doubling all control points and then taking n times

the average of each two consecutive control points.
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From this view subdivision can more generally be

considered as a topological splitting step, followed by a

smoothing (averaging) step.

Example 30. (4-point scheme) The subdivision mask of the

4-point scheme [74] is given by

½ai� ¼ ½21; 0; 9; 16; 9; 0;21�=16

and can easily be constructed using cubic interpolation.

The 4-point scheme makes a good example of an

interpolatory scheme and is also suited to demonstrate the

convergence analysis (cubic precision by definition).

Example 31. (Bivariate schemes) The most widespread

examples of subdivision schemes are the ones by Catmull-

Clark, Doo-Sabin, Loop, Kobbelt and the Butterfly scheme.

They can easily be used to demonstrate the different classes

of subdivision schemes

† approximating/interpolating

† quadrangle based/triangle based

† primal/dual

The table below gives a brief overview of the basic

properties of these subdivision schemes (here Ck means Ck

almost everywhere)

Doo-Sabin [75] Approx. C1 Quad. Dual

Catmull-Clark [76] Approx. C2 Quad. Primal

Kobbelt [77] Interpol. C1 Quad. Primal

Butterfly

(mod.) [78,79]

Interpol. C1 Tri. Primal

Loop [80] Approx. C2 Tri. Primalffiffi
3

p
[81] Approx. C2 Tri. Dual

These schemes can be enhanced in various ways, e.g. to

interpolate prescribed (boundary) curves or normals

[82–84].

4.2. Uniform B-splines and box splines

M piecewise polynomials, uniform B-splines, box splines

M [70,71,85,86]
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The uniform B-splines NnðxÞ of degree n over the knot

vector Z are defined by iterative convolution

N0ðxÞ ¼
1; x [ ½0; 1Þ

0; otherwise

(

NnðxÞ ¼
ð1

0
Nn21ðx 2 tÞdt

From this recurrence it can easily be seen that

NnðxÞ [ Sn
Z ¼ {piecewise polynomials of degree n over Z}

Because Sn
Z , Sn

Z=2; the uniform B-splines satisfy a 2-scale

relation

Nn
i ðxÞ ¼

X
an

j Nn
2iþjð2xÞ

where the coefficients an
j are given as

an
j ¼

n þ 1

j

 !�
2n

These coefficients can be computed by repeatedly convol-

ving the Dirac vector with [1,1] (averaging), i.e.

an ¼
1

2n
ð½1� p ½1; 1� p · · · p ½1; 1�Þ

Box splines are the generalization of univariate, uniform

B-splines to higher dimensions and can also be defined

using a convolution formula. Given directions v0;…;

vm [ Z2; the box splines are defined as

Bðxlv0v1Þ ¼
1; x [ ½v0; v1�½0; 1Þ

2

0; otherwise

(

Bðxlv0…vmÞ ¼
ð1

0
Bðx 2 tvmlv0…vm21Þdt

Analogously to the univariate case, box splines satisfy a

2-scale relation and the corresponding subdivision masks

can be produced by convolving the Dirac function with the

mask ½1; 1� in the directions vi:

Example 32. Let v0 ¼ ½0; 1�; v1 ¼ ½1; 0� and v2 ¼ ½1; 1�:

Convolving the Dirac impulse in these directions results in

1

 �

!
^

0
1

h i
1

1

" #
!

^
1
0

h i
1 1

1 1

" #
!

^
1
1

h i 0 1 1

1 2 1

1 1 0

2664
3775

From this mask the subdivision rules can be read off by

taking the even and odd row and column entries resp.

4.3. Convergence analysis (regular case)

M [78,87–90]

4.3.1. Calculus basics

M uniform convergence, Cauchy sequence

The control polygons ck
i can be interpreted as a sequence

of piecewise linear functions over the knot vectors 22kZ: A

sequence f k of functions converges uniformly to a limit

function f if

kf k 2 f k1 !
k!1

0

where kf k1 ¼ maxlf ðxÞl is the maximum norm. If f k

converges uniformly to f and if all f k are continuous then

f is also continuous. If furthermore the derivatives ðf kÞ0 exist

and converge uniformly to a function g then f 0 ¼ g:

In the setting of subdivision analysis the limit function f

is often not known, hence one needs other criteria to prove

the convergence of a sequence like e.g. the Cauchy

criterion. For example, if

kf kþ1 2 f kk , bak

for b . 0 and 0 , a , 1 then f k is a Cauchy sequence and

hence uniformly convergent.

4.3.2. Generating function formalism

M generating function, convolution $ multiplication

Generating functions are a convenient tool to describe

and analyze subdivision schemes. The idea is to replace the

control polygons ck
i as well as the subdivision coefficients ai

by their generating functions

ck
i 7! ckðzÞ ¼

X
ck

i zi and ai 7! aðzÞ ¼
X

aiz
i

Applying a subdivision step to the control polygon ck
i can

then easily be described by

ckþ1ðzÞ ¼ aðzÞckðz2Þ

i.e. the convolution with the subdivision mask becomes a

simple polynomial multiplication.
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4.3.3. Convergence criteria

M (divided) difference scheme, polynomial repro-

duction

The convergence of a subdivision scheme is closely

related to the existence and convergence of its (divided)

difference schemes. The mth difference of a control polygon

ckðzÞ is given by

ð1 2 zÞmckðzÞ

If aðzÞ reproduces polynomials of degree m; the ðm þ 1Þst

difference scheme

amþ1ðzÞ ¼
aðxÞ

ð1 þ zÞmþ1

exists and relates the ðm þ 1Þst differences of ckþ1ðzÞ to the

ðm þ 1Þst differences of ckðzÞ by

ð1 2 zÞmþ1ckþ1ðzÞ ¼ amþ1ðzÞð1 2 z2Þmþ1ckðz2Þ

If furthermore the difference scheme

2mamþ1ðzÞ

of the mth divided difference scheme 2mamðzÞ is contractive,

the control polygons ckðzÞ converge to a m-times continu-

ously differentiable curve. Let bi be the coefficients of

2mamþ1ðzÞ; then the contraction property follows if

max
X

lb2il;
X

lb2iþ1l
n o

¼ q , 1

Note that one often needs to combine multiple subdivision

steps in order to be able to prove the contraction property.

4.4. Subdivision matrix formalism

M subdivision matrix

M [91–94]

Local properties of a subdivision scheme can easily be

computed using the subdivision matrix formalism.

This formalism is especially useful

† for analyzing the convergence properties of surface

schemes at extraordinary vertices and

† for computing explicit masks for the limit points and

tangents

The basic idea is to track a finite neighborhood of a

vertex p through different subdivision levels. Let pk be a

column vector that comprises p and a sufficiently large

regular neighborhood of p at subdivision level k: Then there

exists a subdivision matrix satisfying

pk ¼ Spk21

Let 1 ¼ l0 . l1 ¼ l2 . l3… be the eigenvalues of S;

let x0; x1;… be the corresponding (right) eigenvectors, i.e.

Sxi ¼ lixi and let y0; y1;… be the associated left eigen-

vectors (with xT
i yj ¼ dij). Then we can expand p0 as

p0 ¼
X

vixi

where we have set vi ¼ yT
i p0: Subdividing the mesh k times

means applying Sk to p0; yielding

pk ¼ Skp0 ¼
X

lk
i vixi ðp p pÞ

Hence, as l0 ¼ 1 . l1 the scheme is convergent and lim

pk
0 ¼ v0: Further analysis of the scheme requires a

reparameterization by the characteristic map which is

defined as the limit surface associated with the planar

control net ½x1;2 �: If this map is regular and injective the

subdivision scheme produces C1 continuous surfaces and

the eigenvector decomposition ( ppp ) can be viewed as a

generalized Taylor expansion of the limit surface around the

extraordinary vertex. In particular, the limit tangents are

given by v1 and v2; respectively.

4.5. Topological refinement

M uniform refinement, primal/dual graph

Splitting operators can be constructed by combining

uniform refinement and duality.
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The lower row shows the uniform refinement of the lattices

in the middle row. The upper row shows their dual lattices.

4.6. Adaptive subdivision

M red/green triangulation,
ffiffi
3

p
subdivision

M [6,81,95]

The complexity of the control meshes increases expo-

nentially with the subdivision level k: Adaptive subdivision

schemes reduce the costs by subdividing only in critical

areas, e.g. along the object silhouette or when the normals of

two adjacent faces differ to much. Regular tilings, however,

cannot be adaptively subdivided without introducing gaps.

This leads to ad-hoc solutions like the red-green triangu-

lation. Dropping the regularity requirements leads to

subdivision schemes that are better suited for adaptive

subdivision.

5. Multiresolution techniques

When it comes to geometry processing, multiresolution

techniques offer two distinct advantages: technical and

semantical. First, algorithms that are able to exploit a

multiresolution representation typically can achieve signifi-

cant speedups. Second, multiresolution representations

naturally separate the detail of a model from the base

shape. These two advantages allow one to implement

intuitive modeling metaphors for interactive editing of

triangle meshes.

5.1. Wavelets and multiresolution analysis

M scaling function, wavelets, filter bank, (bi-)ortho-

gonality

M [96–99]

Wavelets can be introduced using either a summation

notation or a matrix formalism. The summation notation is

better suited to demonstrate the convolution nature of the

reconstruction and decomposition operators and nicely fits

within the subdivision framework presented in the previous

section. The matrix formalism, however, avoids the

cumbersome index notation, eases the handling of bound-

aries and leads to compact formulas that are much easier to

read. In this section we use both notations simultaneously

for educational purposes.

The starting point for multiresolution analysis is a set of

nested spaces

Vk , Vkþ1

and corresponding complement spaces Wk satisfying

Vkþ1 ¼ Vk%Wk

We assume that Vk and Wk are spanned by scaled translates

of a scaling function fðxÞ and a mother wavelet cðxÞ

respectively, i.e.

Vk ¼ span{fk
i ðxÞ ¼ fð2kx 2 iÞ}

Wk ¼ span{ck
i ðxÞ ¼ cð2kx 2 iÞ}

For the matrix formalism we also introduce the row vectors

Fk ¼ ½fk
i �; Ck ¼ ½ck

i �

The decomposition Vk%Wk ¼ Vkþ1 implies a 2-scale

relation on the basis functions

fk
i ¼

X
ajf

kþ1
2iþj;

ck
i ¼

X
bjf

kþ1
2iþj

������ ½FklCk� ¼ Fkþ1½AklBk�

for certain coefficients aj;bj and matrices Ak;Bk; respect-

ively. On the other hand each function [ Vkþ1 has a

representation with respect to Fkþ1 as well as with respect

to ½FklCk�;X
ckþ1

i fkþ1
i

¼
X

ck
i f

k
i þ

X
dk

i c
k
i

����� Fkþ1ckþ1 ¼ ½FklCk�
ck

dk

" #

where we define the column vectors ck and dk as

ck ¼ ½ck
i �; dk ¼ ½dk

i �

Applying the 2-scale relation on the right hand side of the

equation we see that the control points on different scales
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are related by

ckþ1
j ¼

X
aj22ic

k
i þ

X
bj22id

k
i

����� ckþ1 ¼ ½AklBk�
ck

dk

" #

The above equation defines a reconstruction operator or a

synthesis filter. The most general way to describe an

associated decomposition operator or analysis filter is via

dual bases ~fðxÞ and ~cðxÞ such that

kfk
i ðxÞ; ~f

k
j ðxÞl ¼ kck

i ðxÞ; ~c
k
j ðxÞl ¼ dij and

kfk
i ðxÞ; ~c

k
j ðxÞl ¼ kck

i ðxÞ; ~f
k
j ðxÞl ¼ 0

In matrix notation the above condition can be written as

k½ eFFkl eCCk�; ½ eFFkl eCCk�l ¼ I

If there also exists a 2-scale relation for the dual basis

~fk
i ¼

X
gj

~fkþ1
2iþj;

~ck
i ¼

X
dj

~fkþ1
2iþj

������ ½ eFFkl eCCk� ¼ eFFkþ1½CklDk�

the decomposition operator can easily be described as

ck
i ¼

X
gj22ic

kþ1
j

dk
i ¼

X
dj22ic

kþ1
j

������ ck

dk

" #
¼

CT
k

DT
k

" #
ckþ1

This general setting is called the biorthogonal wavelet

setting.

In the semi-orthogonal setting we further require that the

decomposition Vkþ1 ¼ Vk%Wk is orthogonal,

kFk
;Ckl ¼ 0;

which leads to better approximation properties of the

reconstruction operator. In the fully orthogonal wavelet

setting, we even require that

k½FklCk�; ½FklCk�l ¼ I

In this case the primal and dual basis are the same and the

decomposition operator becomes trivial.

5.2. Lifting scheme

M lifting scheme, split-predict-update-merge

M [100–102]

Lifting allows us to construct filter banks entirely in the

spatial domain and can hence also be taught to audiences

that are not acquainted with Fourier methods. Instead of

explicitly specifying scaling functions and wavelets, the

decomposition process is made up of so-called splitting,

prediction, update, scaling and merging steps that are

arranged in a flow chart

In the simplest case the prediction operator P is a

subdivision operator and the update operator U is chosen

such as to preserve higher order moments. The

reconstruction operator is derived from the decomposition

operator by simply reversing all arrows and changing the

signs. Using the lifting scheme, the wavelet decom-

position/reconstruction can be performed in-place and in

linear time.

Example 33. (Haar Wavelets) The Haar transform is a

special wavelet transform. Its scaling function and mother

wavelet are given by

fðxÞ ¼
1; x [ ½0; 1Þ

0; otherwise

(

and

cðxÞ ¼
1

2
ðfð2x 2 1Þ2 fð2xÞÞ

leading to the prediction and update steps

dk21
i ˆ ck

2iþ1 2 ck
2i ck21

i ˆ ck
2i þ

1

2
dk21

i

Example 34. (B-spline Wavelets) Using linear splines as

scaling functions leads to the prediction step

dk21
i ˆ ck

2iþ1 2 ðck
2i þ ck

2iþ2Þ=2

To preserve the average (0th moment)

2
X

ck21
i ¼

X
ck

i

one assumes that the update step has the form

ck21
i ˆ ck

2i þ aðdk21
i21 þ dk21

i Þ
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and solves for a ¼ 1=4: Due to symmetry reasons the 1st

order moment is then also preserved.

5.3. Surface hierarchies

M semi-regular meshes, coarse-to-fine hierarchy, fine-

to-coarse hierarchy

M [103–105]

In order to carry over the concept of wavelet decompo-

sition to arbitrary polygonal surfaces, one has to mimic the

behavior of the reconstruction and decomposition operators.

For this let " and # be a pair of compatible upsampling and

downsampling operators, i.e. # ð" ðMÞÞ has the same mesh

connectivity as M: We can then define a hierarchy

· · · ! Mk ! Mkþ1 ! · · ·

b b b

· · · Dk Dkþ1 · · ·

of meshes Mk and associated detail Dk by defining a

reconstruction operator as

S : Mk
;Dk 7! Mkþ1 ¼" ðMkÞ þDk

and a decomposition operator as

A : Mkþ1 7!
Mk ¼# ðMkþ1Þ

Dk ¼ Mkþ12 " ðMkÞ

(

Note that Dk and Mkþ1 have the same connectivity.

By definition the reconstruction and decomposition are

inverse to each other. The different frequency bands are

captured by the detail coefficients Dk: In general multiple

detail coefficients are associated with each vertex (one for

each level). This redundancy can be avoided by choosing an

interpolatory upsampling operator " . Furthermore, in order

to achieve intuitive results, the detail coefficients should be

encoded with respect to local frames. In the semi-regular

setting (coarse-to-fine hierarchies) " can be chosen to be a

subdivision operator and lifting can be used to improve the

filters. In the irregular setting ( fine-to-coarse hierarchies)

the downsampling # is performed by some mesh

decimation algorithm. Upsampling " is then done by re-

inserting the vertices, followed by a smoothing step.

6. Exercise courses

As programming a polygonal mesh data structure can

be quite cumbersome it has proven to be more effective

to employ one of the publicly available libraries like

e.g. CGAL [106] or OpenMesh [107]. Exercises that we

have assigned per student and per week are e.g. to

implement

† Garland and Heckbert’s error quadric mesh deci-

mation scheme

† Taubin’s llm smoothing mesh parameterization using

Floater’s weights
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† a tool to visualize mesh curvatures

† Marching cubes

† Delaunay triangulation (2D)

† Loop subdivision
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[45] Lee AWF, Sweldens W, Schröder P, Cowsar L, Dobkin D. Maps:

multiresolution adaptive parameterization of surfaces. In: SIG-

GRAPH 98 Proceedings; 1998. p. 95–104.

[46] Levy B, Petitjean S, Ray N, Maillot J. Least squares conformal maps

for automatic texture atlas generation. In: Siggraph 2002 Proceed-

ings; 2002. p. 362–71.

[47] Ray N, Levy B. Hierarchical least squares conformal maps, in:

Pacific Graphics 03 Proceedings; 2003. p. 263–70.

[48] Sander P, Snyder J, Gortler S, Hoppe H. Texture mapping

progressive meshes. In: SIGGRAPH 01 Proceedings; 2001. p.

409–16.

[49] Sander PV, Gortler SJ, Snyder J, Hoppe H. Signal-specialized

parameterization; In: Eurographics Workshop on Rendering 2002

Proceedings; 2002. p. 87–100.

[50] Sheffer A, de Sturler E. Surface parameterization for meshing by

triangulation flattening. In: Proceedings of the Ninth International

Meshing Roundtable; 2000. p. 161–72.

S. Bischoff, L. Kobbelt / Computer-Aided Design 36 (2004) 1483–15001498

http://www.thesa.com/software/qhull/


[51] Sheffer A, Hart J. Seamster: inconspicuous low-distortion

texture seam layout. In: IEEE Visualization Proceedings; 2002.

p. 291–8.

[52] Tutte WT. How to draw a graph. Proc Lond Math Soc 1963;13:

743–68.

[53] Garland M, Willmott A, Heckbert P. Hierarchical face clustering on

polygonal surfaces. In: Proceedings of ACM Symposium on

Interactive 3D Graphics; 2001. p. 49–58.

[54] Floater MS. Mean value coordinates. Comput Aid Geom Des 2003;

20:19–27.

[55] Alliez P, Desbrun M. Progressive compression for lossless

transmission of triangle meshes. In: SIGGRAPH 01 Proceedings;

2001. p. 195–202.

[56] Gumhold S, Straßer W. Real time compression of triangle mesh

connectivity. In: SIGGRAPH 98 Proceedings; 1998. p. 133–40.

[57] Isenburg M, Snoeyink M. Face fixer: compressing polygon meshes

with properties. In: SIGGRAPH 02 Proceedings; 2002. p. 263–70.

[58] Rossignac J. Edgebreaker: connectivity compression for triangle

meshes. IEEE Trans Vis Comput Graph 1999;5(1):47–61.

[59] Touma C, Gotsman C. Triangle mesh compression. In: Graphics

Interface; 1998. p. 26–34.

[60] Taubin G, Gueziec A, Horn W, Lazarus F. Progressive forest split

compression. In: SIGGRAPH 98 Proceedings; 1998. p. 123–32.

[61] Guskov I, Vidimce K, Sweldens W, Schröder P. Normal meshes. In:
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[100] Schröder P, Sweldens W, Cohen M, DeRose T, Salesin D. Wavelets

in computer graphics. Siggraph 96 Course Notes; 1996.

[101] Sweldens W. The lifting scheme: a new philosophy in biorthogonal

wavelet constructions. In: Laine AF, Unser M, editors. Wavelet

applications in signal and image processing III. Proceedings SPIE

2569; 1995. p. 68–79.

[102] Sweldens W. The lifting scheme: a construction of second generation

wavelets. SIAM J Math Anal 1997;29(2):511–46.

[103] Guskov I, Sweldens W, Schröder P. Multiresolution signal
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