
Interactive Technical Illustration

Bruce Gooch Peter-Pike J. Sloan Amy Gooch Peter Shirley

Department of Computer Science
University of Utah

http://www.cs.utah.edu/

Richard Riesenfeld

Abstract

A rendering is an abstraction that favors, preserves, or even em-
phasizes some qualities while sacrificing, suppressing, or omitting
other characteristics that are not the focus of attention. Most com-
puter graphics rendering activities have been concerned with pho-
torealism, i.e., trying to emulate an image that looks like a high-
quality photograph. This laudable goal is useful and appropriate
in many applications, but not in technical illustration where elu-
cidation of structure and technical information is the preeminent
motivation. This calls for a different kind of abstraction in which
technical communication is central, but art and appearance are still
essential instruments toward this end. Work that has been done
on computer generated technical illustrations has focused on static
images, and has not included all of the techniques used to hand
draw technical illustrations. A paradigm for the display of techni-
cal illustrations in a dynamic environment is presented. This dis-
play environment includes all of the benefits of computer generated
technical illustrations, such as a clearer picture of shape, structure,
and material composition than traditional computer graphics meth-
ods. It also includes the three-dimensional interactive strength of
modem display systems. This is accomplished by using new algo-
rithms for real time drawing of silhouette curves, algorithms which
solve a number of the problems inherent in previous methods. We
incorporate current non-photorealistic lighting methods, and aug-
ment them with new shadowing algorithms based on accepted tech-
niques used by artists and studies carried out in human perception.
This paper, all of the images, and a mpeg video clip are available at
http://www.cs.utah.edu/~bgooch/ITI

CR Categories: I.3.0 [Computer Graphics]: General; I.3.6 [Com-
puter Graphics]: Methodology and Techniques.

Keywords: interaction, illustration, non-photorealistic rendering,
silhouettes, lighting models, material properties, hardware render-
ing.

1 Introduction

The process of documenting computer-aided design projects is un-
dergoing vast change. Systems are being developed to automati-
cally create user and repair manuals during the design phase of a

Figure 1: Left: Phong-shaded model. Right: Cool to warm shading,
including silhouettes and creases as used by technical illustrators
(See Color Plate).

project. To document an entire manufactured object, six or more
static images may be needed to show top, bottom, left, right, front,
and back sides of the object. These images are redrawn each time
a new part or procedure is documented. We now have access to
online documentation and online shopping networks for mechani-
cal parts [20]. Instead of a series of static technical illustrations,
more information could be provided if users could interact with a
3D model of the part being documented or sold. Current 3D view-
ers typically use traditional computer graphics lighting and shading
models. It is widely believed that traditional hand-drawn technical
illustrations do a better job of describing the shape, structure and
material composition of objects than traditional computer graph-
ics [6]. The central idea of this paper is to extend the techniques of
static technical illustration to an interactive 3D display.

In the book, Drawing on the right side of the brain [4], Edwards
lists five perceptual skills that an artist needs in order to produce
quality drawings: the perception of edges, the perception of spaces,
the perception of relationships, the perception of light and shadow,
and the perception of the whole or gestalt. Our work attempts to
aid in the communication of shape information by enhancing the
displayed model, catering to these perceptual skills in the user.

We have extended a number of 2D techniques into a 3D view-
ing package. These techniques include line weight depth cuing,
shading and shadowing, light and highlight motion, and a non-
parametric method of representing metal. The combination of these
effects from traditional illustration and the impact they have on the
human visual system have allowed us to create a system for view-
ing models in 3D which can communicate far better than traditional
rendering algorithms alone would allow. In Section 2 we review
previous computer graphics work and conclude that little has be
done to create interactive 3D technical illustrations. In Section 3
we analyze the conventions for producing static illustrations and
then discuss the issues involved in creating interactive illustrations
in Section 4. Finally, in Section 5 we present the implementation
details both in software and using high-end computer graphics hard-
ware.

Figure 2: Three line conventions suggested by Martin [15]. Left:
single weight used throughout the image. Middle: heavy line
weight used for outer edges, other lines are thinner. Right: vary
line weight to emphasize perspective.

2 Related Work

Computer graphics algorithms that imitate non-photographic tech-
niques such as painting or pen-and-ink are referred to as non-
photorealistic rendering (NPR). An underlying assumption in NPR
is that artistic techniques developed by human artists have intrin-
sic merit based on the evolutionary nature of art. For this reason
techniques are usually borrowed directly from artists rather than
reinvented from first principles.

The many non-photorealistic techniques used in computer graph-
ics [3, 5, 6, 7, 13, 14, 17, 24, 28] vary greatly in their level of ab-
straction. Those that produce a loss of detail, like watercolor or
pen-and-ink, produce a high level of abstraction. Several previous
papers use a low level of abstraction which preserves precise shape
properties and are thus well suited to technical illustration.

Although there is a wealth of computer graphics research deal-
ing with the display of three dimensional images, there has been
little exploration into utilizing artistic techniques to aid in the con-
veyance of shape information in an interactive setting. Kondo et
al. proposed a system based on enhancing shape recognition [11].
More recently Mochizuki et al. built a system that aids shape com-
prehension by rendering edge lines. Markosian et al. [14] developed
algorithms for probabilistically calculating only the silhouettes for
polyhedral models in real time. Rossignac et al. used the frame
buffer to to render lines that enhance shape recognition [21]. There
are also 3D paint programs which allow the user to experiment with
non-photorealistic methods [12,25] but these methods restrict inter-
action and require users trained in traditional drawing and painting
techniques. In contrast, our methods incorporate user interaction
with automatically generated 3D technical illustrations based on
geometric models.

3 Static Illustration Principles

Human-drawn technical illustrations are usually stand-alone im-
ages from a single viewpoint presented on a non-stereo medium
such as pen on paper. In this section we discuss the components of
such illustrations that we use in a computer graphics context: line
character, shading, and shadowing.

3.1 Lines in Technical Illustration

Several researchers [5, 6, 14, 23] examined which lines should be
drawn in a computer generated image to maximize the amount of
information conveyed while minimizing the number of lines drawn.
They observed that illustrators use edge lines, consisting of surface
boundaries, silhouettes, discontinuities, and creases to separate in-
dividual parts and to suggest important features in the shape of each

Figure 3: Left: Illustrators sometimes use the convention of white
interior edge lines to produce a highlight. Image copyright 1995
Macmillan [22]. Used by permission. Right: An image produced
by our system, including shading, silhouettes and white crease
lines.

object. These static images represented edge lines with black lines
of uniform weight.

There are many line weight conventions which the illustrator
chooses among based on the intent of the image. Martin [15] dis-
cusses three common conventions, shown in Figure 2: a single line
weight used throughout the image, two line weights with the heav-
ier describing the outer edges, and varying the line weight along a
single line emphasizing the perspective of the drawing with heavy
lines in the foreground. One way of achieving the latter effect in
raster graphics is to vary the line weight dependent upon the di-
rection of the light source or in an user specified direction, giving a
shadowed effect to the line. Most illustrators use bold external lines,
with thinner interior lines, which aid in the perception of spaces [4].

In almost all illustrations, edge lines are drawn in black. Occa-
sionally, if the illustration incorporates shading another convention
is used in which some of the interior lines are drawn in white like
a highlight. Lines drawn in black and white suggest a light source
and denote the models orientation. For example, Figure 3 compares
an illustration produced by an artist and an image from our system
in which white creases are drawn.

3.2 Shading

Shading is rendered using one of three modes. The first two are the
diffuse and metallic shading models presented by Gooch et al. [6].
In its simplest form the diffuse cool to warm shading model inter-
polates from a cool (blue-green) to a warm (yellow-orange) color
based on the surface normal. This cool-to-warm diffuse shading is
shown in Figure 4a. The third method is an adaptation of this cool to
warm shading, simulating the more dramatic shading effects some-
times used by artists. Figure 4b illustrates the effect achieved when
the reflected light from the left of the object produces a back-splash
of light opposite the direct lighting source. This is accomplished by
modifying the model of [6] with a simple multiplier:

where cr and p are free parameters which, for this image, are set to
0.76 and 0.78, respectively.

Figure 4: The dark banding in the light splash back model can com-
municate more curvature information and works well on organic
models. (See Color Plate)

3.3 Shadowing

Illustrators only include shadows when they do not occlude detail in
other parts of the object [15, 16, 22]. In 3D interactive illustrations,
adding only a drop shadow on a ground plane, not the shadows that
an object may cast onto itself, provide helpful visual clues without
occluding important details on the object. It is probably not im-
portant that these shadows be highly accurate to provide valuable
information about three-dimensional structure, especially the spa-
tial layout of a scene [10, 27]. We provide the option to display one
of three types of shadow which will be discussed in Section 5.3, as
well as the option to make the shadow colored, as done by many
artists [19].

4 Dynamic Illustration Principles

The question remains, how do the 2D illustration rules change for
an interactive 3D technical illustration? Adapting the shading and
line conventions presented earlier is fairly straightforward as long
as the line weight conventions have frame-to-frame coherence. The
more interesting issues depend upon changing the viewer’s position
versus moving the object. Since there are no relevant protocols in
traditional illustration, we may want to base these 3D illustration
conventions on how one would move real objects. This has an ef-
fect on how the light changes with respect to the object, the light
position can be specified as relative to the object or to the viewer.

4.1 Viewer Versus Object Motion

The shading models presented in Section 3.2 are used to full ad-
vantage if the surface color varies completely from cool to warm.
This involves moving the object and not the viewpoint or the light.
As seen in Figure 5, moving the object while holding the camera
and light positions constant presents more shape information and
surface detail. For this reason our interface rotates the object rather
than the viewer, leaving the background, light, and viewer in place.

When multiple objects appear in a scene, illustrators often use
different shading across each object, inferring that each object has

Figure 5: Left: Model with cool to warm shading with lights po-
sitioned up and to the right. Middle: After the camera position is
moved to view the side of the model. Right: After moving the ob-
ject instead of the camera, allowing the surface to vary completely
from cool to warm. (See Color Plate)

(a) Shading by Gooch et al. (b) Shading with splash back

Figure 6: Metal-shaded object with shadow and ground plane.
White creases and black silhouette lines are also drawn.

its own light, which does not affect other objects in the environ-
ment, similar to the virtual lights described by Walter et al. [26].
For example, two objects in a scene may be lit differently to draw
attention to different attributes of each object. If this were accom-
plished by adding two lights to the environment, the multiple high-
lights would be confusing.

4.2 Material Properties

Most material properties are nearly constant as the view direction or
lighting changes. However, the metal shading presented by Gooch
et al. is the replication of the anisotropic reflection [8] due to the
surface of an object and the reflection of the environment. When a
real metal part is rotated in one’s hand, the banding does not stick to
the object, but remains constant since the environment is not chang-
ing. However, in an interactive environment it may be too jarring
to have the metal shading change abruptly. Using a metal texture
would be more appropriate and a metal texture in an interactive en-
vironment would still properly convey the material property.

5 Implementation

As outlined in the previous two sections, our system needs the capa-
bility to interactively display a custom shading model, silhouettes,
and interior edges. In addition, this interaction must be possible for

33

(a) (b)

Figure 7: Adding the silhouettes to the environment map instead
of calculating silhouettes from the geometry produces interesting
artistic effects. (See Color Plate)

complex geometric models. In this section we describe a variety
of techniques for achieving these goals, and describe the tradeoffs
involved in choosing a particular technique.

5.1 Displaying Important Edges and Silhouettes

To draw silhouettes, we have implemented several methods of ex-
tracting and displaying edge lines from polyhedral models, which
we discuss in Section 5.1.1 and 5.1.2. These methods can be
roughly broken down into two categories. The first assumes no
prior knowledge or preprocessing of the model and heavily lever-
ages commodity graphics hardware. The second set of methods
use preprocessing of the model and are purely software algorithms.
Both hardware and software algorithms clearly have a place. The
set of hardware methods are useful because of ease of implementa-
tion. The software methods are advantageous due to their flexibility
and lower computational complexity. All of the software methods
assume that the models are either manifold or manifold with bound-
ary.

We can also extract boundary curves, edges adjacent to only a
single face, and creases, that is, the edge between two front facing
polygons whose dihedral angle is above some threshold. The user is
provided the option to draw these edges, dependent upon the model
and intent of the image. The computation and drawing of creases is
discussed in Section 5.1.3.

5.1.l Hardware Methods

Using multi-pass rendering [1] there are several ways to extract
silhouettes. The algorithm presented in the SIGGRAPH 1998
OpenGL Course does not capture internal silhouette edges and re-
quires four passes of rendering. We recently found out that there
is concurrent work similar in spirit to our hardware methods [2].
Below we provide algorithms which require two or three rendering
passes and capture internal silhouettes.

In a polyhedral model, a silhouette is an edge that is connected
to both a front facing and a back facing polygon. The following is
pseudo code for the basic algorithm:

To draw lines over polygons, the PolygonOffset extension (or
PolygonOffset function in GL 1.1) [18] is needed. This function
effectively modifies the depth values of the first pass based on the
slope of the triangles and a bias factor. This technique can create
something similar to a silhouette, effectively a halo. The depth val-
ues are pushed forward instead of back to allow lines to be raster-
ized over faces. Then wide lines are drawn. Where there are large
discontinuities in depth (silhouettes and boundaries), only part of
the line is drawn. This method requires only two passes instead of
the three listed above, but can be fairly sensitive to the parameters
of the polygon offset function. Using OpenGL hardware makes the
implementation simple, however, it limits the thickness of the edge
lines.

Another hardware technique is to add the edge lines to a shad-
ing environment map as a preprocess. However, as shown in Fig-
ure 7(a), the lines lack crispness, and if the model varies greatly
in curvature, there may be large black regions. In order to include
silhouettes on the feet of the cow in Figure 7(b), we have to set the
threshold low enough to draw lines in these high curvature regions.
This causes regions which have relatively low curvature to be filled
in with black. Although this effect produces some interesting, artis-
tic results, it may be inappropriate for technical illustration.

5.1.2 Software Methods

A straightforward way to draw silhouettes is to explicitly test every
edge in the model. We compute an edge structure based on the face
normals of the model, which are also used for back face culling as
in Zhang et al. [29]. An edge is a silhouette edge if and only if:

where v’ is a vertex on the edge, e’is the eye point, and n’i are the
outward facing surface normal vectors of the two faces sharing the
edge. This situation only occurs when one face is front facing and
the other is back facing. While this computation is simple, it can
potentially become a bottleneck with large models. Since we have
to shade (or prime the z buffer for hidden surface elimination) this
computation can be done in parallel while the model is being ren-
dered.

We use a more complex preprocess and search algorithm when
classifying edges becomes a bottleneck. This algorithm is similar in
spirit to Zhang et al. [29], but requires looking at arcs on the Gauss
map instead of points. The Gauss map of an edge on a polyhedral
model is a great arc on the sphere of orientations (Figure 8). Under
orthographic projection, a plane through the origin in this sphere
defines the view. All of the faces on one side of the plane are front
facing, and on the other side they are back facing. If the “arc” cor-
responding to an edge is intersected by this plane, it is a silhouette
edge. To search for such edge/plane intersections, we store the arcs
in a hierarchy on the sphere to quickly cull edges that can not be
silhouettes. We have implemented a decomposition of the sphere
starting with a platonic solid (octahedron or icosahedron) and all
successive levels are four to one splits of spherical triangles. An arc
is stored at the lowest possible level of the hierarchy. This makes
silhouette extraction logarithmic in the number of edges for smooth

Figure 8: The arc in a Gauss map seen in 2D. The two bold line
segments are faces that share a vertex. The orientations of their
normals can be represented as points on the circle. The arc between
those two points represents all orientations swept out between the
two normals. In 3D the same reasoning applies, and the arc is an
arbitrary segment on a great circle.

Figure 9: All creases are drawn in white (Left), and then all of the
silhouette lines are drawn in black (Right), overlapping the creases.

models where the arcs tend to be short. One problem with this hi-
erarchy is that the edges of the spherical triangles on the sphere
interfere with the arcs and limit how far they can be pushed down
the hierarchy. The probability of being stored in a leaf node that
can contain an arc of a given length decreases as the size of the
triangles shrink because the boundaries of these spherical triangles
become denser as you recurse. An ad hoc solution to this problem is
to use multiple hierarchies, whose spherical triangles are different,
and store an arc in the hierarchy with the spherical triangle with the
smallest area that contains it. A more attractive alternative would
be to use “bins” on the sphere that overlap and/or making data de-
pendent hierarchies.

Under perspective viewing, the region you have to check grows,
based on planes containing the object and intersecting the eye.
Building a spatial hierarchy over the model as in [29] would mini-
mize this effect. One advantage of any software approach is that it
makes it easier to implement different styles of line drawing.

5.1.3 Line Styles

As discussed in Section 3.1, line width can appear to change by
either shading the lines based on the surface orientation, or by using
OpenGL 1D texture mapping hardware to shade lines. Using a 1D

Table 2: Hierarchy method showing the number of edges stored at
each level on a Gaussian sphere for 25k-polygon crank shaft model
for non-overlapping and overlapping bins.

texture map, there can be a relationship between the surface and a
distance to a light in the scene.

Fat boundary lines can be drawn with either the software or hard-
ware methods. These lines are drawn after the rest of the model has
been drawn (shading, creases, silhouettes). While the earlier phases
are drawn, they set a stencil bit, indicating that the given pixel has
been draw for this frame. Finally, the boundary silhouettes are
drawn over again with wider lines. In hardware this requires a full
traversal of the front or back faces, while using software extraction
algorithms only require a traversal of the silhouette edges which
have been previously computed. All of these algorithms are more
efficient than the methods mentioned in the OpenGL course [l] be-
cause it required four rendering passes while these algorithms re-
quire only one extra pass, and that pass may only be of the silhou-
ette edges.

Creases are extracted independent of the view and are drawn as
white lines. After adding shading and silhouettes, only the creases
that are connected to two front facing faces, and are not already
silhouettes, are visible. To emulate the look of illustrations the
creases need to be drawn with the same thickness as the silhouettes,
as shown in Figure 9.

One problem when rendering rasterized wide lines is the “gaps”
where the lines do not overlap. A solution to this is to render the end
of the lines with large points, effectively filling in the gaps. There is
much less of a performance loss with the software extraction meth-
ods, since they only need to redraw the actual silhouettes, not the
entire model.

5.1.4 Discussion

Silhouette finding using specialized graphics hardware like
OpenGL is simple to implement and not as dependent on “clean”
models. However it is less flexible and does not allow the user to
change line weight. The software methods we discussed are more
complex and depend on “clean” models which must have shared
vertices, otherwise internal boundaries can not be checked for sil-
houettes. However the software methods provide more flexibility
and, potentially, better performance.

Table 1 presents the information of two extreme cases. These
cases are based on orthographic views. Under perspective projec-
tion some form of bounding volume hierarchy would have to be
employed [29] to increase the efficiency. Both the simplified and
the finely tessellated versions of the crank shaft model have many

35

(a) Environment map used to
generate Figure 4(a).

(b) Environment map used to
generate Figure 4(b).

Figure 10: Shaded sphere images used for environment maps. (See
Color Plate)

sharp features, while the sphere has very small dihedral angles.
The current implementation of the hierarchy method uses an

icosahedron with four levels of subdivision which generates 1280
faces. On the sphere this method is extremely efficient. When us-
ing overlapping bins, all of the edges are stored in the leaf nodes.
When using non-overlapping bins only 84% of the edges are in the
leaf nodes and 2132 are on level zero. Table 2 shows the number
of edges stored at every level of the hierarchy for non-overlapping
and overlapping hierarchies. The overlapping method did a much
better job, even on the simplified crank model.

Parallelizing the silhouette extraction with the rest of the ren-
dering can cause the extraction time to be negligible. A separate
thread can extract silhouettes while the polygons are being rendered
to shade the model or initialize the Z buffer. This parallelization
takes only three-thousands of a second for the sphere and five one-
hundredths on the large crank shaft model. If you are using soft-
ware visibility algorithms this technique would probably prove to
be more effective.

5.2 Shading

There are several ways to apply NPR shading models using hard-
ware [6, 1]. We chose to use environment maps because they pro-
vide the most flexibility in the shading model. This effectively al-
lows us to evaluate a lighting model at every normal/reflection di-
rection in the visible hemisphere in eye-space.

We evaluated the whole shading equation in a Phong environ-
ment map. In using an environment map as shown in Figure 10,
all normals in eye-space are mapped to a 2D texture. This shading
only is valid in eye-space, but it is possible to extend these to view-
independent environment maps [9]. The cool-to-warm and light
“splashback” terms mentioned in Section 3.2 are a function of the
light direction and could be implemented with this representation.
However, the Phong term would have to be computed for each view
even though a single light source could be implemented as a single
1D texture map instead of a full 2D texture map.

5.2.1 Metal Shading

The metal shading technique we use assumes a principle direction
of curvature and striping occurs in an orthogonal direction. We first
compute a table of random intensities where sample is: b f (T * u),
where the base b is -0.1, T is a random number in [0, l] and a is
1.4. This causes the distribution be to biased towards white and
black. We then filter each element in the table with each of its

Figure 11: Drawing the shadow of a sphere with a spherical light
source directly onto a ground plane below, traditionally each sam-
ple will render an ellipse. To get an accurate representation of the
penumbra, this surface of the spherical light source needs to be sam-
pled in 2 dimensions. With our method, each shadow is a concentric
circle, requiring less samples to get the same results.

neighbors using a l-5-1 weighting scheme and clamp this value to
be in the range of [0,l]. We make these values periodic so there is
some coherence which will remain smooth as they wrap around the
model.

The table is then resampled into a 1D texture map. The texture
map is used as a cosine distribution because it is indexed via a dot
product. The resampling makes sure the bands are uniformly dis-
tributed on a cylinder. We then render the model with this texture
map. The texture matrix computes the dot product with a fixed axis
orthogonal to the principle curvature direction, and remap the value
into [0, 1]. This technique can be scaled in order to change the spac-
ing of the stripes.

By itself, this texture does not look convincing, therefore we
add Phong highlights computed by lighting a texture map in eye
space with several Phong light sources oriented in the directions of
a icosahedron’s vertices. A fairly large specular power, empirically
around 30-50, seemed to work best with a specular coefficient of
about 0.3.

5.3 Shadowing

We draw shadows in one of three modes: a shadow with a hard um-
bra and a hard penumbra, a single hard shadow, and a soft shadow,
as shown in Figure 12. Both of the later two modes approximate
a spherical light source at a fixed distance from the center of the
model in the direction of the light source used for shading.

The simplest and fastest method to draw simple shadows is to
explicitly draw an umbra and penumbra. We draw two hard shad-
ows, one from the center of the spherical light source back in the
direction used for shading, and the other forward.

Soft shadows are problematic to render both accurately and ef-
ficiently, so we use an approximation to gain speed. Instead of us-
ing the conventional method to simulate an area light source, i.e.,
sampling the area light source and accumulating the point approx-
imations, we project multiple shadows from the center of the ap-
proximation sampling a 1D direction, the ground plane’s normal.
This is done by projecting the same shadow onto a stack of planes,

then translating the shadows to the ground plane and accumulating
them, as shown in Figure 11.

Note that with this method, each “sample” is a perspective
remapping of the first, intersected on a different plane. We could
render a single shadow, copy it into texture memory and then remap
it correctly to accumulate the other samples. This is much faster
than projecting multiple jittered samples since there is a lower depth
complexity for rasterization and a much lower burden on the trans-
formation if the texture mapping method were used.

This method assumes that the silhouette from different points on
the spherical light source is the same, i.e., the projection is the same.
The planes coming out of the receiver will not correctly model con-
tact. However, you can render only the lower planes if contact oc-
curs resulting in a less realistic shadow, but one without distracting
spillover.

6 Future Work and Conclusion

We have reported on an approach that produces interactive techni-
cal illustrations. This work incorporates established principles from
traditional art in a framework of powerful geometric modeling and
rendering. Although this work is based on empirical knowledge of
human perception, a number of parameter settings are available to
the user based on their aesthetic preferences. Our approach incor-
porates: parameters for cool and warm color choices, new inter-
active silhouette algorithms, various shadow schemes, line choices
for internal features versus external outlines, and rendering meth-
ods exploiting texture maps. Together these produce technically
informative and aesthetically pleasing interactive illustrations.

This paper addresses a widely occurring need, namely, gener-
ating attractive and informative technical illustrations for modem
documentation schemes, which are likely to be hierarchical and
web-based for individual exploration. It represents an advance in
the relatively under-developed area of computer graphics involv-
ing non-photorealistic rendering, where the needs are extensive and
the available methods are few. Inspired by the work of Markosian
et al's real-time probabilistic silhouette finding methods, we have
taken the next step to create a system which incorporates fast de-
terministic silhouette and crease finding algorithms, with artistic
shading and shadowing.

These interactive illustrations emphasize the structure and detail
of mechanical models. We believe that in the future, this approach
can also be tuned for many other important domains such as medi-
cal illustration. We would also like to further explore changing line
width along a single silhouette, calculating soft shadows from sil-
houettes, as well as creating new algorithms aimed at controlling
silhouette frame-to-frame coherence.

Acknowledgments

Thanks to Richard Coffey, Gordon Kindlmann, the members of the
University of Utah Computer Graphics groups for help in the ini-
tial stages of the paper, and to Ramesh Raskar and Michael Cohen
for discussing their work in progress with us. This work was sup-
ported in part by DARPA (F33615-96-C-5621) and the NSF Sci-
ence and Technology Center for Computer Graphics and Scientific
Visualization (ASC-89-20219). All opinions, findings, conclusions
or recommendations expressed in this document are those of the
author and do not necessarily reflect the views of the sponsoring
agencies.

37

References

VI

PI

t31

141

PI

WI

[71

PI

[91

David Blythe, Brad Grantham, Scott Nel-
son, and Tom McReynolds. Advanced Graph-
ics Programming Techniques Using OpenGL.
http://www.sgi.comc~ology/OpenGl/adv~ced-sig98.ht~,
1998.

Michael Cohen and Ramesh Raskar. Personal Communica-
tion. 1998.

Cassidy .I. Curtis, Sean E. Anderson, Kurt W. Fleischer, and
David H. Salesin. Computer-Generated Watercolor. In SZG-
GRAPH 97 Conference Proceedings, August 1997.

Betty Edwards. Drawing on the Right Side of the Brain.
Jeremy P TarcherlPutnam, 1989.

Gershon Elber and Elaine Cohen. Hidden Curve Removal for
Free-Form Surfaces. In SIGGRAPH 90 Conference Proceed-
ings, August 1990.

Amy Gooch, Bruce Gooch, Peter Shirley, and Elaine Cohen.
A Non-photorealistic Lighting Model for Automatic Techni-
cal Illustration. In Computer Graphics, July 1998. ACM Sig-
graph ‘98 Conference Proceedings.

Paul Haeberli. Paint By Numbers: Abstract Image Represen-
tation. In SIGGRAPH 90 Conference Proceedings, August
1990.

Wolfgang Heidrich. A Model for Anisotropic Reflections in
OpenGL. In SIGGRAPH 98 Conference Abstracts and Appli-
cations, page 267, July 1998.

Wolfgang Heidrich and Hans-Peter Seidel. View-independent
environment maps. In Eurographics/SIGGRAPH Workshop
on Graphics Hardware, pages 39-45, September 1998.

[lo] D. Kersten, D. C. Knill, P. Mamassian, and I. Bulthoff. Il-
lusory motion from shadows. IEEE Computer Graphics and
Applications, 379(31), 1996.

[1 l] Kunio Kondo, Fumihiko Kimura, and Taro Tajima. An In-
teractive Rendering Technique for 3-D Shapes. Eurographics
‘85, 1985.

[12] Viewpoint Data Labs. LiveArt 98. Orem, UT, 1998.

[13] Peter Litwinowicz. Processing Images and Video for an Im-
pressionistic Effect. In SIGGRAPH 97 Conference Proceed-
ings, August 1997.

[141 L. Markosian, M. Kowalski, S. Trychin, and J. Hughes. Real-
Time Non-Photorealistic Rendering. In SIGGRAPH 97 Con-
ference Proceedings, August 1997.

[15] Judy Martin. Technical Illustration: Materials, Methods, and
Techniques, volume 1. Macdonald and Co Publishers, 1989.

[16] Scott McCloud. Understanding Comics. Tundra Publishing
Ltd., Northhampton, MA, 1993.

[17] Barbara J. Meier. Painterly Rendering for Animation. In SZG-
GRAPH 96 Conference Proceedings, August 1996.

[18] Jackie Neider, Tom Davis, and Mason Woo. OpenGL Pro-
gramming Guide. Addison-Wesley Publishing Company,
1993.

u91

PO1

PI

WI

v31

~241

r251

WI

v71

1281

~91

Jose M. Parramon. 7’he Book of Color. Watson-Guptill Pub-
lications, New York, NY, 1993.

PartNet. http://www.partNet.com/. 423 Wakara Way Suite
216 Salt Lake City, Utah 84108, 1998.

Jarek R. Rossignac and Maarten van Emmeric. Hidden con-
tours on a frame-buffer. Eurographics Eurographics Work-
shop on Computer Graphics Hardware, 1992.

Tom Ruppel, editor. The Way Science Works, volume 1.
MacMillan, 1995.

Takafumi Saito and Tokiichiro Takahashi. Comprehensible
Rendering of 3D Shapes. In SIGGRAPH 90 Conference Pro-
ceedings, August 1990.

Mike Salisbury, Michael T. Wong, John F. Hughes, and
David H. Salesin. Orientable Textures for Image-Based Pen-
and-Ink Illustration. In SIGGRAPH 97 Conference Proceed-
ings, August 1997.

Daniel Teece. 3D Painting for Non-Photorealisitic Render-
ing. In SIGGRAPH 98 Conference Abstracts and Applica-
tions, page 248, July 1998.

Bruce Walter, Gun Alppay, Eric P. F. Lafortune, Sebastian
Femandez, and Donald P Greenberg. Fitting Virtual Lights
for Non-Diffuse Walkthroughs. In SIGGRAPH 97 Conference
Proceedings, pages 45-48, August 1997.

Leonard R. Wanger, James A. Ferwerda, and Donald P
Greenberg. Perceiving spatial relationships in computer-
generated images. IEEE Computer Graphics and Applica-
tions, 12(3)&l-58, May 1992.

Georges Winkenbach and David H. Salesin. Computer Gener-
ated Pen-and-Ink Illustration. In SIGGRAPH 94 Conference
Proceedings, August 1994.

H. Zhang and K. Hoff III. Fast backface culling using normal
masks. In Proc. 1997 Symposium on Interactive 30 Graphics,
pages 103-106, April 1997.

38

