
Linear Algebra Operators
for GPU Implementation of Numerical Algorithms

Jens Kr̈uger and R̈udiger Westermann
Computer Graphics and Visualization Group, Technical University Munich∗

Figure 1: We present implementations of techniques for solving sets of algebraic equations on graphics hardware. In this way, numerical
simulation and rendering of real-world phenomena, like 2D water surfaces in the shown example, can be achieved at interactive rates.

Abstract

In this work, the emphasis is on the development of strategies to
realize techniques of numerical computing on the graphics chip. In
particular, the focus is on the acceleration of techniques for solving
sets of algebraic equations as they occur in numerical simulation.
We introduce a framework for the implementation of linear alge-
bra operators on programmable graphics processors (GPUs), thus
providing the building blocks for the design of more complex nu-
merical algorithms. In particular, we propose a stream model for
arithmetic operations on vectors and matrices that exploits the in-
trinsic parallelism and efficient communication on modern GPUs.
Besides performance gains due to improved numerical computa-
tions, graphics algorithms benefit from this model in that the trans-
fer of computation results to the graphics processor for display is
avoided. We demonstrate the effectiveness of our approach by im-
plementing direct solvers for sparse matrices, and by applying these
solvers to multi-dimensional finite difference equations, i.e. the 2D
wave equation and the incompressible Navier-Stokes equations.

CR Categories: I.6.7 [Simulation and Modeling]: Simu-
lation Support Systems—; I.3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism—

Keywords: Numerical Simulation, Graphics Hardware

1 Introduction

The development of numerical techniques for solving partial differ-
ential equations is one of the traditional subjects in applied mathe-

∗jens.krueger, westermann@in.tum.de

matics. These techniques have a variety of applications in physics
based simulation and modelling, and they have been frequently
employed in computer graphics to provide realistic simulation of
real-world phenomena [Kaas and Miller 1990; Chen and da Vito-
ria Lobo 1995; Foster and Metaxas 1996; Stam 1999; Foster and
Fedkiw 2001; Fedkiw et al. 2001]. Despite their use in numerical
simulation, these techniques have also been applied in a variety of
computer graphics settings, e.g. the simulation of watercolor draw-
ings [Curtis et al. 1997], the processing of polygonal meshes [Des-
brun et al. 1999], or the animation of deformable models [Baraff
and Witkin 1998; Debunne et al. 2001], to mention just a few.

The numerical complexity of techniques for solving sets of alge-
braic equations often imposes limitations on the numerical accuracy
or extremely high demands on memory and computing resources.
As a consequence thereof, parallelization of numerical solvers on
multi-processor architectures has been an active research area for
quite a long time.

An alternative direction of research is leading towards the imple-
mentation of general techniques of numerical computing on com-
puter graphics hardware. Driven by the evolution of graphics pro-
cessors from fixed function pipelines towards fully programmable,
floating point pipelines, additional effort is spent on the develop-
ment of numerical algorithms amenable to the intrinsic parallelism
and efficient communication on modern GPUs. Recent examples
include GPU implementations of matrix multiplications [Thomp-
son et al. 2002], multi-grid simulation techniques [Bolz et al.
2003] and numerical solution techniques to least squares problems
[Hillesland et al. 2003]. Particularly in computer graphics appli-
cations, the goal of such implementations of numerical techniques
is twofold: to speed up computation processes, as they are often
at the core of the graphics application,and to avoid the transfer of
computation results from the CPU to the GPU for display.

Based on early prototypes of programmable graphics architec-
tures [Olano and Lastra 1998; Lindholm et al. 2001], the design
of graphics hardware as a pipeline consisting of highly optimized
stages providing fixed functionality is more and more abandoned
on modern graphics chips, e.g. the NVIDIA NV30 [Montrym and
Moreton 2002] or the ATI R300 [Elder 2002]. Today, the user
has access to parallel geometry and fragment units, which can be
programmed by means of standard APIs. In particular, vertex and
pixel shader programs enable direct access to the functional units,
and they allow for the design of new classes of hardware supported

graphics algorithms. As a representative example for such algo-
rithms, let us refer to [Purcell et al. 2002], where ray-tracing on
programmable fragment processors was described.

In our current work, we employ the Pixel Shader 2.0 API [Mi-
crosoft 2002], a specific set of instructions and capabilities in
DirectX9-level hardware, which allows us to perform hardware
supported per-fragment operations. Besides basic arithmetic oper-
ations, instructions to store intermediate results in registers and to
address and access multiple texture units are available. Our target
architecture is the ATI Radeon 9800, which supports 32-bit floating
point textures as well as a set of hardware supported pixel shader.
Pixel shader provide 24-bit precision internal computations. To
save rendering results and to communicate these results to consec-
utive passes, rendering can be directed to a 32-bit offscreen buffer.
This buffer can be directly bound to a texture map, i.e. the content
of the buffer is immediately available as 2D texture map.

Until today, the benefits of graphics hardware have mainly been
demonstrated in rendering applications. Efforts have been focused
on the creation of static and dynamic imagery including polygonal
models and scalar or vector valued volumetric objects. In a few
examples, strategies to realize numerical computations on graphics
processors were described, usually implemented by means of low-
level graphics APIs that did not yet provide programmable vertex
and pixel shader.

Hopf et al. [Hopf and Ertl 1999; Hopf and Ertl 2000] de-
scribed implementations of morphological operations and wavelet
transforms on the graphics processor. Numerical computations
were realized by means of blending functionality, and by exploit-
ing the functionality provided by the OpenGL imaging subset. Us-
ing similar coding mechanisms, the simulation of cellular automata
and stochastic fractals was demonstrated in [nVidia 2002; Hart
2001]. Strzodka and Rumpf [Strzodka and Rumpf 2001a; Strzodka
and Rumpf 2001b] proposed first concepts for the implementation
of numerical solvers for partial differential equations on graphics
hardware. Therefore, the intrinsic communication and computa-
tion patterns of numerical solution techniques for finite difference
equations were mapped to OpenGL functionality. Non-standard
OpenGL extensions were employed in [Heidrich et al. 1999; Jo-
bard et al. 2000; Weiskopf et al. 2001] to interactively visualize 2D
vector fields. At the core of these techniques, vector valued data
is encoded into RGB texture maps, thus allowing for the tracing of
particles by successive texture fetch and blend operations.

With the availability of programmable fragment units, the possi-
bility to implement general numerical techniques on graphics pro-
cessors was given. A number of examples have been demonstrated
since then, ranging from physics based simulation of natural phe-
nomena to real-time shading and lighting effects [nVidia 2003; ATI
2003]. Weiskopf et al. [Weiskopf et al. 2002] extended their previ-
ous work towards the interactive simulation of particle transport in
flow fields. Recently, Harris et al. [Harris et al. 2002] described the
implementation of an explicit scheme for the solution of a coupled
map lattice model on commodity graphics cards. In both exam-
ples, numerical computations were entirely carried out in a frag-
ment shader program. GPU implementation of matrix-multiplies
based on a particular distribution strategy for 2D textures across a
cube-shaped lattice was described in [Larsen and McAllister 2001].

In contrast to previous approaches, which were specifically de-
signed with regard to the solution of particular problems, our goal
is to develop a generic framework that enables the implementation
of general numerical techniques for the solution of difference equa-
tions on graphics hardware. Therefore, we provide the basic build-
ing block routines that are used by standard numerical solvers. Built
upon a flexible and efficient internal representation, these functional
units perform arithmetic operations on vectors and matrices. In the
same way as linear algebra libraries employ encapsulated basic vec-
tor and matrix operations, many techniques of numerical computing

can be implemented by executing GPU implementations of these
operations in a particular order. One of our goals is to replace soft-
ware implementations of basic linear algebra operators as available
in widespread linear algebra libraries, i.e. the BLAS (Basic Linear
Algebra Subprogram) library [Dongarra et al. 1988; Dongarra et al.
1990], by GPU implementations, thus enabling more general linear
algebra packages to be implemented on top of these implementa-
tions, i.e. the LAPACK (Linear Algebra Package) [Anderson et al.
1999].

In the remainder of this paper, we will first introduce the internal
representation for vectors and matrices on the graphics processor,
and we will describe the syntax and the semantic of the vector and
matrix routines our approach is built upon. Similar to the notation
used in the BLAS library, we outline specific operations on vectors
and matrices. Although we use a different syntax than BLAS, and
we also do not provide the many different operators contained in the
BLAS function definition, it should become obvious that by means
of our approach the same functionality can be achieved.

We will also address sparse matrix representation and opera-
tions on such matrices as they typically occur in numerical sim-
ulation techniques. In this way, we achieve a significant speed-
up compared to software approaches. Next, GPU implementations
of two methods for solving sparse linear systems as the occur in
many numerical simulation techniques are described: the Conju-
gate Gradient (CG) method and the Gauss-Seidel solver. Finally,
we demonstrate the effectiveness of our approach by solving the
2D wave equation and the incompressible Navier-Stokes equations
on graphics hardware, and by directly visualizing the results on the
ATI 9800.

2 Matrix Representation on GPUs

In this section, we describe the internal representation of matrices
on graphics hardware. The proposed representation enables the ef-
ficient computation of basic algebraic operations used in numerical
simulation techniques. The general idea is to store matrices as tex-
ture maps and to exploit pixel shader programs to implement arith-
metic operations. For the sake of simplicity only column matrices,
i.e. vectors and square NxN matrices are discussed. General matri-
ces, however, can be organized in exactly the same way.

Matrix

2D-Product

Vector

(0)
(0,1)

(0,0)

(1,1)

(1,0)
(0)

(1)

(1)

Figure 2: This illustration demonstrates the computation of a
matrix-vector product using 1D and 2D textures to represent vectors
and matrices, respectively. The 1D texture is continued periodically
across the rendered quadrilateral.

On the graphics processor, vectors might be represented as 1D
texture maps. This kind of representation, however, has certain
drawbacks: First, limitations on the maximum size of 1D textures
considerably reduce the number of vector elements that can be
stored in one texture map. Second, rendering 1D textures is signifi-
cantly slower than rendering square 2D textures with the same num-
ber of texture elements. On current graphics cards, the use of 2D
textures yields a performance gain of about a factor of 2. Third, if
a 1D vector contains the result of a numerical simulation on a com-
putational grid, the data finally has to be rearranged in a 2D texture

for rendering purposes. Fourth, this representation prohibits the ef-
ficient computation of matrix-vector products. Although by means
of multi-textures both the matrix and the vector can be rendered si-
multaneously and combined on a per-fragment basis (see Figure 2),
the computed values are not in place and have to be summed along
the rows of the matrix to obtain the result vector.

To circumvent the mentioned drawbacks, we represent matrices
as set of diagonal vectors and we store vectors in 2D texture maps
(see Figure 3). To every diagonal starting at the i-th entry of the first
row in the upper right part of the matrix, its counterpart starting
at the (N-i)-th entry of the first column in the lower left part of
the matrix is appended. In this way, no texture memory is wasted.
Each vector is converted into a square 2D texture by the application
program. Vectors are padded with zero entries if they do not entirely
fill the texture. This representation has several advantages:

• Much larger vectors can be stored in one single texture ele-
ment.

• Arithmetic operations on vectors perform significantly faster
because square 2D textures are rendered.

• Vectors that represent data on a 2D grid can directly be ren-
dered to visualize the data.

• Matrix-vector multiplication can be mapped effectively to
vector-vector multiplication.

• The result of a matrix-vector multiplication is already in place
and does not need to be rearranged.

Most notable, however, the particular layout of matrices as set of
diagonal vectors allows for the efficient representation and process-
ing of banded diagonal matrices, as they typically occur in numeri-
cal simulation techniques. In a pre-process the application program
inspects every diagonal, discarding those diagonals that do not carry
any information. If no counterpart exists for one part of a diagonal,
it is filled with zero entries.

A nice feature of this representation is, that the transpose of a
matrix is generated by simply ordering the diagonals in a different
way. Off-diagonals numbered i, which start at the i-th entry of the
first row, now become off-diagonals numbered N-i. Entries located
in the former upper right part of the matrix are swapped with those
entries located in the lower left part. Swapping does not have to be
performed explicitly, but it can be realized by shifting indices used
to access these elements. Each index has to be shifted by the num-
ber of entries in the vector that come from the lower left part of the
matrix. This can easily be accomplished in the pixel shader pro-
gram, where the indexing during matrix-vector operations is per-
formed (see below).

3 Basic Operations

Now, we describe the implementation of basic algebraic operations
on vectors and matrices based on the proposed internal representa-
tion. In each operation, rendering is directed to a specific render
target that can be directly bound to a 2D texture for further use. To
update values in a target that is not the current target anymore, it
is made the current render target again. Then, its content can be
modified by consecutive rendering passes.

Vector and matrix containers are defined as classesclVec and
clMat, respectively. Both containers assemble C++ arrays in that
the array is decomposed into one or multiple vectors. Vectors com-
posed of zero entries neither have to be stored nor processed.

Upon initialization, for each vector a texture is created and bound
to a texture handle. Internally, each class element stores the reso-
lution of the respective vector or matrix and of all the textures that

are handled by that element. Texture handles and the size of each
texture can be accessed via public functions.

3.1 Vector Arithmetic

Arithmetic operations on two vectors can be realized in a simple
pixel shader program. The application issues both operands as
multi-textures, which are accessed and combined in the shader pro-
gram. On current graphics cards supporting the Pixel Shader 2.0
instruction set, arithmetic operations like addition, subtraction and
multiplication are available. The product of a scalar times a vector
is realized by issuing the scalar as a constant value in the shader
program.

The function header for implementing standard arithmetic oper-
ations on vector elements looks like this:

void clVecOp (
CL enum op,
float α, float β,
clVec x, clVec y,
clVec res
);

The enumeratorop can be one ofCL ADD, CL MULT or
CL SUB. The scalarsα and β are multiplied with each element
of x andy, respectively. At the beginning of each routine a consis-
tency check is performed to verify that both vectors have the same
internal representation. Then, the respective shader program is ac-
tivated and vectorsx andy are issued as multi-textures. Finally, a
square quadrilateral is rendered, which is lined up in screen space
with the 2D textures used to represent the active vectors. The result
is kept as 2D texture to be used in consecutive computations.

3.2 Matrix-Vector Product

In the following, we consider the product of a matrix times a vector.
A second vector might be specified to allow for the computation of
Ax op y, whereA is a matrix,x andy are vectors, andop is one
of CL ADD, CL MULT, CL SUB. To computeAx op ywe first
render the result ofAx into the render target. Now, the result is
bound as an additional texture, and in a final rendering pass it is
combined with the vectory and rendered to the destination target.

The header of the function performing matrix-vector operations
looks like this (if one ofA or x, or y is NULL, only the respective
component not equal to NULL considered in the operation):

void clMatVec (
CL enum op,
clMat A,
clVec x, clVec y,
clVec res
);

Because matrices are represented as a set of diagonal vectors,
matrix-vector multiplication becomes a multiplication of every di-
agonal with the vector. Therefore, N rendering passes are per-
formed, in each of which one diagonal and the vector are issued
as separate textures in the shader program. Then, corresponding
entries in both textures are multiplied. However, to the j-th element
of a diagonal that starts at the ith entry of the first row of the matrix
corresponds the ((i+j) mod N)-th entry of the vector. This entry first
has to be computed in the shader program before it can be used to
access the vector.

Values i and N are simply issued as constant values in the shader
program. Index j, however, is directly derived from the fragments

N 2D-Textures

Matrix N Vectors

...N

1 i N

N

N-i

i

N

1 i N

Figure 3: The representation of a 2D matrix as a set of diagonal vectors, and finally as a set of 2D textures is shown.

texture coordinates and N. Finally, the destination index ((i+j) mod
N) is calculated and converted to 2D texture coordinates.

After the first diagonal has been processed as described, the cur-
rent render target is simultaneously used as a texture and as a ren-
der target. Thus, fragments in consecutive passes have access to
the intermediate result, and they can update this result in each iter-
ation. After rendering the last diagonal, the result vector is already
in place, and the current render target can be used to internally rep-
resent this vector.

A considerable speed-up is achieved by specifying multiple adja-
cent diagonals as multi-textures, and by processing these diagonals
at once in every pass. Parameters i and N only have to be issued
once in the shader program. A particular fragment has the same in-
dex j in all diagonals, and as a matter of fact it only has to be com-
puted once. Starting with the first destination index, this index is
successively incremented about one for consecutive diagonals. The
number of diagonals that can be processed simultaneously depends
on the number of available texture units.

Let us finally mention, that with regard to the described imple-
mentation of matrix-vector products, there is no particular need to
organize matrices into sets of diagonal vectors. For instance, dense
matrices might be represented as sets of column vectors, giving rise
to even more efficient matrix-vector multiplication. Every column
just has to be multiplied with the respective vector element, result-
ing in a much smaller memory footprint, yet requiring a simple
shader program to which only the index of the currently processed
column is input.

3.3 Vector Reduce

Quite often it is necessary to combine all entries of one vector into
one single element, e.g. computing a vector norm, finding the max-
imum/minimum element etc. Therefore, we provide a special oper-
ation that outputs the result of such a reduce operation to the appli-
cation program:

float clVecReduce (
CL enum cmb,
clVec x, clVec y,
);

The enumeratorcmb can be one ofCL ADD, CL MULT,
CL MAX, CL MIN, CL ABS. If the second parametery is not

equal to NULL, the combiner operation is carried out on the prod-
uct x timesy rather than only onx.

The reduce operation combines the vector entries in multiple ren-
dering passes by recursively combining the result of the previous
pass. Starting with the initial 2D texture containing one vector
and the quadrilateral lined up with the texture in screen space, in
each step a quadrilateral scaled by a factor of 0.5 is rendered. In
the shader program, each fragment that is covered by the shrunken
quadrilateral combines the texel that is mapped to it and the three
adjacent texel in positive (u,v) texture space direction. The distance
between texels in texture space is issued as a constant in the shader
program. The result is written into a new texture, which is now of a
factor of two smaller in each dimension than the previous one. The
entire process is illustrated in Figure 4. This technique is a standard
approach to combine vector elements on parallel computer architec-
tures, which in our scenario is used to keep the memory footprint
for each fragment as low as possible. For a diagonal vector that
is represented by a square texture with resolution 2n, n rendering
passes have to be performed until the result valueval is obtained in
one single pixel. The respective pixel value is finally returned to the
application program.

original Texture 1 pass
st

2 pass
nd

.

.

.

.

.

.

.

.

.

...

Figure 4: Schematic illustration of the reduce operation.

4 Sparse Matrices

So far, the operations we have encountered execute very efficiently
on current commodity graphics hardware. On the other hand, they
are not suitable to process matrices as they typically arise in numer-
ical simulations. For instance, let us assume that the solution to the

2D wave equation

∂ 2u

∂ t2 = c2
(

∂ 2u

∂x2 +
∂ 2u

∂y2

)

on a grid of resolution 512 x 512 has to be computed numerically
(including boundary points). If first and higher order partial deriva-
tives are approximated by finite differences, the partial difference
equation writes as a set of finite difference equations for each grid
point (ij):

ut+1
i j −2ut

i j +ut−1
i j

∆t2 = c2

(

ut
i+1 j +ut

i−1 j +ut
i j+1 +ut

i j−1−4ut
i j

∆x∆y

)

Using the implicit Crank-Nicholson scheme, where the aver-
age of the right-hand side is taken, i.e. for all grid points we set
ut

i, j = 0.5(ut+1
i, j + ut

i, j), the difference equation contains more than
one unknown and the system of algebraic equations has to be solved
simultaneously.

If initial and boundary conditions are specified, the set of equa-
tions can be written in matrix from asAx = b, whereA is a 5122

x 5122 matrix, and bothb and the solution vectorx are of length
5122. Here,x contains the unknownsut+1

i j to be solved for. In the
particular example,A is a banded matrix (a triangular matrix with
fringes) with a maximal bandwidth of six. Obviously, storing the
matrix as a full matrix is quite inefficient both in terms of mem-
ory requirements and numerical operations. In order to effectively
represent and process general sparseN x N matrices, in which only
O(N) entries are supposed to be active, an alternative representation
on the GPU needs to be developed.

4.1 Banded Matrices

With regard to the internal representation of matrices as a set of
diagonal vectors, we can effectively exploit the existence of a
banded matrix with only a few non-zero off-diagonals. Zero off-
diagonals are simply removed from the internal representation, and
off-diagonals that do not have a counterpart on either side of the
main diagonal are padded with zero entries.

In the above example, where the 2D wave equation has been
discretized by means of finite differences, only six diagonals have
to be stored internally. As a consequence, the product of this matrix
times a vector costs no more than six vector-vector products.

In the general setting, however, were non-zero entries are posi-
tioned randomly in the matrix, the diagonal layout of vectors does
not allow for the exploitation of the sparseness in a straight forward
way.

4.2 Sparse Random Matrices

To overcome this problem, we use vertices to render the matrix
values at the correct position. For each non-zero entry in a column
vector one vertex is generated. The coordinate of each vertex is
chosen in such a way, that it renders at exactly the same position as
the respective vector element if it was rendered via the 2D texture
used to represent the vector. For each column we thus store as many
vertices as there are non-zero entries. Matrix values are stored as
colors associated with the respective vertices.

Vertices and corresponding colors are stored in a vertex array on
the GPU. As long as the matrix is not going to be modified, the
internal representation does not have to be changed. Note that in
case of a banded matrix, where apart from start and end conditions
for each NxN block in the matrix the same band is present in every
row, it is sufficient to store one representative set of vertices for in-
ner grid points. Then, this set can be rendered using the appropriate

offset with respect to the current column. Most effectively, the off-
set is specified in a vertex shader program, by means of which each
vertex compute the exact 2D position in screen space.

Sparse Matrix
Iterations

n

n

Vector

vertex array 1
vertex array 2

vertex array n-1
vertex array n

.
.
.

texture

bind buffer as texture

color, position, texture coordinate

Figure 5: This image illustrates the computation of a sparse-
matrix-vector product based on the internal representation of ma-
trix columns as sets of vertices.

For the multiplication of a matrix times a vector, the color of
each vertex has to be multiplied with the color of the corresponding
entry in the vector. The vector, however, is not static and can thus
not be coded into the vertex array. As a matter of fact, we associate
with each vertex a texture coordinate, which is used to access the
vector via the 2D textures used to represent it. Fortunately, these
texture coordinates can also be stored on the GPU, so that only the
appropriate textures have to be bound during matrix-vector compu-
tations (see Figure 5)

It is a nice feature of the described scheme, that the realization of
matrix-vector operations on the GPU as it was proposed in Chap-
ter 3 is not affected by the graphical primitives we use to internally
represent and render matrices. The difference between sparse and
full matrices just manifests in that we render every diagonal or col-
umn vector as a set of vertices instead of set of 2D textures. In this
way, a significant amount of texture memory, rasterization opera-
tions and texture fetch operations can be saved in techniques where
sparse matrices are involved. For instance, to compute the prod-
uct between the sparse matrix described above and a vector only
5122x6 textured vertices have to be rendered.

5 Examples

We will now exemplify the implementation of general techniques
of numerical computing by means of the proposed basis operations
for matrix-vector and vector-vector arithmetic.

5.1 Conjugate Gradient Method

The conjugate gradient (CG) method is an iterative matrix algo-
rithm for solving large, sparse linear system of equationsAx = b,
whereA∈ Rnxn. Such systems arise in many practical applications,
such as computational fluid dynamics or mechanical engineering.
The method proceeds by generating vector sequences of iterates
(i.e. successive approximations to the solution), residualsr corre-
sponding to the iterates, and search directions used in updating the
iterates and residuals. The CG algorithm remedies the shortcom-
ings of steepest descent by forcing the search directionsp(i) to be

A-conjugate, that isp(i)T
Ap(i) = 0, and the residuals to be orthog-

onal. Particularly in numerical simulation techniques, where large
but sparse finite difference equations have to be solved, the CG-
algorithm is a powerful and widely used technique.

In the following, pseudo code for the unpreconditioned version
of the CG algorithm is given. Lower and upper subscripts indicate
the values of scalar and vector variables, respectively, in the speci-
fied iteration. For a good introduction to the CG method as well as

to other solution methods for linear system equations let us refer to
[Press et al. 2002].

Unpreconditioned CG
1 p(0) = r(0) = b−Ax(0) for some initial guessx(0)

2 for i ← 0 to #itr

3 ρi = r(i)T
r(i)

4 q(i) = Ap(i)

5 αi = ρi/p(i)T
q(i)

6 x(i+1) = x(i) +αi p(i)

7 r(i+1) = r(i) −αiq(i)

8 βi = r(i+1)T
r(i+1)/ρi

9 p(i+1) = r(i+1) +βi p(i)

10 convergence check

The CG method can effectively be stated in terms of the de-
scribed building blocks for GPU implementation of numerical tech-
niques (Note that using a preconditioner matrix, for instance the
diagonal part of A stored in the first diagonal vector in our inter-
nal representation, only involves solving one more linear system in
each iteration):

Unpreconditioned GPU-based CG
1 clMatVec(CL SUB,A,x(0),b, r(0)) initial guessx(0)

2 clVecOp(CL ADD,−1,0, r(0),NULL, r(0))
3 clVecOp(CL ADD,1,0, r(0),NULL, p(0))
4 for i ← 0 to #itr
5 ρi = clVecReduce(CL ADD, r(i), r(i))
6 clMatVec(CL ADD,A, p(i),NULL,q(i))
7 αi = clVecReduce(CL ADD, p(i),q(i))
8 αi = ρi / αi

9 clVecOp(CL ADD,1,αi ,x(i), p(i),x(i+1))
10 clVecOp(CL SUB,1,αi , r(i),q(i), r(i+1))
11 βi = clVecReduce(CL ADD, r(i+1), r(i+1))
12 βi = βi / ρi

13 clVecOp(CL ADD,1,βi , r(i+1), p(i), p(i+1))
14 convergence check

In the GPU implementation, the application program only needs
to read single pixel values from the GPU thus minimizing bus trans-
fer. All necessary numerical computations can be directly per-
formed on the GPU. Moreover, the final result is already in place
and can be rendered as a 2D texture map.

5.2 Gauss-Seidel Solver

Next, let us describe the GPU implementation of a Gauss-Seidel
solver. Denoting withL andU the strict lower and upper triangular
sub-matrices, and withD the main diagonal of the matrixA, we can
rewriteA asL +D+U . In one iteration, the Gauss-Seidel method
essentially solves for the following matrix-vector equation:

x(i) = Lx(i) +(D+U)x(i−1)

wherex(k) is the solution vector at the k-th iteration.
r(i) = (D+U)x(i−1) can be derived from the previous time step

by one matrix-vector product. To computeLx(i), however, updates

of x(i) have to be done in place. Based on the representation of
matrices as set of column vectors, we sweep through the matrix in a
column-wise order, using the result vectorx(i) as the current render
target as well as a currently bound texture. Initially, the content of
r(i) is copied intox(i). When the j-th column ofL is rendered, each
element is multiplied with the j-th element inx(i), and the result is
added tox(i). We thus always multiply every column with the most
recently updated value ofx(i).

6 Discussion and Performance Evalua-
tion

To verify the effectiveness of the proposed framework for the im-
plementation of numerical simulation techniques we have imple-
mented two meaningful examples on the graphics processor. All
our experiments were run under WindowsXP on a P4 2.8 GHz pro-
cessor equipped with an ATI 9800 graphics card.

With regard to the realization of methods of numerical comput-
ing on graphics hardware, limited accuracy in both the internal tex-
ture stages and the shader stages is certainly the Achilles´ heel of
any approach. In many cases, numerical methods have to be per-
formed in double precision to allow for accurate and stable compu-
tations. As a matter of fact, our current target architecture does not
provide sufficient accuracy in general. Other graphics cards, on the
other hand, like NVIDIAs GeForceFX, already provide full IEEE
floating point precision in both the shader and texture stages. Thus,
it will be of particular interest to evaluate this GPU in particular
as well as other near-future graphics architectures with regard to
computation accuracy.

Let us now investigate the performance of our approach as well
as the differences to CPU implementations of some of the described
basic operations. In our experiments the resolution of vectors and
matrices was chosen such as to avoid paging between texture mem-
ory and main memory and between main memory and disk. All our
operations were run on vectors and matrices of size 5122 to 20482.
We have also not considered the constant time to initially load tex-
tures from main memory to texture memory. The reason is, that we
predominantly focus on iterative techniques, where a large number
of iterations have to be performed until convergence. Supposedly,
in these particular applications the time required to setup the hard-
ware is insignificant compared to the time required to perform the
computations. During all iterations the data resides on the GPU and
it has neither to be reloaded from main memory nor duplicated on
the CPU. In other scenarios, e.g. if frequent updates of a matrix
happen, this assumption may not be justifiable anymore. In this
case, also the time needed to transfer data between different units
has to be considered.

On vectors and full matrices the implementation of standard
arithmetic operations, i.e. vector-vector arithmetic and matrix-
vector multiplication, was about 12-15 times faster compared to
an optimized software implementation on the same target architec-
ture. A considerable speed-up was achieved by internally storing
vectors and matrices as RGBA textures. Sets of 4 consecutive en-
tries from the same vector are stored in one RGBA texel. Thus, up
to four times as many entries can be processed simultaneously. We
should note here, that operations on vectors and matrices built upon
this particular internal format perform in exactly the same way as
outlined. Just at the very end of the computation need the vector
elements stored in separate color components to be rearranged for
rendering purposes. We can easily realize this task by means of a
simple shader program that for each pixel in the result image fetches
the respective color component.

On average, the multiplication of two vectors of length 5122 took
0.2 ms. Performance dropped down to 0.72 ms and 2.8 ms for
vectors of length 10242 and 20482, respectively. Multiplication of

a 40962 full matrix times a vector was carried out in roughly 0.23
seconds. In contrast, the multiplication of a sparse banded matrix
of the same size, which was composed of 10 non-zero diagonals,
took 0.72 ms.

Obviously, only one vector element can be stored in a single
RGBA texel if numerical operations on vector-valued data have
to be performed. On the other hand, in this case also the perfor-
mance of software implementations drops down due to enlarged
memory footprints. Our current software implementation is highly
optimized with regard to the exploitation of cache coherence on the
CPU. In practical applications, a less effective internal representa-
tion might be used, so that we rather expect a relative improvement
of the GPU based solution. In this respect it is important to know
that also on the GPU access to higher precision textures slows down
performance about a factor of 1.5-2.

The least efficient operation compared to its software counter-
part is the reduce operation. It is only about a factor of three faster
even though we store four elements in one RGBA texture. For in-
stance, reducing a 10242 vector takes about 1.6 ms on the GPU. For
a vector of length 20482, this time is 5.4 ms. The relative loss in
performance is due to the fact, that the pixel shader program to be
used for this kind of operation is a lot more complex than one that
is used for vector-vector multiplication. On the other hand, even a
performance gain of a factor of three seems to be worth an imple-
mentation on the GPU.

In the following, we present two examples that demonstrate the
efficient solution of finite difference equations on the GPU. In both
examples, a 1024 x 1024 computational grid was employed, and
matrices were represented as set of diagonal vectors.

In the first example, a solution to the 2D wave equation was com-
puted based on the implicit Crank-Nicholson scheme as described
(see Figures 6 and 7 for results). Compared to explicit schemes, the
implicit approach allows us to considerable increase the step size in
time. To solve the system of equations we employed the GPU im-
plementation of the conjugate gradient solver. The banded structure
of the matrix was exploited by reducing the number of diagonal vec-
tors to be rendered in one matrix-vector multiplication. The com-
putation of one matrix-vector product (10242x10242-sparse-matrix
times 10242-vector) took roughly 4.54 ms. Overall, one iteration of
the conjugate gradient solver was finished in 15.4 ms. By perform-
ing only a limited number of iterations, five in the current example,
interactive simulation at 13 fps could be achieved.

In our second example, we describe a GPU implementation of a
numerical solution to the incompressible Navier-Stokes equations
(NSE) in 2D:

∂u
∂ t

=
1
Re

∇2u−V ·∇u+ fx−∇p (1)

∂v
∂ t

=
1
Re

∇2v−V ·∇v+ fy−∇p (2)

Here,u andv correspond to the components of the velocityV in
the x and y direction, respectively.Re is the Reynolds number,p
the pressure, and viafx and fy external forces can be specified.

We first discretize partial derivative ofu andv, resulting in an
explicit scheme to compute new velocities at timet +1 from values
at timet:

ut+1 = Gt +4t
∂ pt+1

∂x
(3)

vt+1 = Ft +4t
∂ pt+1

∂y
(4)

with

Gt = ut +4t

(

1
Re

∇2u−V ·∇u+ fx

)

(5)

F t = vt +4t

(

1
Re

∇2v−V ·∇v+ fy

)

(6)

Given current values foru andv at every grid points,Gt andFt

can be directly evaluated. In the current implementation, we em-
ploy an explicit scheme to resolve forGt and Ft . The diffusion
operator is discretized by means of central differences, and, as pro-
posed in [Stam 1999], we solve for the advection part by tracing
the velocity field backward in time. Note that these operations are
carried out on a 2D grid represented by a 2D texture. The involved
computations are performed at each grid point in a pixel shader pro-
gram. Finally, in order to compute updated velocities at timet +1,
we have to solve for the pressure at timet + 1. From the continu-
ity equation for incompressible media (div(V) = 0), we obtain the
following Poisson equation for the pressurep:

∂ 2pt+1

∂x2 +
∂ 2pt+1

∂y2 =
1
4t

(

∂Ft

∂x
+

∂Gt

∂y

)

(7)

The partial derivatives ofF andG are solved at each grid point,
represented as a 2D texture, by means of forward differences. Fi-
nally, the right hand side of equation 7 is input to the GPU imple-
mentation of the CG solver. Because vectors are internally repre-
sented as 2D matrices, the data does not have to be converted and
can be directly used to feed the CG solver. Equipped with appro-
priate boundary conditions, the CG solver iteratively computes a
solution for p at timet + 1, which can be directly passed back to
the explicit scheme to compute new velocity values by means of
equations 3 and 4.

Overall, by means of the GPU implementation of both the ex-
plicit and the implicit scheme we were able to interactively demon-
strate the numerical solution of the NSE at 9 fps on a 10242 grid. In
each time step, we use the pressure distribution from the last time
step as initial guess for the CG solver. In this way, only a few iter-
ations have to be performed, yet resulting in good accuracy. In the
current implementation, four iterations were executed. Such a small
number of iterations, on the other hand, yields inaccurate results
once abrupt changes are applied by means of external forces. In
Figure 8, we show a snapshot of our interactive tool, which allows
one to interact with the velocity field, and to visualize the dynamics
of injected dye into this field.

7 Conclusion

In this work, we have described a general framework for the im-
plementation of numerical simulation techniques on graphics hard-
ware. For this purpose, we have developed efficient internal layouts
for vectors and matrices. By considering matrices as a set of diag-
onal or column vectors and by representing vectors as 2D texture
maps, matrix-vector and vector-vector operations could be acceler-
ated considerably compared to software based approaches.

Our emphasis was on providing the building blocks for the de-
sign of general techniques of numerical computing. This is in con-
trast to existing approaches, where dedicated, mainly explicit solu-
tion methods have been proposed. In this respect, for the simulation
of particular phenomena some of these approaches might be supe-
rior to ours in terms of performance. On the other hand, our frame-
work offers the flexibility to implement arbitrary explicit or implicit
schemes, and it can thus be used in applications where larger step
sizes and stability are of particular interest. Furthermore, because
our internal matrix layout can benefit from the sparsity of columns
quite effectively, we do not expect our method to be significantly
slower compared to customized explicit schemes.

In order to demonstrate the effectiveness and the efficiency of our
approach, we have described a GPU implementation of the conju-
gate gradient method to numerically solve the 2D wave equation

and the incompressible Navier-Stokes equations. In both examples,
implicit schemes were employed to allow for stable computations,
yet providing interactive rates. Despite precision issues, we could
achieve considerably better performance compared to our software
realization. On the other hand, to allow for a fair comparison we
should consider timing statistics of SSE-optimized software solu-
tions, which are supposed to perform about a factor of 2 to 3 faster.

The lack of a contiguous floating point pipeline on our target
architecture still prohibits its use in numerical applications where
accuracy is a predominant goal. On the other hand, with regard
to the fact that full floating point pipelines are already available,
the implementation of numerical techniques on commodity graph-
ics hardware is worth an elaborate investigation. Particularly in en-
tertainment and virtual scenarios, where precision issues might be
of lesser dominant concern, such implementations can be used ef-
fectively for interactive physics based simulation.

In the future, we will implement matrix-matix operations based
on the described internal layout, and we will investigate meth-
ods to efficiently update vector and matrices that are stored in
texture memory. In this way, linear algebra operations like LU-
decomposition or Singular Value decomposition can be imple-
mented. In the long term, we aim at providing the functionality
that is available in the BLAS library, thus allowing general linear
algebra packages to be built upon GPU implementations.

8 Acknowledgements

We would like to thank ATI for providing the 9800 graphics card,
and in particular Mark Segal for providing information about the
technical details of this card.

Figure 6: GPU-based interactive simulation of 2D water surfaces is
demonstrated. The implementation runs at 43 fps on a 5122 grid.

References

ANDERSON, E., BAI , Z., BISCHOF, C., BLACKFORD, S., DEMMEL , J.,
DONGARRA, J., DU CROZ, J., GREENBAUM, A., HAMMARLING , S.,
MCKENNEY, A., AND SORENSEN, D. 1999. LAPACK Users’ Guide,
third ed. Society for Industrial and Applied Mathematics, Philadelphia,
PA.

Figure 7: A GPU-based tool to interact with water surfaces in real-
time is shown. By means of the mouse, the user can simulate ex-
ternal forces that disturb the water surface. On a 10242 grid the
applications runs at 13 fps.

Figure 8: An interactive tool for the visualization of the solution
to the 2D Navier-Stokes equations is demonstrated. The user can
modify the velocity field, and dye can be injected into the field. On
a 10242 grid the applications runs at 9 fps.

ATI, 2003. Sample effects on the ATI graphics cards.
http://www.ati.com/developer/techpapers.html.

BARAFF, D., AND WITKIN , A. 1998. Large steps in cloth simulation.
Computer Graphics SIGGRAPH 98 Proceedings, 43–54.

BOLZ, J., FARMER, I., GRINSPUN, E.,AND SCHROEDER, P. 2003. Sparse
matrix solvers on the GPU: Conjugate gradients and multigrid.Computer
Graphics SIGGRAPH 03 Proceedings.

CHEN, J., AND DA V ITORIA LOBO, N. 1995. Towards interactive-rate
simulation of fluids with moving obstacles using Navier-Stokes equa-
tions. Graphical Models and Image Processing 57, 2.

CURTIS, C., ANDERSON, S., SEIMS, J., FLEISCHER, F., AND SALESIN,
D. 1997. Computer-generated watercolor.Computer Graphics SIG-
GRAPH 97 Proceedings.

DEBUNNE, G., DESBRUN, M., M.-P., C., AND BARR, A. 2001. Dy-
namic real-time deformations using space and time adaptive sampling.
In Computer Graphics SIGGRAPH 01 Proceedings.

DESBRUN, M., MEYER, M., SCHROEDER, P.,AND BARR, A. 1999. Im-
plicit fairing of irregular meshes using diffusion and curvature flow. In
Computer Graphics SIGGRAPH 99 Proceedings, 317–324.

DONGARRA, J., DU CROZ, J., HAMMARLING , S., AND HANSON, R.
1988. An extended set of FORTRAN basic linear algebra subprograms.
ACM Transactions on Mathematical Software 14, 1–17.

DONGARRA, J., DU CROZ, J., HAMMARLING , S., AND HANSON, R.
1990. A set of level 3 basic linear algebra subprograms,.ACM Transac-
tions on Mathematical Software 16, 1–17.

ELDER, G. 2002. Radeon 9700. InProceedings Eurographics/SIGGRAPH
Workshop on Graphics Hardware 2002.

FEDKIW, R., STAM , J., AND JENSEN, H. 2001. Visual simulation of
smoke.Computer Graphics SIGGRAPH 01 Proceedings, 15–22.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liquids.Com-
puter Graphics SIGGRAPH 01 Proceedings, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of liquids.
Graphical Models and Image Processing 58, 5, 471–483.

HARRIS, M., COOMBE, G., SCHEUERMANN, T., AND LASTRA, A. 2002.
Physically-based visual simulation on graphics hardware. In Proceed-
ings Eurographics/SIGGRAPH Workshop on Graphics Hardware2002.

HART, J. 2001. Perlin noise pixel shaders. InProceedings Eurograph-
ics/SIGGRAPH Workshop on Graphics Hardware 2001.

HEIDRICH, W., WESTERMANN, R., SEIDEL, H.-P.,AND ERTL, T. 1999.
Applications of pixel textures in visualization and realistic image synthe-
sis. InACM Symposium on Interactive 3D Graphics, 110–119.

HILLESLAND , K., MOLINOV, S.,AND GRZESZCZUK, R. 2003. Nonlinear
Optimization Framework for Image-Based Modelling on Programmable
Graphics Hardware.Computer Graphics SIGGRAPH 03 Proceedings.

HOPF, M., AND ERTL, T. 1999. Accelerating 3D convolution using graph-
ics hardware. InProceedings IEEE Visualization’99, 471–474.

HOPF, M., AND ERTL, T. 2000. Hardware accelerated wavelet transfor-
mations. InProceedings EG/IEEE TCVG Symposium on Visualization
VisSym ’00, 93–103.

JOBARD, B., ERLEBACHER, G., AND HUSSAINI, Y. 2000. Lagrangian-
Eulerian advection of noise and dye textures for unsteady flow visualiza-
tion. In Proceedings IEEE Visualization’00, 110–118.

KAAS, M., AND M ILLER , G. 1990. Rapid, stable fluid dynamics for
computer graphics.Computer Graphics SIGGRAPH 90 Proceedings,
49–57.

LARSEN, E. S.,AND MCALLISTER, D. 2001. Fast matrix multiplies using
graphics hardware. InProceedings Supercomputing 2001.

L INDHOLM , E., KILGARD , M., AND MORETON, H. 2001. A user-
programmable vertex engine.Computer Graphics SIGGRAPH 01 Pro-
ceedings.

M ICROSOFT, 2002. DirectX9 SDK. http://www.microsoft.com/DirectX.

MONTRYM, J., AND MORETON, H. 2002. GeForce4. InProceedings
Eurographics/SIGGRAPH Workshop on Graphics Hardware 2002.

NV IDIA , 2002. nvidia OpenGL game of life.
http://www.nvidia.com/view.asp?IO=oglgameoflife.

NV IDIA , 2003. Sample effects on the nVIDIA graphics cards.
http://developer.nvidia.com/view.asp?PAGE=papers.

OLANO , M., AND LASTRA, A. 1998. A shading-language on graphics
hardware.Computer Graphics SIGGRAPH 98 Proceedings, 159–168.

PRESS, W., TEUKOLSKY, S., VETTERLING, W., AND FLANNERY, B.
2002. Numerical Recipes in C++ : The Art of Scientific Computing.
Cambridge University Press.

PURCELL, T., BUCK, I., MARK , W., AND HANRAHAN , P. 2002. Ray
tracing on programmable graphics hardware.Computer Graphics SIG-
GRAPH 98 Proceedings, 703–712.

STAM , J. 1999. Stable fluids.Computer Graphics SIGGRAPH 99 Proceed-
ings, 121–128.

STRZODKA, R., AND RUMPF, M. 2001. Nonlinear diffusion in graphics
hardware. InProceedings EG/IEEE TCVG Symposium on Visualization
2001, 75–84.

STRZODKA, R.,AND RUMPF, M. 2001. Using graphics cards for quantized
FEM computations. InProceedings VIIP 2001, 98–107.

THOMPSON, C., HAHN , S.,AND OSKIN, M. 2002. Using modern graph-
ics architectures for general-purpose computing: A framework and anal-
ysis.Proceedings of 35th International Symposium on Microarchitecture
(MICRO-35).

WEISKOPF, D., HOPF, M., AND ERTL, T. 2001. Hardware-accelerated
visualization of time-varying 2D and 3D vector fields by texture advec-
tion via programmable per-pixel operations. InProceedings Workshop
on Vision, Modeling, and Visualization VMV’01, 439–446.

WEISKOPF, D., HOPF, M., AND ERTL, T. 2002. Hardware-accelerated
Lagrangian-Eulerian texture advection for 2D flow visualization. InPro-
ceedings Workshop on Vision, Modeling, and Visualization VMV ’02.

