
EUROGRAPHICS 2003 / P. Brunet and D. Fellner
(Guest Editors)

Volume 22(2003),Number 3

Shadow Volumes on Programmable Graphics Hardware

Stefan Brabec and Hans-Peter Seidel

MPI Informatik, Saarbrücken, Germany

Abstract
One of the best choices for fast, high quality shadows is the shadow volume algorithm. However, for real time
applications the extraction of silhouette edges can significantly burden the CPU, especially with highly tessellated
input geometry or when complex geometry shaders are applied.
In this paper we show how this last, expensive part of the shadow volume method can be implemented on pro-
grammable graphics hardware. This way, the originally hybrid shadow volumes algorithm can now be reformu-
lated as a purely hardware-accelerated approach.
The benefits of this implementation is not only the increase in speed. Firstly, all computations now run on the
same hardware resulting in consistent precision within all steps of the algorithm. Secondly, programmable vertex
transformations are no longer problematic when applied to shadow casting objects.

Categories and Subject Descriptors(according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture;
I.3.3 [Computer Graphics]: Picture/Image Generation; I.3.7 [Computer Graphics]: Three-Dimensional Graphics
and Realism

1. Introduction

Crow’s shadow volumes5 is one of the most popular algo-
rithms for shadow generation. Especially for real time appli-
cation it is the de-facto standard way for precise, high quality
shadows. This is due to the fact that shadow information is
generated in object space, meaning that shadow information
is available for every window-space pixel. Achieving infor-
mation that precise is hardly possible with a sampling based
method such as shadow maps13.

But this accurate shadow information does not come for
free. Generating the necessary silhouette information can put
a heavy load on the CPU, and rendering the extruded shadow
volumes on graphics hardware can easily exhaust fill rate
capabilities.

Another problem is the hybrid nature of this algorithm.
In order to produce accurate shadow volumes both the CPU
and the graphics hardware have to be synchronized. This
not only refers to the data transfer, but also, most impor-
tantly, a consistent numerical precision during all calcula-
tions. Nowadays thisperfectsynchronization becomes even
more important. Recent graphics hardware exposes power-
ful programming features that allow nearly arbitrary opera-
tions on both vertex9 and pixel data. When using these pro-

grammable features in conjunction with shadow volumes the
silhouette extraction performed on the CPU becomes prob-
lematic: All vertex transformations computed on the graph-
ics hardware, which are relevant for shadow casting objects,
need to be simulated on the CPU in order to achieve the
same results. This is not only a very time consuming task
(e.g. imagine a procedural displacement shader applied to a
highly tessellated object) but also makes programming with
shadow volumes a nightmare, since every shadow object
needs to be handled differently.

In this paper we address these issues and present a method
for implementing the whole algorithm on the graphics hard-
ware. Migrating the silhouette extraction to graphics hard-
ware solves a number of issues:

• All calculations are performed on the same hardware, re-
sulting in consistent precision.

• Shadowing objects can be used with programmable vertex
processing in the same manner as with fixed transforma-
tion processing.

• Applications gain more CPU time, since resources which
were formerly dedicated to silhouette extraction are re-
leased.

• Rendering with shadow volumes no longer needs to be

c© The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

http://www.eg.org
http://diglib.eg.org

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

synchronized with CPU and graphics hardware, minimiz-
ing potential idle time on both processing units.

• Silhouette extraction is performed on large chunks of data
in parallel (bulk processing), which results in enormous
speed up.

• Using the shadow volume approach in an application be-
comes very simple since only trivial, local preprocessing
of the objects needs to be performed. This is especially
important forgeneralscene graphs, where silhouette ex-
traction would require traversal of all possible transforma-
tion and deformation nodes.

The remaining part of the paper is structured as follows.
First we briefly review relevant work on shadow algorithms.
Then, in Section3 we explain stencil shadow volumes,
which is the basis for our implementation, in more detail.
The migration of silhouette extraction from CPU to pro-
grammable graphics hardware is presented in Section4. In
Section5 we discuss some of the implementation details.
Section6 shows some example scenes rendered with our
hardware-based implementation.

2. Previous Work

Since there are a huge number of publications dealing with
shadow generation, we only briefly review those relevant for
our implementation. For more information we recommend
Woo’s survey on shadow algorithms14 as a starting point.

In 1977, Franklin C. Crow presented the shadow volume
algorithm5. In his paper he describes how shadowed regions
can be identified by extruding silhouette edges (with respect
to the light source) to form semi-infinite volumes. A simple
point-inside-volumetest can then be used to check whether a
given surface point is in shadow or lit. Bergeron1 presented a
general version of Crow’s algorithm which also is capable of
handling non-closed objects as well as non-planar polygons.

A hardware-based approach computing thepoint-in-
volume test using the stencil buffer was presented by
Heidmann7. His approach will be explained in detail in Sec-
tion 3.

Recently, an alternative to stencil-based counting using
alpha blending was proposed by Roettger et. al12. They
replace increment and decrement operations by multiplica-
tions, which under certain conditions is even faster than us-
ing the stencil buffer. The main benefit of their method is
that it works for graphics cards that do not support hardware-
accelerated stencil testing.

Everitt et. al6 came up with a bullet-proof implementation
of stencil based shadow volumes for hardware-accelerated
rendering. They solve the problem of non-closed shadow
volumes due to near/far plane clipping by inverting the sten-
cil count scheme, an unpublished idea by Carmack2, and
moving the far plane to infinity. This way, shadow volumes
are always closed, and artifact-free shadows can be gener-

ated. The tutorial by Lengyel8 provides some more imple-
mentation details and shows how fill rate problems can be
reduced by using attenuated light sources.

Also the problem of optimizing the expensive step of de-
tecting silhouette edges, both in the context of shadow vol-
umes as well as for other application like non-photorealistic
rendering (NPR), has led to a number of algorithms.

Goodrich 11 explained how thedual spaceof a primal
space can be used to detect silhouette edges. In dual space,
the light position becomes a plane, whereas edges stay
edges. Those edges that intersect the plane are detected sil-
houette edges. Although this method sounds complicated at
a first sight, it can greatly take advantage of temporal coher-
ence, e.g. for moving light sources.

A spatial data structure for shadow volumes was intro-
duced by Chin et. al3. They modified the well-knownbi-
nary space partitioning(BSP) scheme, so that for every light
source a BSP tree is generated that represents the shadow
volume caused by the polygons facing towards the light. The
algorithm was further improved by Chrysanthou et. al4 to
handle dynamic scenes as well.

A hardware-accelerated silhouette detection method was
presented by McCool10. Here shadow edges are extracted
by using a depth map and an edge detection filter. With this
method an optimal shadow volume (non intersecting vol-
umes) can be generated. However, the quality of the gener-
ated shadows may suffer from sampling artifacts due to the
limited depth map resolution.

As graphics hardware becomes faster and faster, espe-
cially in terms of fill rate and vertex processing, a simple
brute force approach is becoming popular again. Instead of
detecting silhouette edges, one can also consider individual
triangles as shadow casting objects and generate a shadow
volume for each. This method is simple to implement but is
only useful for very few, coarsely tessellated objects.

3. Stencil Shadow Volumes

Heidmann’s stencil shadow volumes algorithm7 starts with
the detection of possible silhouette edges. For simplicity, we
assume that all shadow casting objects are closed triangular
meshes (2-manifold) for which connectivity information is
available.

To test whether a given edge is a silhouette edge we check
if the edge connects a front- and a back-facing triangle, with
respect to the light source. This is illustrated in Figure1.
Triangle orientation can easily be checked by taking the dot
product of the face normal and the vector to the light source.
If this dot product is negative, a triangle is back-facing with
respect to the light, otherwise it is front-facing. Repeating
this for all edges, we obtain a set of silhouette edges that
form closed loops.

c© The Eurographics Association and Blackwell Publishers 2003.

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

Figure 1: Silhouette edge detection.

Next we extrude these silhouette loops to form semi-
infinite volumes. For each silhouette edge a quadrilateral is
constructed by taking the two original vertices of the edge
and two vertices which are computed by moving the original
vertices far away to infinity along the ray originating from
the light source through the vertex.

Together with the object’s front facing triangles, these
quadrilaterals bound all regions in space which are in
shadow. In order to check if a given point is in shadow all
we have to do is determine if the point lies outside of all
shadow volumes.

This information can be easily obtained by following a ray
from the viewer to the surface point and counting how many
times we enter or leave a shadow volume boundary polygon.
This counting scheme is illustrated in Figure2. Here shadow

Figure 2: Inside-outside test.

volumes have been generated for a sphere and a box illumi-
nated by a point light source. While following the ray from
the viewer to surface pointA, we count how many times we
enter (increment) and leave (decrement) a shadow boundary.
The final counter value of 0 indicates that the surface point
is lit by the light source, since we have left the shadow re-
gions as many times as we entered them. Counting shadow
boundaries for surface pointB yields a value of 2, since the
point is inside two shadow volumes (sphere and box).

Implementing this test using ray tracing would be a very

time consuming task. Heidmann showed that this simple in-
out counting can be performed on graphics hardware using
the stencil buffer. First, the stencil buffer is initialized to zero
(all pixels lit). Next, the whole seen is drawn as seen by the
camera. In this step only depth information is relevant so
color channels and all lighting and shading computations can
be disabled.

The actual counting can then be achieved by disabling
depth buffer writes and rendering all shadow volume quadri-
laterals. In this step the stencil operation is setup in such
a way that front-facing quadrilaterals (with respect to the
viewer) increment the stencil value at the window space po-
sition for all pixels that pass the depth test. Similarly, all
pixels that pass the depth test and belong to a back-facing
quadrilateral will decrement the stencil value. On modern
graphics hardware this can be implemented in a single ren-
dering pass (two-sided stencil testing) whereas on older
hardware separate passes for front- and back-facing quadri-
laterals are needed (single stencil operation). Changing the
counter value based on the front- and back-facing informa-
tion requires a consistent winding order when constructing
the quadrilaterals. This can for instance be achieved by stick-
ing to the vertex order of the front-facing triangle (with re-
spect to the light source) adjacent to the silhouette edge.

In a final step, the scene is rendered once again, this time
with lighting and shading turned on. During rendering we
set up the stencil test such that only those pixels whose cor-
responding stencil value is zero will pass through.

Although the basic method is simple to implement, there
are several problems, e.g. due to near plane clipping or
counter overflows. These problems and possible solutions
are described in detail in6.

4. Shadow Volumes on Programmable Graphics
Hardware

4.1. Motivation

Recalling the different steps in Section3 it becomes clear
that silhouette detection and shadow volume extrusion are
the only steps that still have to be performed on the CPU.
This can not only become a bottleneck if shadow casting ob-
jects are highly tessellated, but is indeed problematic if the
input geometry will be deformed by the graphics hardware.
Current state-of-the-art graphics boards provide powerful,
programmable vertex processing units (vertex programs)9

which can be used for nearly arbitrary geometric transforma-
tions, e.g. displacement mapping or matrix palette skinning.
Using vertex programs in conjunction with shadow volumes
requires the CPU to emulate all vertex processing in the
same way as it is actually done by the graphics hardware.

As a consequence, detecting silhouette edges is no longer
a trivial and fast operation since vertices and face normals
have to be re-calculated at every frame in the worst case.

c© The Eurographics Association and Blackwell Publishers 2003.

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

Also numerical differences can lead to strange artifacts, e.g.
light leaks.

This is due to the fact that numerical operations are not
guaranteed to yield the same result on both processing units
(the CPU and the graphics hardware). As an example, the re-
sult of calculatingsqrt(x) can differ significantly since CPU
and graphics hardware may use different approximations.

Another bottleneck when using the common hybrid ap-
proach is that CPU and graphics hardware need to be syn-
chronized such that all shadow volumes are generated when
the graphics hardware is ready to render them. Especially
in applications like games the CPU is more and more dedi-
cated to handle input events, artificial intelligence or sound,
and all graphic-related work should ideally be done by the
graphics hardware. Therefore keeping these two processing
units asynchronous reduces potential idle time on both.

In the following sections we will show how silhouette de-
tection and shadow volume generation can be implemented
on programmable graphics hardware, which solves the de-
scribed problems.

4.2. Silhouette Detection

In the first step of our hardware implementation we need to
bring the actual geometry and the light sources into a com-
mon coordinate system. We will choose to transform both to
world space, which is view-dependent and also, with respect
to the scene geometry, reusable for different light sources.

Since all graphics cards perform a combined transforma-
tion which also includes the viewing transformation, we be-
gin by setting the viewing matrix to identity. This way every
vertex is transformed to world space. Secondly, every ver-
tex in the scene is assigned a unique index number, so that
it can later be referenced by its index. For objects which are
referenced multiple times, e.g. an object placed in the scene
at different locations, we need to ensure that vertices with
different transformations also obtain different indices.

With these vertex indices we are now able to dump the
world space coordinates of each vertex to the graphics hard-
ware. The result of this step is a texture, in which each texel
(x,y) stores the world space positions of one vertex. The
mapping of a vertex to its position in the texture is defined by
the vertex index. To retain as much precision for the vertex
positions as possible, we use a 4-channel (RGBA) offscreen
buffer with floating point precision as an output buffer.

We will now explain how this step can be implemented
with the help of a vertex program: Instead of rendering filled
primitives, like triangles or quadrilaterals, only the vertex it-
self is rendered as a point. We use the vertex program to
compute the position (x,y) in the output buffer from the ver-
tex index (passed along as a vertex attribute) and specify the
result as the output position for the vertex. This way each
vertex gets rendered as a single pixel at the position (x,y).

The final task now is to set the color at position (x,y) to
the corresponding vertex’s world space coordinates. Since
the vertex color output of a vertex program gets clamped to
[0. . .1], we output this value using one of the unclamped out-
put registers, e.g. one of the 4D texture coordinates, and then
map it to the color register in a fragment program. Note that
the vertex’s world coordinates include all vertex transforma-
tions (i.e. modeling or procedural transformations). This step
is graphically explained in Figure3 (Step 1).

The next task in our algorithm is the classification of pos-
sible silhouette edges. Assuming that all meshes used in the
scene are well-modeled (2-manifold), meaning that there are
no open edges and every edge connects exactly two trian-
gles, the silhouette test only needs four vertices and the light
source position(s) as input data. Two vertices are used to lo-
cate the edge itself whereas the remaining two are used to
construct the two triangles that meet at the given edge.

Recalling Section3, the silhouette test consists of check-
ing the front-/back-face condition of the two triangles with
respect to the given light source.

Our implementation is therefore straight forward: Given
the connectivity information (edges) for all meshes we also
assign all edges an unique identifier (index), used for later
referencing. Since connectivity and index numbers remain
constant, this can be implemented as a pre-processing step.

To detect silhouette edges, we use a brute-force approach
that tests every edge in every frame during runtime (except
for simple cases, where scene and light sources remain con-
stant). Doing this on the host processor can be quite ex-
pensive, but on the graphics card, which can be seen like a
SIMD-like (single instruction, multiple data) processor, this
is an efficient operation running in parallel.

Like in the world space transformation step, we render
all edges as single points. As before, these points represent
the index number of a given edge, and have no real geo-
metric meaning. Along with the index number describing
the position where to store the result of the edge compu-
tation, we also pass all relevant input data for the given edge
as additional per-vertex (point) attributes. As stated before,
this input data consists of a total of four indices referring
to the points that make up the two adjacent triangles. Since
the light source position remains constant for all edges, this
parameter is set globally.

Testing if a given edge is a silhouette edge is now triv-
ial: We bind the dumped vertex positions as a 4-component
floating point texture map and use the four indices to get the
world space coordinates of all points. Since texture lookups
are only possible in the fragment (pixel) processing step, this
has to be implemented as a so called fragment shader (also
referred to as pixel shader).

For both triangles that meet at the given edge we calculate
the plane equations and compute the signed distance to the
light source position. If the signs of the two distances differ,

c© The Eurographics Association and Blackwell Publishers 2003.

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

the edge is marked as a silhouette edge. Since the edge’s
vertex ordering has to be preserved for later steps, we also
compute a flag indicating whether the vertex ordering of the
front facing triangle corresponds to the order of the edge’s
vertices.

The result of the silhouette detection, which are two bi-
nary flags, are then written to the frame buffer as a color-
coded value at the edge-index position.

4.3. Generation of Shadow Volumes

Generating and rendering the shadow volumes using the re-
sults of the previous steps is now straight forward.

In a pre-processing step we generate quadrilaterals for all
edges, but instead of using the object’s vertex coordinates
and transformations, each vertex has a total of three indices
and one flag:

• Two indices referring to the world space position of the
edge’s two end points.

• One index referring to the silhouette flag and the vertex-
ordering for the given edge.

• A flag (yes/no) indicating whether the vertex should lie on
the edge or should be extruded to infinity. Each quadrilat-
eral has two points on the edge and two points that have
to be moved to infinity.

Since we only want to render quadrilaterals for silhouette
edges, the silhouette flag is used as a trivial reject. If the
edge is not a silhouette edge, we move all vertices outside
the viewing frustum, e.g. behind the viewer, so that the com-
plete primitive is clipped away. For silhouette edges we ei-
ther directly output the world space position, or, if the extru-
sion flag is true, we move the vertex to infinity with respect
to the light source direction. Choosing one of the edge’s ver-
tices is based on the vertex-ordering flag, which preserves a
consistent winding order.

All these steps are implemented as a vertex program
and therefore are fully hardware-accelerated. The generated
shadow volumes are similar to those generated on the CPU
and can now be used for the stencil-based counting scheme
explained in Section3. Figure3 illustrates the different steps
of the hardware-based shadow volumes algorithm.

5. Implementation

We implemented the described algorithm on an ATI Radeon
9700 card using OpenGL. This card supports all the pro-
grammable feature, like vertex and fragment programs with
floating point precision, as well as floating point offscreen
buffers and textures.

For the first step, we use a floating point RGBA offscreen
buffer and modify all of the scene’s shaders (vertex pro-
grams) such that instead of using the original vertex posi-
tion the index number is used to calculate (x,y) pixel coordi-
nates and the world space position is written out to the frame

Input: original mesh

Store position at vertex index (render-to-texture)

Step 1: transform vertices to world space

P0 P1

PN

Two indices for edge, two indices for adjacent triangles
Step 2: process edges

Get world space positions from Step 1 texture and check
front-face / back-face condition.
Store result at edge index (offscreen buffer)

Use offscreen buffer from Step 2 as vertex attribute
array (silhouette flag) and Step 1 buffer as vertex
position array.

Step 3: render shadow volume quads

for each edge {
 if silhouette flag is true
 extrude
 else
 move quad outside view
}

Figure 3: Workflow for hardware-based shadow volumes.

buffer. Currently this is a manual step but can simply be auto-
mated by a script that generates the modified shaders. Since
only the world space position is relevant during this step,
we can further optimize it by analysing which computations
inside the shader affect the position and remove all other op-
erations that are only relevant for e.g. the output color or
texture coordinates.

For computing the silhouette and vertex-ordering flags, an
offscreen buffer with less precision (e.g. RGB with eight bits
per channel) is sufficient. By rendering all edges as points
and using the offscreen buffer of the previous step as a 2D

c© The Eurographics Association and Blackwell Publishers 2003.

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

texture map, we can obtain the four world space position by
sampling this texture at the exact integer positions (vertex
indices). The light source position is specified as a global pa-
rameter. The fragment shader then computes the plane equa-
tion and tests for the front-/back-facing condition and the
vertex ordering flag. In the previous sections we only dis-
cussed the silhouette detection for one light source. How-
ever, the fragment shader can easily compute the flags for
several light sources simultaneously. The number of light
sources that can be checked during this step is only limited
by the maximum instruction length of the fragment shader
and the number of bits available in the offscreen buffer. Since
the results for one light source needs two bits, a standard
RGB buffer can store the results for up to 12 light sources.

Rendering the shadow volume quadrilaterals requires the
results of the two previous steps as input. Since the vertex ex-
trusion and the trivial reject has to be performed before ras-
terization, this has to be implemented as a vertex program.
Unfortunately, there is currently no fast path to access the re-
quired data in the vertex program directly. For our algorithm
we therefore would propose one of the following features:

• Texture access during vertex processing. First attempts in
this direction are made with the release of DirectX 9’s
displacement mapping, but a more general lookup would
be necessary for our method.

• A fast, on the card copy from frame buffer to a vertex at-
tribute array. This could be implemented as a simple copy
operation, or ideally ascopy-by-referencesimilar to the
render-to-texturefunctionality.

Due to the lack of the proposed features, we are forced to
use a very slow mechanism that transfers the data from the
two buffers to host (CPU) memory and immediately down-
loads the same data as vertex attribute data for our current
implementation.

6. Results

Figure4 shows two example scenes with shadow volumes
generated using our hardware approach. For both scenes,
three light sources are used and silhouette edges are detected
for all lights simultaneously. In Figure4 (a) the vertex tex-
ture has a size of 128×128 pixels, needed to store the world
space positions of the 9326 vertices. The edge buffer has
a size of 256×128 which is enough to store the silhouette
flags for the 27627 edges. Figure4 (b) has a vertex texture of
size 64×64 pixels (3298 vertices) and an edge buffer of size
128×128. The scenes were rendered at a window resolution
of 512×512 on an AMD Athlon 1GHz machine equipped
with an ATI Radeon 9700 card. For both scenes we obtain
frame rates about 20 fps. The main bottleneck here are the
frame buffer read backs. With all steps running on the hard-
ware (as proposed in Section5) we expect our method to
run considerably faster. Our current implementation should
therefore be seen as a proof-of-concept.

Figure 5 (left) shows a more complex example illumi-
nated by three light sources. Here the geometry of each of
the three spheres is displaced by a procedural noise shader,
implemented as a vertex program. Detecting silhouette edges
for this scene on the CPU would be very difficult since the
vertex program would need to be evaluated on the CPU in or-
der to obtain world space coordinates. Detecting silhouette
edges with our hardware method is as simple as for the pre-
vious scenes. Only small modifications to the noise shader
were necessary which ensure that for each vertex the world
space position is passed as a result and the index becomes
the vertex’s pixel position. Here the vertex texture has a res-
olution of 64×32 (1638 vertices) and the edge buffer has a
resolution of 128×64 (4896 edges).

Since the procedural noise shader only computes new ver-
tex positions, the vertex normals no longer correspond to the
actual geometry. Therefore the shading of the three objects
looks unrealistic. To avoid strange artifacts we also disabled
self and global shadowing for the three objects. With proper
shading normals there would be a smooth intensity transition
into the shadow region.

Figure 5 (right) shows the silhouette edges detected for
one light source (yellow) as well as the generated shadow
volumes for all three lights (red).

7. Conclusions and Future Work

In this paper we have shown how to perform the silhouette
detection step of the shadow volume algorithm in hardware.
The benefits of this approach are not only the gain in speed,
what is most important is that shadow volumes can now eas-
ily be generated for geometry that is transformed by pro-
grammable vertex engines, as shown in the procedural noise
example. A drawback of the algorithm is that it processes all
edges and rejects non-silhouette edges at the extrusion stage,
which is the very last step of the algorithm. This may put a
very high load on the GPU but on the other hand, this is in
most cases still faster than processing edges using the CPU.

The algorithm itself relies on capabilities available on
recent graphics cards: programmable vertex and fragment
units, floating point buffers, as well as floating point textures.

An important feature which is currently missing is a fast
way to use the contents of a buffer as input for a vertex
program, needed when rendering the shadow volumes. We
are confident that future drivers will provide a more general
memory management functionality. First efforts in this di-
rection are already visible with the upcoming OpenGL 2.0
specification.

In this paper we did not address the problem of shadow
volumes that intersect the near or far clipping plane. A solu-
tion to this was presented by Everitt et al.6. As future work
we would like to investigate how those special cases can be
detected and efficiently processed using our algorithm.

c© The Eurographics Association and Blackwell Publishers 2003.

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

Another possible application for the silhouette detection
presented here is in the context of non-photorealistic render-
ing (NPR). Here the silhouette information could be used to
achieve toon-like or pencil drawn shading effects on a per
triangle basis, rather than using image-based techniques.

References

1. P. Bergeron. A general version of crow’s shadow vol-
umes. IEEE Computer Graphics and Applications,
6(9):17–28, 1986.

2. John Carmack. John carmack on shadow volumes.
Available from developer.nvidia.com, May 2000.

3. Norman Chin and Steven Feiner. Near real-time
shadow generation using bsp trees. InComputer
Graphics (Proceedings of SIGGRAPH 89), volume 23,
pages 99–106, July 1989.

4. Yiorgos Chrysanthou and Mel Slater. Shadow vol-
ume bsp trees for computation of shadows in dynamic
scenes.1995 Symposium on Interactive 3D Graphics,
pages 45–50, April 1995. ISBN 0-89791-736-7.

5. Franklin C. Crow. Shadow algorithms for computer
graphics. InComputer Graphics (SIGGRAPH ’77 Pro-
ceedings), pages 242–248, July 1977.

6. Cass Everitt and Mark J. Kilgard. Practical and robust
stenciled shadow volumes for hardware-accelerated
rendering. Technical report, NVIDIA Cooperation,
March 2002. Published online at developer.nvidia.com.

7. T. Heidmann. Real shadows real time.IRIS Universe,
18:28–31, November 1991.

8. Eric Lengyel. The mechanics of robust stencil shadows.
Tutorial available on www.gamasutra.com, Oct 2002.

9. Erik Lindholm, Mark J. Kilgard, and Henry Moreton.
A user-programmable vertex engine. InProceedings
of ACM SIGGRAPH 2001, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 149–158.
ACM Press / ACM SIGGRAPH, August 2001. ISBN
1-58113-292-1.

10. Michael D. McCool. Shadow volume reconstruction
from depth maps. ACM Transactions on Graphics,
19(1):1–26, January 2000.

11. Mihai Pop, Christian Duncan, Gill Barequet, Michael
Goodrich, Wenjing Huang, and Subodh Kumar. Effi-
cient perspective-accurate silhouette computation and
applications. InProceedings of the seventeenth annual
symposium on Computational geometry, pages 60–68.
ACM Press, 2001.

12. Stefan Roettger, Alexander Irion, and Thomas Ertl.
Shadow volumes revisited. In V. Skala, editor,Proc.
WSCG ’02, pages 373–379, 2002.

13. Lance Williams. Casting curved shadows on curved
surfaces. InComputer Graphics (SIGGRAPH ’78 Pro-
ceedings), pages 270–274, August 1978.

14. Andrew Woo, Pierre Poulin, and Alain Fournier. A sur-
vey of shadow algorithms.IEEE Computer Graphics
& Applications, 10(6):13–32, November 1990.

c© The Eurographics Association and Blackwell Publishers 2003.

Brabec and Seidel / Shadow Volumes on Programmable Graphics Hardware

(a) (b)

Figure 4: Two examples scenes with shadows from three light sources.

Figure 5: Scene with three light sources. The three objects are simple spheres (1000 triangles) deformed by a procedural
noise shader, implemented as a vertex program. The image on the right shows the silhouette edges for one light source and the
extruded shadow volumes for all lights.

c© The Eurographics Association and Blackwell Publishers 2003.

	Introduction
	Previous Work
	Stencil Shadow Volumes
	Shadow Volumes on Programmable Graphics Hardware
	Motivation
	Silhouette Detection
	Generation of Shadow Volumes

	Implementation
	Results
	Conclusions and Future Work
	References

