Triangle Meshes: Summary

1 Definitions

Disclaimer: Not all authors agree on the terminology and definitions provided below, but the concepts introduced here
are commonly used and important. Hence, you must understand these definitions and learn them by heart.

A triangle mesh (mesh) is a collection of cells: vertices (0-cells), edges (1-cells), and triangles (2-cells).

Each edge is the line segment between 2 vertices and is relatively open (it does not contain its end-points).

Each triangle is the relative-interior of the convex hull of 3 vertices (does not contain its bounding edges, vertices).
A mesh is consistent if all cells are pair-wise disjoint.

A mesh is clean if each edge and vertex bounds a triangle of the mesh (no hair) and if the edges and vertices
bounding each triangle are part of the mesh (no cuts).

We say that a triangle is incident upon its bounding edges and vertices.
A mesh is edge-manifold if each edge is bounding either one or two triangles.
Two triangles are adjacent if they share a bounding edge.

A mesh is edge-connected if for any two of its triangles T1 and T, there is an ordered list of triangles {T1,T>...,Tn}
such that any two consecutive triangles in the list are adjacent.

The star of a vertex is the set of all triangles and edges it bounds.

A vertex is manifold if its star is edge-manifold and edge-connected.
A mesh is manifold if all its vertices are manifold.

A mesh is watertight if each edge bounds an even number of triangles.

A shell is an edge-connected, watertight, manifold mesh.

The genus (number of handles) of a shell is H=T/4-V/2+1, where T is the number of triangles and V the number of
vertices.

A mesh is simple (a topological sphere) if it is a shell with genus zero. Then, T=2V-4. It can be drawn as a
consistent mesh on the plane (planar triangle graph).

Given a vertex v and an incident triangle t, v’=nvat(v,t) returns the next vertex around triangle t.

Given a triangle t and a bounding vertex v, t'= ntav(t,v) returns the next triangle around vertex v or null if t’ does
not exist.

A manifold mesh is oriented if for each pair of adjacent triangles t; and t,, sharing vertices v, and v, either we
have vp=nvat(v,ti) and v,=nvat(vp,tz), or we have vy,=nvat(v,tz) and vi=nvat(vyti1). Note that a shell that is not
consistent may not be orientable (Klein bottle).

2 Representation and queries

Popular representations of a mesh distinguish geometry from connectivity. You must understand what these
concepts mean and why they are important.

Geometry: An array G[] of points representing the vertex locations. Typically the order is arbitrary but fixed.
Hence, each vertex is associated with an integer index: V,=G[0], V1=G[1], ...

Connectivity: Additional information providing constant cost support of queries such as:

* Incidence: access the three vertices of a triangle t, in nvat order (used for rendering the mesh)
* Adjacency: access the three triangles adjacent to triangle t (used for traveling on the mesh)
* Star: Access the triangles incident upon a vertex v, in ntav order (used for computing vertex normals)

A variety of representation schemes and low-level operators have been proposed for the connectivity.
For edge-manifold meshes, will use the Corner Table.

Each triangle has 3 corners, each one is incident upon (associated with) a different vertex. Hence, a corner is the
association of a triangle with one of its bounding vertices. A mesh has 3T corners. In a simple mesh, a vertex
has, on average, about 6 incident corners.
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Our representation of the connectivity, the low-level queries, and most algorithms operate on corners.

Each triangle is associated with an integer triangle index in [0,T-1] and each vertex is associated with an integer
vertex index in [0,V-1]. Each corner is associated with an integer corner index in [0,3T-1].

From now on, when we say “corner” we mean the “integer corner index” of that corner, we say “triangle” we
mean the “integer triangle index” of that triangle, we say “vertex” we mean the “integer vertex index” of that
vertex.

Given a corner c, we support the following primary operators:

t(c) is the triangle associated with ¢

v(c) is the vertex associated with c

n(c) is the next corner around t

o(c) is the opposite corner b, such that either v(n(c))=v(p(b)) and v(p(c))=v(n(b)), or if none can be found b=c

From these, we derive the following convenient secondary operators.
g(c) is the point where vertex v(c) is located: g(c)=G[v(c)]

p(c) is the previous corner around t: p(c)=n(n(c))

1(c) is the left neighbor of c: 1(c)=0(p(c))

r(c) is the right neighbor of c: r(c)=o(n(c))

s(c) is the swing of c (next corner around v(c)): s(c)=p(l(c)). Useful to walk around hole border loops.

3 Implementation
The mesh is stored as 3 arrays:

pt G[V]: an array of points, one per vertex
int V[3T]: an array of integer vertex indices, 3 per triangle
int O[3T]: an array of integer corner indices, 3 per triangle

We cache v(c) in V[c] and o(c) in O[c]. The three corners {a,b,c} of each triangle are consecutive in these tables and
are stored in an order such that b=n(a) and c=n(b).

O[c]=c when c has no opposite. (This is new! In the papers and notes, I used to set O[c]=- 1 when c has no opposite.)
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class Mesh {

int nv; // number of vertices
pt G[nv]; // geometry (vertices)
int nt; // number of triangles
int nc; // number of corners (3 per triangle)
int V[nc]; // corner/vertex incidence
int O[nc]; // opposite corners
int t (int ¢) {return int(c/3);}; // triangle of corner

int n (int c) {return 3*t(c)+(c+1)%3;}; // next corner in the same t(c)

int p (int c¢) {return n(n(c));}; // previous corner in the same t(c)

int v (int c) {return V[c];}; //id of the vertex of ¢

pt g (int c) {return G[v(c)];}; // point of the vertex v(c) of corner c

boolean b (int c¢) {return O[c]==c;}; // if faces a border (has no opposite)
int o (int c) {return O|[c];}; // opposite (or self if border)

int1 (int c) {return o(n(c));}; // left neighbor or next if b(p(c))

intr (int c) {return o(p(c));}; // right neighbor or next if b(r(c))

int s (int c) {return p(1(c));}; // swings around v(c) or around a border loop

// Additional book-keeping masks and attributes

int [] color = new int[nt]; // color of triangles (0 means invisible)

boolean[] Mt = new boolean[nt]; // mask indicating that triangle was visited
boolean[] Mv = new boolean[nt]; // mask indicating that vertex was visited

vec[] N = new vec[nv]; // vertex normal

)

Algorithms that students should know how to re-invent:

Compute the O table from the V table of a manifold mesh

Identify the non-manifold edges and vertices of a mesh

Compute the estimate of the normal to a vertex

Compute the number of edge-connected components in a manifold mesh

Identify the edge-connected components of a manifold mesh and tag the triangles with the component number
Compute the number of holes in an edge-connected manifold mesh

Trace the border of a hole and make a triangle fan to fill it

Flip an edge identified by one of its opposite corners

Collapse an edge identified by one of its opposite corners

Compute the concentric rings around a seed triangle T and mark their triangles with a graph distance from T
Identify the concave edges of a manifold mesh

Given a watertight manifold mesh representing the boundary of a solid, orient its shells

Compute the genus of a shell

Smooth a shell
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