Advections with Significantly Reduced
Dissipation and Diffusion

ByungMoon Kim, Yingjie Liu, Ignacio Llamas, Jarek Rossignac
Georgia Institute of Technology

Abstract— Back and Forth Error Compensation and Correc-
tion (BFECC) was recently developed for interface computation
using a level set method. We show that BFECC can be applied
to reduce dissipation and diffusion encountered in a variety
of advection steps, such as velocity, smoke density, and image
advections on uniform and adaptive grids and on a triangulated
surface. BFECC can be implemented trivially as a small modifica-
tion of the first-order upwind or semi-Lagrangian integration of
advection equations. It provides second-order accuracy in both
space and time. When applied to level set evolution, BFECC
reduces volume loss significantly. We demonstrate the benefits
of this approach on image advection and on the simulation of
smoke, bubbles in water, and the highly dynamic interaction
between water, a solid, and air. We also apply BFECC to dye
advection to visualize vector fields.

Index Terms— Advection, Diffusion, Dissipation, Fluid, Smoke

|. INTRODUCTION

In computer graphics applications, such as fluid simulation
and vector field visualization, various properties, including
velocity vector components, smoke density, level set values,
and texture or dye colors, must often be transported along
some vector field. Those transportations, referred to as advec-
tion, can be performed on various grids such as uniform and
adaptive grids or triangulated surfaces. Here are five common
uses of advection in computer graphics:

« Velocity advection transports the velocity field along the
velocity itself. This step is required in all non-steady flow
simulation based on the Navier-Stokes equation.

« Smoke density advection transports smoke along the ve-
locity field.

« Sometimes, we may want to advect a colored image,
which may be thought of as texture or colored smoke.
We call this process image advection.

« When one uses a level set method [1] to smulate a
free surface or a two-phase flow such as a water surface
simulation, the level set values must be transported as
well. We refer to this process as level set advection.

« One may want to visuaize a vector field by advecting dye
on the vector field. We call this process dye advection.

Advection steps can be implemented by an upwind [2], [3]
or a semi-Lagrangian [4] method. Due to its stability for large
time steps, the latter is often preferred. These two methods can
be implemented with various order of accuracies, for example,
first, second, and higher-order accuracies. Despite their low
accuracy, first-order methods are popular in computer graphics
because of their simplicity. However, lack of accuracy in first-
order methods results in a significant amount of numerical

diffusion and dissipation. For example, in velocity advection,
fluid motion is dampened significantly, which may remove
small scale and even large scale motions. In smoke density
advection, a premature dilution of smoke occurs, preventing
simulation of weakly dissipative and diffusive smoke. In level
set advection, significant volume loss takes place. In dye
advection, diffusion causes blur and the dissipation produces
dark patterns or even an early termination of the trajectory.

Researchers have proposed solution to each of these prob-
lems. For dye and texture advection, combining first-order
advection and particles increased the accuracy [5]. For level
set advection, the particle level set method [6] produces little
volume loss. For smoke advection, cubic interpolation reduces
diffusion and dissipation [7]. For velocity advection, small
scale motions can be maintained by adding vorticity [7],
[8], by using particles [8], [9]. All of these solutions can
be considered as problem-specific enhancements of the first-
order advection. We notice that the FLIP method, introduced
recently in [10], advects propertieswith particle, and therefore,
may be applied to any advection achieving zero dissipation.
However, in advecting dye or smoke from a source, new parti-
cles may have to be created as smoke or dye volume grows. In
contrast, a purely Eulerian-based high-order advection method
can reduce dissipation and diffusion significantly while taking
advantage of the simplicity of the Eulerian grid.

There are many such high order methods for improving the
accuracy in the advection steps, such as the WENO scheme
[11], [12] and the CIP method [13], [14]. Generally speaking,
higher order methods are more difficult to implement, in
particular for non-uniform and adaptive meshes. Also because
the solutions may contain singularities, specia treatments are
usually necessary. In [6], Enright et. al. made the particle level
set method [15] more efficient and easier to implement by
using a first order semi-Lagrangian method to compute the
level set equation while propagating the particles with higher
order methods, which produces high resolution near interface
corners. Local mesh refinement near non-smooth regions of
the solutions is an effective technique for improving the ac-
curacy. However, it increases the implementation complexity,
particularly when a sophisticated underlying numerical scheme
isused. Thereis also atrade-off between the levels of adaptive
mesh refinement and the formal order of accuracy of the
underlying scheme. We propose to improve on al the issues
addressed above and demonstrate the accuracy of our methods
for a number of problems. The underlying scheme we use
for computing the advections is the “back and forth error
compensation and correction” algorithm (BFECC) [16] and



[17]. When applied to the first order semi-Lagrangian Courant-
I saacson-Rees (CIR) scheme, this BFECC method has second
order formal accuracy in both time and space. It essentialy
cals the CIR scheme 3 times during each time step, and thus
maintains the benefits of the CIR scheme such as the stability
with large time steps, convenience for use in non-uniform
meshes, and low cost in computation.

In[16], [17], the authors proposed BFECC as an alternative
scheme for interface computations using the level set method
and have tested it on the Zalesak’s disk problem and simple
interface movements with static or constant normal velocity
fields on uniform meshes. We have found it beneficia to
adapt the method to level set advection in fluid simulations
that contain complicated dynamically varying velocity fields.
It is also useful to further apply the method to other types of
advections.

We apply BFECC to the various advection problems men-
tioned earlier and show that BFECC provides significant
reduction of dissipation and diffusion for all these applications.
The ideas presented here were introduced in a workshop
paper [18]. Here, we provide a more detailed treatment of the
proposed solution, and new examples of applicatoins to dye
advection, advections on a triangle mesh, and on an adaptive
guad-tree mesh.

Il. PREVIOUS WORK

In fluid simulation, stability problems in earlier work
[19] were successfully remedied [4] by introducing semi-
Lagrangian advection and implicit solve for the viscosity
term. The pressure projection is also introduced to graphics
community to enforce incompressibility of the fluid. This
solution is popular for the simulation of incompressible fluids
such as smoke [7] and for the more challenging free surface
flows [15], [20].

Semi-Lagrangian velocity advection [4] comes with built-
in dissipation, i.e., the velocity dissipates quickly since the
linear interpolation in the first-order semi-Lagrangian produces
large error. In [7], vorticity is added to generate a small
scale fluid rolling motion. Recently in [8] and [9], vortex
particles are used to transport vortices without loss. In [14],
the authors addressed this built-in dissipation problem by
increasing advection accuracy. They adopted the constrained
interpolation profile(CIP) [13] method, which increases the
order of accuracy in space by introducing the derivatives of
velocity to build a sub-cell velocity profile. A nice feature
of this CIP method is that it is local in the sense that only
the grid point values of one cell are used in order to update
a point value. However, in this CIP method, all components
of velocity and their partial derivatives should be advected,
increasing the implementation complexity and computation
time, especially in 3D. In addition, it is aso worth noting
that CIP has higher order accuracy in space only. Therefore,
high order integration of characteristics is also necessary. In
contrast, the BFECC method used here can be implemented
more easily and exhibits second-order accuracy in both space
and time and is local during each of its operationa steps.

Song et a. [14] focused on applying CIP to generate more
dynamic water surface behavior. We demonstrate that having

less dissipative and diffusive advection provides significant
benefits in smoke simulations. Thisis illustrated in the middle
five images of Fig. 6, where a large amount of dissipation
makes the smoke look dark. In contrast, when BFECC is used,
the smoke keeps its full brightness throughout the simulation,
shown in the last five images.

The introduction of the level set method to fluid simulation
in [20] allows the realistic smulation of fluids with complex
free surfaces. The remaining problem was volume loss in the
level set method. The solution, known as the particle level
set method, proposed subsequently in [15], turned out to be
very successful for volume preservation. This method has been
broadly used in recent fluid studies, including [6], [8], [21]—
[23].

Fluid simulation on a curved surface domain has been the
subject of several studies. Recently, [24] introduced unstruc-
tured lattice Boltzmann model for fluid simulation on triangu-
lated surfaces. For the advection of smoke, the first-order semi-
Lagrangian advection is used on a flattened neighborhood.
The author of [25] mapped the surface on a flat domain
and then solved the Navier-Stokes equation. The advections
still remain first-order. The authors of [26] proposed to do a
semi-Lagrangian advection directly on triangular mesh without
mapping it onto a flat domain. The accuracy is still first
order and dissipation and diffusion cannot be smaller than the
amount that already exists in the advection step. We show
that BFECC can be easily applied to the advections on a
triangulated domain.

For all simulations of free surfaces in this paper, we use
the two-phase fluid model and variable density projection,
both of which have been broadly studied in mathematics and
fluid mechanics [27]-{29], and have been used in graphics
applications in [23], [30], where the authors simulated air
bubbles rising and merging and in [13], [14], where splash
style interactions between water surface and air are studied.

I1l. THE BFECC METHOD

In this section, we review the BFECC method introduced in
[16]. Since we want to apply it to various advections, we use
¢ to denote an advected quantity and reserve the symbol ¢ for
the level set function through the presentation of this paper.
This ¢ can be the velocity components u,v,w, smoke density,
the RGB color of an image or a dye, or level set function ¢.
For a given velocity field u, ¢ satisfies the advection equation

¢+u-Vo=0. Q)

We briefly describe the BFECC method here. Let L be the
first-order upwinding or semi-Lagrangian integration steps to
integrate (1), i.e.,

(er-l = L(u>(pn)' (2)
The implementation of L(-,-) can be found in [2], [3]. With
this notation, the BFECC can be written as follows:

n+1 _ n 1- n_ —
o =L(u o3 (0-0)) ©

where ¢ =L (—u, L(u,¢").



Fig. 1. In the right column, a highly dynamic behavior of water interaction
with air, air bubbles, and a solid is made possible by the two-phase formulation
and the BFECC-based reduction of the dissipation in the velocity advection
step. In the left column, the BFECC is turned off and the splash is reduced.
The grid resolution is 812 with Ax= 0.0125m, and the time step At = 0.002sec.
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Fig. 2. Sketch of computing error by comparing with the forward/backward
advected value and then compensating error before the final advection. Notice
that this is only a sketch and should not be interpreted geometrically. For
example, e is not a vector.

As illustrated in Fig. 2, one may understand this method
intuitively as follows. If the advection step L(,-) is exact, the
first two forward and backward steps return the original value,
i.e, o" = ¢. However, this is not the case due to the error
in advection operation L. Suppose L contains error e. Then
the first two forward and backward steps will produce error
2e, i.e, @ = ¢"+ 2e. Therefore, the error can be computed
ase=—1(¢"— ¢). We subtract this error e before the final
forward advection step. Then the equation (3) becomes ¢ "1 =
L(u, " —e). This step will add an additional e, which will be
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Fig. 3. On the top, we used first-order velocty advection that shows damped
fluid motion. On the bottom, we have added the simple BFECC method.
Notice the small scale details as well as large scale fluctuations. The grid size
is 81x141 with Ax=0.001m, and the time step At = 0.005sec.

cancelled by the subtracted amount —e. This method is proven
to be second-order accurate in both space and time [16], [17].

A. Implementation of BFECC

In this section, we provide a pseudo-code to demonstrate
the simplicity of the BFECC implementation. The function
First-Order-Step(u, v, ", ") implements L(-,-), i.e., upwind
or semi-Lagrangian integration of the scaar field ¢. Then
BFECC is implemented as follows:

First-Order-Step(u, v, ¢", ¢*)
First-Order-Step(—u, —V, ¢*, @)
¢ = 9"+ (¢"—¢)/2
First-Order-Step(u, v, *, p"*1)

IV. APPLICATIONS OF BFECC FOR VARIOUS ADVECTIONS
A. BFECC for Velocity Advection

We can use (3) to implement the velocity advection step in
solving the Navier-Stokes Equation. In this case, ¢ becomes
u,v, and w. We show that BFECC can reduce the damping in
the first-order semi-Lagrangian implementation of velocity ad-
vection, which is a well-known drawback of semi-Lagrangian
advection [4].

For a multiphase flow, this BFECC needs to be turned
off near the interface to prevent velocities of different fluids
with different densities from mixing, which creates momentum
changes. The BFECC may be turned off whenever velocities
of different fluids are mixed in backward and forward steps.
However, in practice, semi-Lagrangian advections, including



Fig. 4. Simulation of a sinking cup on a 723 grid (Ax = 0.01428m, At = 0.00333sec). The top row is simulated without the BFECC in both level set and
velocity advection steps, where the motion of the cup is damped (the cup does not dive deep into the water) and the detail of the surface is poor. In the center
row, this poor surface detail is enriched by turning BFECC on for the level set step, but the cup motion is still damped (the cup goes deeper but it does not
tumble). Finaly, in the bottom row, the dampening in motion of the cup is remedied by using BFECC for the velocity advection step as well, making the

cup sink deeper and tumble as well.
- . |
\

Fig. 5. Advection of an image along with the up-going flow field on 101x251 grid (Ax = 0.0025m, At = 0.01sec). The first image shows the initial location
of the image. The next six images are computed without the BFECC, where the dissipation/diffusion are significant. The last six images are computed with

the BFECC, where the dissipation is greatly reduced and the features of the image can be identified.

BFECC, produces artifacts when the CFL number is greater
than 4 ~ 5. Therefore, the user may need to adjust the time step
to meet this requirement. Assuming that the CFL number is
less than 5, we simply turn BFECC off, i.e., use the first-order
semi-Lagrangian, for the grid points where |¢| < 5Ax. For a
similar reason, we aso turn BFECC off near the boundary
of the computational domain. Also notice that this turning-off
strategy is only applied for the velocity advection. In other
advection applications, we apply BFECC everywhere.

As shown in Fig. 3, applying BFECC adds details as well
as large scale fluctuations in smoke motion. Notice that these
details and large-scale fluctuations cannot be obtained from
the vorticity confinement and vortex particle methods [7],
[8], which add only small scale rolling motions. We also
performed the same simulation in a coarser grid of 100x40.
In this case, the flow did not fluctuate at all around obstacles
with first-order semi-Lagrangian advection. However, when
BFECC was added, the flow fluctuated as it did in the refined
grid. We conclude that BFECC can create physically realistic
fluctuations in a coarse grid.

Velocity advection can be important also when rigid bodies
are involved. In Fig. 4, the cup does not tumble due to the
velocity dissipation in the first-order semi-Lagrangian method,
while the cup does tumble when BFECC is applied to the
velocity advection step.

B. BFECC for Smoke Density and Image Advection

We also apply BFECC to the advection of smoke density
for smoke simulation. In Figs. 5 and 6, we show that BFECC
can reduce dissipation and diffusion significantly. As shown
in [16], [17], BFECC is linearly stable in the 12 sense, i.e,
||al|5 = % |aij|? is bounded, when the velocity field is constant,
where a is the smoke density. However, density values a;j
can become negative or greater than 1.0 for some grid points.
In our simulation, the excess amount was negligible, so we
simply clamped those values to stay in [0,1].

To measure the diffusion/dissipation amount, we design a
test problem similar to the Zalesak’s problem. Instead of the
notched disk in the Zalesak’s problem, we place a color image
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Fig. 6. Simulation of smoke in a bubble rising and bursting on a 41 x 101 grid (Ax = 0.0025m, At = 0.01sec). The far left image shows the initial bubble.
The next five images are without BFECC, where the dissipation/diffusion in the semi-Lagrangian step deteriorate the density of smoke. The last five images
simulated with BFECC show significantly reduced dissipation/diffusion, and the smoke is in full density throughout the simulation. All simulation parameters
between the two runs are identical, except for the usage of BFECC in smoke advection. Therefore, the only difference is the density of smoke. Also, notice

that the simulation time differs by less than 1% since the bulk of the computation time is dominated by the pressure projection step.

Fig. 7. Test of dissipation and diffusion on an image advection problem along
a circular vector field (8012 grid, CFL = 6.29). (b) is the top center portion
of the origina image (a). (c) is obtained by rotating it 360 degrees using
the first-order semi-Lagrangian scheme, where one can see a large amount
of dissipation, diffusion, shrinkage of image, and position error. These errors
are significantly reduced in (d), where BFECC is used. The blue background
region is, in fact, in black, but it is rendered as blue to illustrate the region in
which the color is not diffused. (e)-(g) are the same test with another image.
Notice the position error in (f) due to the lack of accuracy in time. This is
fixed in (g), where BFECC is applied.

and rotate it 360 degrees and then compare it with the original
image as shown in Fig. 7. As shown in (d), the dissipation
of the color is significantly reduced with BFECC. During
advection, the image is a so diffused to the neighboring region.
To visualize the diffusion amount, we plot background pixels
as blue to show the region where the image has been diffused.
As shown in (d), the color of the object has almost no diffusion
into neighboring region when BFECC is used. Also notice that
the position of the image is different from the original location
in (f) due to an error in time integration. This is fixed again
in (g), where BFECC is used, showing that due to the second-
order time accuracy of BFECC, the image follows the vector
field more precisely. The computation time was 0.156 seconds
(without BFECC) and 0.36 seconds (with BFECC) per frame
on a 3GHz Pentuim4.

C. Dye Advection for Vector Field Visualization

One way to visualize a vector field is to advect a dye
on it. A natural approach would be to use the first-order
semi-Lagrangian advection method. However, it introduces
severe diffusion and dissipation. As shown in the left image
of Fig. 8, the result contains a large amount of diffusion
and dissipation. This problem has been addressed by several
researchers. The authors of [31] applied the level set method to

Visualization of the Van der Pol oscillator on a 407 grid (Ax =
0.000625m, At = 0.005sec). The left image shows dye advection with first-
order advection. The right image shows dye advection with BFECC, which
produces reasonable visualization of the vector field.

Fig. 8.

advect the dye without diffusion. Their approach requires the
implementation of level set together with a careful treatment
to redistancing to prevent volume loss. It also alows only
one dye color. In [5], the authors combined semi-Lagrangian
and Lagrangian particle advection of dye, which requires an
additional non-trivial amount of implementation. In contrast,
BFECC requires only a trivial amount of code, and alows a
convincing visualization of the vector field, as shown in the
right image in Fig. 8.

D. BFECC for Level Set Advection

Even though BFECC till has some volume loss in fluid
simulation, particularly for small droplets or thin filaments, the
performance of BFECC in the fluid simulation is interesting
since it is easy to implement and fast. On regular grids,
the BFECC approach may not quite adequate for level set
advection yet, but its simplicity at least compares well with
the particle level set method.

When we use the BFECC for level set advection, i.e., ¢ = ¢,
redistancing is needed to keep the level set function close to
a signed distance function. We use the following redistancing
equation [27]

Vo
vor @

where w is the velocity vector for redistancing. This equa-
tion can be solved by applying the first-order upwinding

O:+W-Vo =sgn(¢) where w=sgn(¢)
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Fig. 9. The far left image shows an air bubble placed in olive ail at time zero. The next three images are first-order semi-Lagrangian implementation of level
set advection. The last three images are produced using BFECC and simple redistancing and show significantly reduced volume loss. The grid resolution is

60 x 100 x 60 (Ax = 0.0008333m, At = 0.001sec).

in discretizing the term w- V¢. An dternative is the semi-
Lagrangian style integration, i.e, ¢! = ¢"(x — WAT) +
sgn(¢"™)At, where x is the location of each grid point. Hence,
¢"(x —wAT) is the ¢ value of the previous location. Notice
that we do not apply BFECC in the redistancing step.

When these integration formulae for (4) are combined
with BFECC, redistancing tends to corrupt good ¢ values
computed from the second-order accurate BFECC. Thus, if
redistancing is turned off near the interface, good ¢ values
are not corrupted. The conditions in which redistancing is
turned off are provided in [16], where significant enhancement
was shown in the Zalesak's problem. This simple redistancing
is crucial for preserving volume [16], but easy to implement
since it simply requires redistancing at points where at least
one of the following two conditions is met.

e When the grid point is not close to the interface, i.e.,
when ¢; j has the same sign as its eight neighbors.

e When the dlope is sufficiently high, i.e,
when [ j — ¢i+1j| > L1AX OF [ ] — @i ji1| > 1-1AY-(5)

E. Level Set Advection on Triangulated Surfaces

We have applied the BFECC to the advection of a scalar
field on a triangulated surface. On this surface domain, we
explore the advections of a level set. For the first-order semi-
Lagrangian advection of this level set, one needs to trace
along a vector field defined on a curved surface. The tracing
on this curved surface is more complicated than that on a
planar domain since the velocity vector should be steered to
remain tangent to the surface. On a triangulated piecewise
flat domain, this steering occurs when the tragjectory moves

Fig. 10. Steering the directions (from pink to red) so that the angles in the
two sides (green and blue) are the same.

to a different triangle by crossing an edge or a vertex. The
solution to this steering problem is similar to [26], but we
explain it in the following way. We perform this edge or vertex
crossing steps in a refraction-free manner, i.e., we aways
proceed in a direction in which the angles of the two sides
of the resulting trgjectory are identical, as shown in Fig. 10.
Using this approach, we can follow the velocity field on the
surface, and therefore, we can implement the first-order semi-
Lagrangian advection step.

Once this first-order advection is implemented, BFECC can
be trivially added by calling it three times, as in section I11-A.
We aso implement the simple redistancing strategy similar to
(5). Let ¢; be the level set value at the i ™" vertex, and .4 be
the set of indices of the vertices neighboring to the i ™ vertex
and let x; be the location of i " vertex. The simple redistancing
condition on a triangle mesh is

« ¢i has the same sign as its neighbors.
o |0 —¢j| > L1||x; — x|, for some j € 4.

These two simple schemes reduce smoothing and volume and
shape changes of the disk significantly, as shown in Fig. 11.

For fluid simulation on a triangulated surface, one needs to
transport a velocity field as well. The velocity vector should
always remain on the surface. The authors of [26] also provide
a solution to this problem by steering the coordinate frame
where the vector is represented. Steering was performed in
a way that minimized the twist. Notice that this approach
is a discretized version of the parald transport, which is
known as a method for transporting a coordinate frame on
manifolds [32]. Using this vector field transport idea, one may
implement fluids with free surfaces on a triangulated surface.
Since BFECC can significantly improve level set advection as
illustrated in Fig. 11, it could be combined with [26] to create
a fluid ssimulator on a triangulated surface.

Computation of Gradient: The redistancing wind w in
(4) contains a gradient term V¢. In this section, we show
the computation of gradient using a precomputed gradient
operator.

Let Agij = ¢j — ¢ and let Axjj = Xj — X, where x; is the
x-coordinate of xj. Similarly, define Ay;j and Azj. Then, we
can express the variation of ¢ in discrete form.

Adij = AXij + yAYij + 9AZj

Viesi  (6)



Fig. 11. Advections of the Zalesak’s disk on a sphere. The far left image shows an initial disk. The middle two and right two images show the disk after one
and two rotations about the vertical axis with first-order advection (middle) and BFECC advection (right). The mesh has 18,000 triangles and 9,002 vertices
The time step At = 0.01.

Fig. 12. Simulation of smoke on an adaptive quadtree mesh of maximum resolution 512 (At = 0.0001, Ax = 0.1m/512 at maximum resolution). The top row
is without BFECC, where the smoke diffusion and dissipation are large. When a lesser diffusive and dissipative smoke is needed, one can trivially implement
BFECC and generate a smoke with significantly reduced dissipation and diffusion, as shown in the bottom row, which is simulated with BFECC. The amount
of diffusion and dissipation is controlled by adjusting the diffusion and dissipation coefficients in the diffusion and dissipation steps, respectively. Thus,
BFECC decouples advection from dissipation and diffusion steps. The last column shows quadtree grids that correspond to the results in the third column.

This system of equation can be written in a martix form. Finally, V¢ is computed as

Adij AXij,  AYij,  AZj, S (AEAs)flAE, d . As—AS
where d = | A% A | Mz AV Azj 1
Notice that when the mesh is not deforming, S (AEAS) Al €
Adijy Mjey - AVijn Ay RN js constants and can be precomputed as a gradient

. . . (8) operator.
and n; isthe number of neighbors of i " vertex. The least square

solution of (8) is F. BFECC for Adaptive Mesh

In an adaptive mesh such as an octree [33], the interpolation
required for semi-Lagrangian advection is more complicated
to implement. This complexity is often aready high in the
simplest linear interpolation. Therefore, higher order nonlinear

Vo =Ald (9)

where AT is the Moore-Penrose pseudo inverse of A. Now,
suppose we represented V¢ in local coordinate of any two
orthonormal tangent vectors s1,5, and the normal vector n.

Let S = [s1 5o € R®2. Then, each row-vector of A can be
represented by the s1,s, and n, i.e,

ST

A=[ AS An ] [ nT } , ASeR"2 AnecR"*! (10)

Suppose the surface is locally smooth, then An is small and
can be neglected.

At~ (AsST) =s(As)" (12)

interpolation tends to be much more complex. This superb
complexity of high-order interpolation can be easily avoided
when one uses BFECC. To verify the applicability of BFECC
on adaptive mesh, we implement a smoke simulator on a quad
tree mesh similar to [33] and show that it can reduce the
diffusion of smoke. Dueto little diffusion obtained by BFECC,
we can simulate a thin filament of smoke. Since the smoke
remains in a thin region, the mesh is refined only in the thin



region. Notice that when one uses first-order advection, smoke
will diffuse into neighborhood quickly, and a mesh needs to
be refined in larger region. The benefits of BFECC on this
quadtree mesh is illustrated in Fig. 12.

V. ADDITIONAL DISCUSSIONS
A. Fluid Smulation Overview
Consider the following Navier-Stokes equation

au 1
Fi —u-Vu+vV.-(Vu) — EVP+f.

We follow the operator splitting steps proposed in [4] except
for the advection step, in which we use BFECC, and for the
projection step, in which we use the variable density pressure
projection. We use the standard staggered grid [7]. Suppose all
termsin (13) except for — %VP aretreated, and let the velocity
obtained so far be . The fina step is applying the variable
density pressure projection step to enforce the continuity
equation V-u =0, i.e., solving the equation V - (%VP) =V.i.
Its first order discretization is
At Pi—l.j _Pi.j Pi+1.j _Pi.j Pi.j—l_Pi.j Pi.j+1_Pi.j

=2 hi-g i+ (14)

1 /. . . .
= Ax <ui+%,j “Uigj Vi _Vi,j—%> .

We assume Ax = Ay here and through the rest of the
presentation. The extension to 3D is straightforward and hence
omitted. This first order approximation is identical to [14].
Higher-order formulations can be found in [34], [35]. If p
is constant, we have the pressure projection 2V2P =V . {i
introduced in [4]. We also include a simple implementation of
surface tension similar to [35].

(13)

Pitdj

B. Notes on Boundary Conditions and CFL Number

In ssimulation of liquid, only ceiling is open and all other
boundaries (bottom, left, right, front, and back) are closed
so that the water does not flow outside the domain. For
smoke simulation, the top and bottom are open to create an
upwaed air flow. We can open or close walls by choosing the
proper boundary conditionsin the pressure projection step. For
open walls, we used the Dirichlet condition with an ambient
pressure value of zero, and for closed walls, we used the
Neumann condition with zero slope (and the same pressure).

For velocity advection, we used Dirichlet condition (zero)
for closed wall and Neumann condition (zero slope) for open
boundary. For smoke, and image advections, we used zero
(Drichlet) smoke density, and image color for all boundaries.
For level set advection, we used Neumann condition with zero-
slope, i.e.,, whenever we need a value outside the computa
tional domain, we used the value at the point closest to the
domain.

Even though semi-Lagrangian advection is unconditionally
stable, BFECC applied to semi-L agrangian advection produces
grid artifacts when CFL number is larger than 4~5. Therefore,
we choose a small enough time step so that the CFL number
does not exceed this bound for most of the time. We did not
perform adaptive time stepping to strictly ensure CFL bound.
Instead, we simply choose small enough time steps, which are
provided in figure captions.

C. Discussions

We test BFECC in different fluid simulations. We simulate
air-water and olive oil-air interactions, whose properties are
provided in Table I. Water is rendered in a bluish color, and
olive il is rendered in a yellowish color. We use the PovRay
(http://povray.org) to render images.

plkg/m®]  v[n?/sec]  Surf. Tension [N/m]
ar 1.125 1.7x10°°
water 1000 1.0x10°6 0.07
olive oil 910 9.2x10°° 0.035
TABLE |

PROPERTIESOF FLUIDS USED IN SIMULATIONS

In Fig. 4, we simulated interactions between a cup, air,
and water. The cup is released upside down near the water
surface. Due to its weight, the cup sinks deep into water,
but it soon rises again because of the air in it. However, in
the top, where we turned BFECC off for velocity advection,
the water is dissipative, preventing the cup from tumbling. In
the bottom, we use BFECC for velocity advection where the
velocity dissipation is small, and hence, the cup can tumble
180 degrees. This example indicates that reducing velocity
dissipation could be important in simulating fluid and rigid
body interactions.

We implement the rigid fluid method [21] to simulate rigid
body and fluid interaction in Figs. 1 and 4, where buoyancy is
automatically obtained by applying variable density projection
similar to [36]. We use multiple pressure projectionsto address
the seeping problem mentioned in [21]. We found that the
angular momentum of the rigid body tends to be reduced per
projection. Therefore, we reinforce the angular momentum
per each projection step. This multi-projection treatment is
slow but easy to implement. The effect of this simple multi-
projection approach is illustrated in Fig. 13. Notice that the
seeping problem was solved with only requiring 2 projection
steps (one to compute the coupling force and one to ensure
water does not leak into the solid) in [36].

The computation time varies with the complexity of the fluid
motions. In a ssimple bubble rising situation without a rigid
body, it took a few seconds per time step using 50° mesh.
The cup example in Fig. 4 has multiple pressure projections,
taking about 30 to 130 seconds per time step on a 702 grid.

VI. CONCLUSION

We have shown that the BFECC scheme can be used
to improve various advection steps. Once the simple first-
order upwinding or semi-Lagrangian steps for velocity, smoke
density, image, dye, or level set advections are implemented,
BFECC can be added with a trivial amount of code. We show
that this simple extension yields significantly reduced diffusion
and dissipation in the four advection steps of the fluid ssimu-
lation, including two-phase flows and rigid bodies and in dye
advection for vector field visualization. We aso show BFECC
is valid for various domains such as uniform, quadtree, and
triangulated domains. The benefits of the proposed approach
are illustrated in the accompanying video.
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Fig. 13. Dropping a cup into water on a 51x101 grid (Ax = 0.01m, At = 0.005sec). The far |eft image shows the initial configuration. The three images in
the middle are with two projections and show a significant amount of air lost. The three images on the right are with nine projections. They show that enough
air is trapped inside the cup, causing the heavy cup (p = 1300kg/n?) to rise again. Also, notice the patterns of the smoke that are diffused or dissipated little,
thanks to the smoke advection, using BFECC in both cases.
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