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ABSTRACT1

We define b-compatibility for planar curves and propose three2

ball morphing techniques (b-morphs) between pairs of b-3

compatible curves. B-morphs use the automatic ball-map4

correspondence, proposed by Chazel et al. [11], from which5

they derive vertex trajectories (Linear, Circular, Parabolic).6

All are symmetric, meeting both curves with the same an-7

gle, which is a right angle for the Circular and Parabolic.8

We provide simple constructions for these b-morphs using9

the maximal disks in the finite region bounded by the two10

curves. We compare the b-morphs to each other and to other11

simple morphs (Linear Interpolation (LI ), Closest Projec-12

tion (CP), Curvature Interpolation (CI ), Laplace Blend-13

ing (LB), Heat Propagation (HP)) using seven measures of14

quality deficiency (travel distance, distortion, stretch, local15

acceleration, surface area, average curvature, maximal cur-16

vature). We conclude that the ratios of these measures de-17

pends heavily on the test case, especially for LI, CI, and18

LB which compute correspondence from a uniform geodesic19

parameterization. Nevertheless, we found that the Linear b-20

morph has consistently the shortest travel distance and that21

the Circular b-morph has the least amount of distortion.22

Categories and Subject Descriptors23

I.3.7 [Computer Graphics]: Two-Dimensional Graphics24

—Animation25
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1. INTRODUCTION29

1.1 Problem statement30

A variety of techniques have been proposed for computing31

automatically a morph between two curves P and Q in the32

plane (see [28] and [2] for examples). In this paper, we33

present a new family of morphs, which we call the b-morphs,34

and discuss two related issues: (1) How to compare different35

Figure 1: A morph between an apple and pear along
Circular b-morph trajectories (top left).

morphing solutions and (2) How do the b-morphs introduced36

here compare to other approaches.37

1.2 Motivation and applications38

Morphing is a fundamental tool in animation design where39

in-between [10] frames are produces from a sparse set of key-40

frames that are often designed by lead artists [48]. Although41

several successful attempts at automating the construction42

of in-between frames have been proposed [33], the artist re-43

sponsible for in-betweening like to have control over corre-44

spondence and the trajectories selected landmarks or stroke45

end-points. These specifications are difficult to automate46

because they involve aesthetic judgement, style guidelines,47

and context semantics about the relative 3D motions of the48

strokes and their mutual occlusions.49

Once these matching and control trajectories are given, the50

overall problem is naturally broken into a series of tight in-51

betweening taskss [38]. These are viewed as tedious and52

hence are a prime candidate for artist-supervised automa-53

tion. In most of such tight in-between tasks, the goal is to54

generate a small number of intermediate frames between two55

reasonably simple and aligned curve segments.56

At this point, it is unreasonable to ask the artist to identify57

a good set of candidate techniques that promise to gener-58

ate acceptable morphs. Then, rather than offloading upon59

the artist the burden of choosing the best one in each case,60

one may want to compare these techniques to better assess61



the strength of each. This paper is a modest–although we62

hope useful–step in this direction. It may not be the final63

answer to tight in-betweening for several reasons: (1) The64

quantitative quality measures that we use may not reflect65

artistic concerns. (2) For practical reasons, we compare the66

proposed b-morphs to our simple and un-optimized imple-67

mentations of candidate techniques, and not to state of the68

art solutions. (3) We do not take into account the broader69

context of the whole animation, but instead focus on inter-70

polating only the instances of the same stroke in two consec-71

utive key-frames. Nevertheless, we feel that the experiments72

described here are useful and that the conclusions we draw73

from them about the specific benefits of the b-morphs will74

help the reader appreciate their potential.75

Furthermore, the problem (encountered in the segmentation76

of medical scans) of constructing a surface in 3D that in-77

terpolates between each pair of consecutive planar cross-78

sections may be solved [14] using the morphing between the79

projection, onto the same plane, of the two cross-section80

curves. This problem of surface reconstruction has been81

studied extensively [16][6][1][25][17].82

As it was the case for tight in-betweening, our investigation83

of the benefit of b-morphs to the problem of cross-section84

interpolation has limitations. For example, it only considers85

two consecutive slices, instead of building a smooth surface86

through the whole series, as proposed in [7]. However, be-87

cause the b-morph reach the interpolated contours at right88

angles, the projection of these trajectories on the slice plane89

in C1. We expect that this property may help researches90

devise solutions that smooth connect surface sections gener-91

ated by b-morphs.92

Furthermore, the approach is limited to b-compatible curves93

and hence is not suited for dealing with topological changes,94

as discussed for example in [26].95

In both applications, the quality of the morph is impor-96

tant as one typically favors a solution where the anima-97

tion or interpolating surface is smooth and free from self-98

intersections [20] and unnecessary distortions. We show that99

when the curves are b-compatible, the b-morph always satis-100

fies these properties.101

1.3 Contributions102

We propose a family of three new morphing techniques (that103

we call b-morphs) for which the correspondence and the ver-104

tex trajectories are both derived from the maximal disks and105

their tangential contact points with the curves.106

We propose seven measures of quality inadequacy: travel107

distance, distortion, stretch, local acceleration, surface area,108

average curvature, and maximal curvature.109

We use these measures to compare the b-morphs to each110

other and also five simple morphing techniques which we111

have implemented (Linear Interpolation (LI ), Closest Pro-112

jection (CP), Curvature Interpolation (CI ), Laplace Blend-113

ing (LB), Heat Propagation (HP)).114

1.4 Limitation115

Figure 2: Maximal disks (left) and medial axis
(right) with bifurcation disks shown in green

Our b-morph constructions assume that the two curves have116

been registered and are sufficient similar. We provide a for-117

mal definition of compatibility that captures these assump-118

tions for the two situations considered here:119

1. P and Q are each a simple closed loop.120

2. P and Q are open curve segments and share the same121

two end-points.122

Loosely speaking, our compatibility conditions require that123

each maximal disk [46] in the finite region bounded by the124

union of the two curves have exactly one contact point with125

each curve (see Fig. 2).126

Where P and Q are similar but not properly registered,127

one may consider combining a b-morph with the anima-128

tion of a rigid or non-rigid registration [50] or of a smooth129

space warp [8], as was done for image morphs [9]. Numer-130

ous solutions to the automatic registration problem have131

been proposed using ICP [21], automatically identified land-132

marks [36] [27] [37], or distortion minimizing parameteriza-133

tion [51] [42].134

1.5 Structure of the paper135

Section 2 briefly reviews prior art in curve morphing and136

slice interpolation. Section 3 provides a precise definition137

of b-compatibility and contrasts it with a previous discussed138

notion of normal compatibility. Section 4 presents our three139

b-morphs and compares their properties with the closest140

projection morphs. Section 5 defines the seven measures we141

compute and explains our strategy for sampling and for a fair142

integration of these measures over the set of all trajectories.143

Section 6 discusses our results.144

2. PRIOR ART145

A large variety of techniques have been investigated for the146

automatic generation of in-betweening frames or animations147

that morph between two planar curves.148

We only discuss techniques that are appropriate to the tight149

in-betweening problem addressed here. Hence, we do not150

discuss the problems of registration or landmark (salient fea-151

ture) identification.152

First, we consider techniques that assume that the corre-153

spondence between vertices or samples on both curves is154

either given by the artist or computed automatically using155



Figure 3: Example Minkowski morphs between con-
vex (left) and non-convex (right) shapes.

uniform geodesic sampling, minimization of area or travel [25],156

curvature-sensitive sample [19], or optimization of match-157

ing to affine transformations extracted from an example158

morph [47].159

If the correspondence is given, the simplest approach is to160

use a linear interpolation between corresponding pairs. Lin-161

ear trajectories are computed between these pairs of points162

points on P and Q in order to produce morph curves with163

vertices vi = pi + t(qi − pi). We include this Linear Inter-164

polation (LI ) in our benchmark set of approaches that we165

compare to the b-morphs. This näıve approach may lead to166

unpleasant artifacts, such as self-intersections in the inter-167

mediate frames (as for example pointed out by [44]). The168

Linear Interpolation fails to take into account the relative169

orientation and curvature of the curves at the correspond-170

ing points. A Poisson equation method [54] may be used to171

produce better vertex trajectories.172

To take these into account, a popular morphing technique173

proposed by [43] for polygonal curves interpolates the lengths174

of corresponding edges and the angles at corresponding ver-175

tices and use optimization to ensure that the curve closes176

properly. We include a simple version of this approach,177

which we call Curvature Interpolation (CI ) in our bench-178

mark set. When it is applied to open curve segments, we179

ensure that the interpolating frames meet at end-point con-180

straints by retrofitting them through a trivial similarity trans-181

formation (rotation, scaling, and translation).182

A different approach that takes into account the relative183

orientation and curvature of the two curves at the corre-184

sponding samples is to compute the local coordinates of each185

vertex in the coordinate system defined by its neighbors on186

each curve. Then, the corresponding local coordinates are187

average linearly to produce a desired set of local coordinates188

for a given frame. Iterative techniques may be used to con-189

struct a curve that satisfies the two endpoint constraints190

and minimizes the discrepancy between the actual and de-191

sired local coordinates. Variations of these techniques have192

been successfully used [24]. We include a simple version of193

this approach, which we call Laplace Blending (LB), in our194

benchmark set.195

Vertex trajectories and correspondences may also be solved196

by solving a PDE or by computing a gradient field that inter-197

polates the two contours and then following the steepest gra-198

dient to obtain the trajectory of each point or equivalently,199

the in-between frames may be obtained as iso-contours of200

that field. A heat propagation formulation may be used to201

Figure 4: A morph between two offset circles along
Circular b-morph trajectories (top left).

characterize the desired field[18]. We include a simple ver-202

sion of this approach, which we call Heat Propagation (HP),203

in our benchmark set.204

Several approaches for morphing closed curves use compat-205

ible triangulations [4] of their interior [52][29][2] or compat-206

ible skeletons to ensure rigidity [45][13]. Other approaches207

blend distance fields to both surfaces [32][17].208

We separate the approaches that establish correspondence209

using a direct geometric criterion (as opposed to a global210

optimization or feature recognition as discussed above) into211

three categories: (1) Proximity-based, (2) Orientation-based,212

and (3) both Proximity- and Orientation-based.213

The popular distance-based approach is the closest point214

projection, which to each point p on P maps a point q on Q215

that minimizes the distance to p. Variations of this approach216

are used for Iterative Closest Point (ICP) registration [15].217

We include a simple version of this approach, which we call218

Closest Projection (CP) in our benchmark set.219

An orientation-based approach is the Minkowski morph [39]220

and yields satisfying results, even when the shapes are not221

aligned (see Fig. 3 left). For smooth curves, the approach222

establishes a correspondence between points with the same223

normal. Unfortunately, as shown in Fig. 3 (right), the ap-224

proach may yield surprising and self-intersecting frames when225

the two curves are not convex. Hence, we do not include it226

in our benchmark.227

The b-morphs proposed here take into account both prox-228

imity and orientation. We discuss them in detail between229

and compare then against our benchmark set.230

3. COMPATIBILITY231

In this section, we define compatibility between curves.232

A curve is simple if it is planar, connected, free from self-233

intersections, and if it is topologically closed. A simple curve234

is either a loop (no end-points) or a stroke (two endpoints).235

We consider two simple curves, P and Q.236

Given a closed and regularized [49] set X, following [46], we237

say that a disk in X is maximal if it is not contained in238

any other disk in X and we define the medial axis as the239

closure of the union of the maximal disks in X. The closest240

projection of a point m onto a curve P is a set of points241

p ∈ P for which ‖m− p‖ = distance(m,P ).242

Definition 1. B-compatibility: Let P and Q be simple243

curves, such that P ∩ Q is zero-dimensional, P and Q are244



Figure 5: Two curves that are b-compatible, but not
c-compatible.

b-compatible if and only if the following conditions are sat-245

isfied:246

1. P and Q are either both loops or both strokes.247

2. If P and Q are strokes, the endpoints of Q are identical248

to the endpoints of P .249

3. The medial axis M of the finite and closed set X250

bounded by P ∪Q is simple.251

4. Each point m ∈ M has a unique closest projection p252

on P and a unique closest projection q on Q.253

We contrast b-compatibility with the following definition of254

c-compatibility.255

Definition 2. C-compatibility: Two curves, P and Q are256

c-compatible if for every point p on any one of them, the257

closest projection onto the other is a single point.258

A more precise definition of c-compatibility is discussed in [12].259

The term B-compatibility stands for“ball-compatibility”and260

c-compatibility stands for “closest-point compatibility”.261

Two curves are c-compatible when each one can be expressed262

as the normal offset of the other. Two curves are defined as263

b-compatible when each can be expressed as the ball-offset264

of the other, i.e., as the envelope swept by a variable radius265

disk as it rolls on the other curve.266

As shown in Fig. 5, one may easily find cases where two267

strokes are b-compatible, but not c-compatible. In such cases,268

the b-morphs proposed here will work, while the Closest Pro-269

jection (CP) morph may not.270

Let h be the Hausdorff distance [30] between P and Q. Re-271

call that h is the smallest r for which P ⊂ Qr and Q ⊂ P r,272

where the offset [41] Xr is the set of points at distance r or273

less from X.274

We use the term minimum feature size (or reach [22]) as the275

set X defined as the largest r for which Fr(X) = X, where276

the mortar [53] Fr(X) of X is the set not reachable by an277

open ball of radius r that does not intersect X.278

Chazel et al. [11] show that if P and Q are smooth loops279

and their Hausdorff distance is less than the minimum fea-280

ture size (mfs) of both P and Q, then P and Q are b-281

compatible. Note that this is a sufficient, but not neces-282

sary condition. In contrast, Chazel et al. [12] show that two283

curves are c-compatible when their minimum feature size f284

and their Hausdorff distance h satisfy the following relation:285

h < (2−
√

2)f .286

Finally, it has been shown [11] that when two curves are287

b-compatible, their Hausdorff distance and their Fréchet dis-288

tance [3] are identical.289

Through the rest of the paper, we assume that P and Q are290

b-compatible and that M is their medial axis.291

4. B-MORPHS292

In this section, we describe the correspondence used for our293

b-morphs and present the various options for b-morph tra-294

jectories between corresponding pairs of points. The defini-295

tions are independent of the nature of the two curves and296

of their representation. We have implemented these tech-297

niques for two domains: (1) smooth (C1) piecewise circu-298

lar curves [40], and (2) relatively smooth polygons (such299

as those obtained through smoothing or subdivision). Our300

implementation on pairs of b-compatible piecewise-circular301

curves is numerically precise and yields the theoretically cor-302

rect b-morph. Clearly, the implementation for polygons is303

not theoretically correct. Indeed, the polygonized versions of304

two b-compatible curves are not b-compatible, because the305

region they bound must have convex vertices and hence bi-306

furcations in its medial axis. Nevertheless, when the polyg-307

onal curves are reasonably smooth and densely sampled,308

our polygonal algorithm computes b-morphs that closely ap-309

proximate the b-morphs of the original smooth curves and310

are acceptable for animation or surface reconstruction. Be-311

cause most other morphing schemes to which we compare312

our b-morphs work on polygonal curves, we use the polygo-313

nal b-morph implementation to ensure consistency.314

4.1 Ball-map correspondence315

Consider the maximal disk centered at point m ∈ M . The316

ball-map [11] establishes the correspondence between the317

closest projection p of m onto P and the closest projection of318

q of m onto Q. The maximal disk D centered at m touches319

P at p and Q at q, as shown in Fig. 6. The ball-map may320

be viewed as a continuous version of an approach proposed321

by [32] for establishing correspondences between surfaces by322

considering their distance fields.323

A uniform sampling of the ball-map correspondence may324

be computed in several ways: (1) By initially computing325

M as the medial axis of the symmetric difference between326

the two curves using efficient medial axis construction tech-327

niques [23][55] and then generating the closest projections p328

and q for a set of uniformly spaced sample points m ∈ M ;329

(2) By computing the radii of the maximal disks that touch330

p at a set of uniformly spaced samples p; or (3) By simul-331

taneously advancing the corresponding points, p and q, un-332

til one of them has travelled from the previous sample on333

its curve by a prescribed geodesic distance along the corre-334

sponding curve. To ensure a fair comparison with techniques335

that lack the symmetry of the b-morphs, we will use the sec-336

ond (asymmetric) approach, although the first one yields the337

best results.338
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Figure 6: To obtain the point q on Q that cor-
responds, through the ball-map, to point p on P ,
we compute the smallest positive r such that m =
p+rNp(q) is at distance r from Q and return its closest
projection q on Q. Point m is on the median M (red)
and defines the center of the circle tangent at both p
and q. The Circular (black) and Parabolic (purple)
b-morph trajectories are defined by the inscribing
isosceles triangle (p,m, q). The Linear b-morph tra-
jectory is the line segment (p, q).

The details of the construction of this mapping for the case339

when P and Q are piecewise-circular and when they are340

polygonal approximations of smooth curves are provided in341

the Appendix.342

4.2 B-morph trajectories343

For each maximal disk, we consider five paths (curve seg-344

ments) from p to q (Fig 2):345

Hat: The broken line segment from p to m to q (Fig 6346

green).347

Linear : The straight line segment from p to q (Fig 6 yel-348

low).349

Tangent: The shorter of the two circular arc segments of350

the boundary of D that joins p and q (Fig 6 green).351

Circular : The circular arc segment that is orthogonal to P352

at p and to Q at q (Fig 6 black).353

Parabolic: The parabolic arc segment that is orthogonal to354

P at p and to Q at q (Fig 6 violet).355

The Circular and Parabolic paths are trivially defined by356

their enclosing isosceles triangle (∆pmq). For example, the357

Parabolic path is the quadratic Bézier curve with control358

vertices p, m and q and the center of the circle supporting359

the Circular path is the intersection of the tangent to P at360

p and the tangent to Q at q.361

All paths, including the Linear path, are symmetric in that362

the angles where they meet P and Q are the same. Swapping363

the role of P and Q does not affect these segments. Hence,364

the b-morphs derived here are symmetric and may be in-365

P

Q

T

L

NB

M

Figure 7: The associated average curves for the var-
ious b-morph constructions.

verted easily by swapping the role of P and Q and reversing366

time.367

Let l be the midpoint of the Linear path and let L be the set368

of all points l. Note that L is the midpoint locus proposed by369

Asada and Brady [5]. Let t be the midpoint of the tangent370

path and T be the set of all points t. Note that T is the PISA371

proposed by Layton [34] as a variation of the medial axis.372

Let n be the midpoint of the Circular path and N the set373

of all points n. Let b be the midpoint of the Parabolic path374

(quadratic B-spline) and B be the set of all points b. The375

construction of these 4 points, along with m is illustrated in376

Fig. 6.377

The curves M , L, T , N and B usually differ from one an-378

other, but may all be viewed as averages of P and Q. The379

are shown superimposed in Fig. 7.380

A b-morph advances each point p according to uniform arc-381

length parameterization along one of the aforementioned382

paths. A result, sampled at 7 intermediate points along383

each path of the Circular b-morph is shown in Fig. 4.384

5. MEASURES385

We first discuss how we sample space and time. Then,386

we provide details of the measures used here to compare387

morphs.388

5.1 Measure normalization389

Three of the studied morphs (Linear Interpolation, Curva-390

ture Interpolation, and Laplace Blending) assume a given391

correspondence. For simplicity, we use a uniform arc-length392

sampling to produce the same number of uniformly dis-393

tributed samples on each curve. The three b-morphs use394

the ball-map correspondence. The other morphs compute395

their own correspondence. This sampling disparity makes it396

difficult to compute measures for a fair comparison.397

Consider for example the problem of measuring the average398

travel distance. This should be the integral of travel dis-399

tances. The problem is how to fairly select the integration400

element. If for example we use LI morph, then the average401



distance measured for a set of uniformly distributed samples402

will depend on whether we start form P or Q. Since the av-403

erage travel distance is a property of the mapping, and not404

the sampling, a measure that so blatantly depends on the405

sampling is clearly incorrect.406

To overcome this problem, each reported measures is the407

average of two measures, one computed by sampling P and408

one computed by sampling Q. For the first measure, we409

sample the departure curve P using a dense set of samples410

that are uniformly distributed on each curve so as to be411

separated by a prescribed geodesic distance u. For each412

sample pi on P , we compute the corresponding point qi on413

the arrival curve Q so that qi is the image of pi by the414

mapping associated with the particular morphing scheme.415

We compute a measure mi associated with the trajectory416

from pi to qi and the associated weight wi = (d(pi− 1, pi) +417

d(qi−1, qi)+d(pi, pi+1)+d(qi, qi+1))/4. Then, we report the418

normalized weighted average (Σwiai)/(Σwi). For the second419

measure, we sample the arrival curve Q as before using the420

same geodesic distance u. For each sample qi on Q, we421

compute the corresponding point pi on the departure curve422

P , so that qi is the image of pi by the mapping associated423

with the particular morphing scheme. Then, we proceed as424

above.425

5.2 Morph Measures426

We have implemented the following seven measures.427

Travel distance. For each sample pi, we measure mi as the428

arc length of the trajectory to the corresponding point qi.429

Then, as explained in Section 5.1, we report the weighted430

average of these from P to Q and vice-versa.431

Stretch. We define stretch S(P,Q) as the average of the432

integral over time of the stretch factor for an infinitesimal433

portion of the curve. We compute its discrete approximation434

as follows. Let p and p′ be consecutive samples on P . Let435

L(p, t) be the length of the segment of P (t) between p(t)436

and p′(t). We compute S(P,Q) as437

S(P,Q) =
P
t∈[0,1−ε]

“P
p∈P |L(p, t+ ε)− L(p, t)|

”
+

P
t∈[0,1−ε]

“P
q∈Q |L(q, t+ ε)− L(q, t)|

”

Acceleration. Acceleration, or unsteadiness [50], is defined438

as the derivative of the expression of velocity in the local,439

time-evolving frame, and which measures the lack of steadi-440

ness of the motion.441

To compute acceleration, let pt denote the position of a sam-442

ple p at a time t. We approximate the instantaneous veloc-443

ity of pt by the vector ptpt+ε. For each such velocity on a444

morph trajectory, we compute two barycentric coordinate445

vectors BL(ptpt+ε) and BR(ptpt+ε) relative to the left and446

right neighboring triangles Lt and Rt as shown in Fig. 8.447

vt vt+1

Lt

Rt

Lt+1

Rt+1

Figure 8: Computation of acceleration (steadiness)
for a given vector v of the morph trajectory is com-
puted relative to the neighboring triangles (green).

The steadiness at a point pt is then computed as:448

gt = 1
2
‖BL(pt−εpt)−BR(pt−εpt)‖

+ 1
2
‖BL(ptpt+ε)−BR(ptpt+ε)‖

We compute the acceleration measure mi as the sum of the449

gi terms over the trajectory of each point pi and report their450

weighted average, as described above.451

Distortion. At each point along the evolving curve and452

at each time, the amount of distortion is proportional to453

1/cosθ, where θ is the angle between the direction of travel454

and the normal to the evolving curve.455

Figure 9: The b-morph produces a pure rotation
with zero distortion between linear segments in 2D
(left) and planar segments (in 3D).

Let p and p′ be consecutive samples on P and L(p, t) define
the length of the segment pp′. Let V (p, t) define the length
of the segment ptpt+ε. We compute

R =
X

t∈[0,1−ε]

„ 1
2
(L(p, t) + L(p, t+ ε)) · 1

2
(V (p, t) + V (p′, t)

Area(ptp′tp
′
t+εpt+ε)

«

It was shown in [11] that (1) the b-morph is a Ck−1isotopy456

when the inputs are Ck for k ≥ 2 and (2) that the Circular b-457

morph is free from distortion when morphing between line458

segments (in 2D) or planar portions (in 3D) of P and Q459

(Fig. 9).460

5.3 Mesh measures461

In addition to the 2D measures, we also present results of462

3D measures of surface area and also average and maximum463

squared mean curvature [35] of the resulting triangle mesh464



Figure 10: We show the slice-interpolating sur-
face reconstructed using a Closest Projection morph
from-green-to-blue (left), the reverse Closest Pro-
jection morph from-blue-to-green (center), and the
symmetric Circularb-morph (right) which appears
smoother. The amount of local distortion is shown
in red on the 2D drawings.

surfaces. In applications of surface reconstruction from 2D465

planar contours, minimizing the surface area and smooth-466

ness of the resulting reconstruction is often desirable (see467

Fig. 10).468

6. RESULTS469

We first compare the b-morphs to our benchmark set‘ us-470

ing two different test cases, as shown in Figures 11 and 12.471

Then, we compare two of the b-morphs to the best two other472

morphs (Laplace and Heat) on a test case between an apple473

and a pear. The CP morph is not used since it is incompat-474

ible for the cases shown here (Fig. 5).475

The first test case (Fig. 11) shows a morph between two476

offset circles. The b-morphs work even if the two curves477

intersect. Some of the benchmark morphs do not. Hence,478

to accommodate their limitations, we have split the curves479

at their intersections and performed morphs independently480

on corresponding strokes.481

Our experiments demonstrate that the average travel dis-482

tance is the shortest when using the Linear b-morph and483

that the Circular b-morph has the least amount of distor-484

tion. The HP morph is the closest in terms of appearance485

and measure to the Circular b-morph.486

The second test case (Fig. 12) shows a set of symmetric487

‘S’ shaped curves. This example highlights the strength of488

the morphs which compute their own correspondence (HP,489

b-morphs). The other results, which define correspondence490

through uniform arc-length parameterization exhibit extreme491

distortion and travel lengths and produce self-intersections492

with the original curves. Again, the HP morph is closest to493

the family of b-morphs in terms of measure and appearance.494

The final test case (Fig. 13) uses contours representing an495

apple and a pear. We show the best four morphs (Linear b-496

morph, Circular b-morph, Heat Propagation and Laplace497

Blending) and compare their measures. The measures for498

these four are quite similar. Travel distance and distortion499

are still minimized for the Linear and Circular b-morphs,500

respectively. The LB approach comes wins in terms of ac-501

celeration, stretch and curvature.502
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8. CONCLUSION506

We have proposed a family of morphs between curves which507

are b-compatible. All are based on variations of the medial508

axis construction. We have compared them to one another509

and to several other simple morphs. We used four mea-510

sures of morph quality in our comparison, as well as surface511

measures for comparing them as surface reconstruction tech-512

niques.513

Although the Heat morph produces very similar results to514

the b-morph, it has the disadvantage of requiring several515

steps, including rasterization to a grid, PDE solve, and point516

tracking. Due to the rasterization, it would also be sensi-517

tive to inputs which intersect or self-intersect. This method518

would be desirable for more extreme cases that are not b-519

compatible.520

We conclude that for the cases of b-compatible shapes, the521

b-morphs offer a precise and desirable result in terms of dis-522

tortion, travel distance, as well as curvature. The Circu-523

lar b-morph is guaranteed to produce morph curves of Ck−1
524

continuity for inputs of Ck for k ≥ 2.525
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APPENDIX741

A. ADDITIONAL DETAILS742

A.1 Case of partly overlapping curves743

In Section 3, we state that one of the requirements for b-744

compatibility is that the P ∩ Q is zero dimensional. This745

constraint is overcome by removing sections of the curves746

that overlap, breaking them into sub-curves and computing747

morphs on them. This is because the overlapping sections748

of the curves would be static through time and the corre-749

spondence is already explicitly defined.750

A.2 Details of the B-morph construction751

The contributions reported here are primarily theoretical752

and independent of dimension, representation, and imple-753

mentation. However, to convince the reader that the b-754

morph provides a practical solution, we include here the755

details of an exact implementation (Expect for numerical756

round-off errors) for the case of piecewise-circular curves [40]757

in 2D, where P and Q are each a series of smoothly con-758

nected circular-arc edges.759

Now assume p /∈ Q. We compute the corresponding point q760

from p as follows. Consider the parameterized offset point761

m = rNP (p), whose distance from p is defined by the pa-762

rameter r. Here, we have oriented NP (p) so that it points763
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Figure 14: Computing r, m and q from p for a circu-
lar arc Qi.

Figure 15: Lacing steps that divide the gap into slabs

towards the interior of the gap. m is the center of a circle of764

radius r that is tangent to P at p. We want to compute the765

smallest positive r for which m is at distance r from Q, and766

hence for which the circle is tangent to Q. Note that when767

P and Q are b-compatible, to each p corresponds a unique768

point q. The set of points m is the median of the two shapes.769

First consider a circular edge Qi of Q with center c and770

radius s (Fig. 14). We compute r1 and r2 as the roots (s2−771

cp2)/(2NP (p) · cp ± 2s) of cm2 = (r ± s)2 and keep the772

smallest positive solution for which the ball-map (q1 or q2)773

lies in Qi.774

We apply the above approach to all edges Qi of Q. We com-775

pute the r-value for a circle supporting each edge, compute776

the corresponding candidate point q on the circle, discard it777

if it falls outside of the edge, and select amongst the retained778

(r, q) pairs with the smallest r-value.779

We assume that P and Q are b-compatible. There is exactly780

one (r, q) pair for each point p ∈ P . The above process com-781

putes the b-morph correspondence for any desired sampling782

of P or Q.783

To accelerate the computation of the b-morph and produce784

a sampling-independent representation from which different785

samplings densities can be quickly derived, we perform a786

“lacing” process (Fig. 15), to split the gap into slabs, each787

bounded by 4 circular arcs: one being a segment of an edge788

of P , one being an edge-segment of Q, and two being Cir-789

cular b-morph trajectories from a vertex of P or Q to its790

image on the other curve.791

To perform the lacing, we first pick a vertex p ∈ P , where792

two edges of P meet and compute its image q ∈ Q as de-793

scribed above. Then, we perform a synchronized walk to794

“lace” the gap, one vertex of P or Q at a time. At each step,795

p is the start of an edge-segment Pi of P not yet laced and q796

is the start of an edge-segment Qk of Q not yet laced. Let p′797

Figure 16: Lacing splits the gap into slabs. Each
one is bounded by 4 circular arcs (2 edge-segments
and 2 trajectories) and defines a b-morph from an
edge-segment of P to an edge segment of Q.

Figure 17: The equations for computing the ball-
map radius r given an initial point P and direction
(normal) V for mapping to a point Q (left), an edge
AB (center), and a circle C (right).

be the end of Pi and q′ be the end of Qk. Let q′′ be the cor-798

responding point for p′ and p′′ be the corresponding point799

for q′. If p′′ falls on Pi, we record that the edge-segment800

[q, q′] of Qk maps to the edge-segment [p, p′′] of Pi, close the801

current slab with the trajectory from q′ to p′′, and set p to802

p′′ and q to q′ to continue the lacing process, as shown in803

Fig. 15.804

This lacing process splits the edges of P and Q into edge-805

segments and establishes a bijective mapping between edge-806

segments of P and edge-segments of Q that bound the same807

slab. The cost of this pre-computation is O(n) in the number808

of edges in P and Q. It can be performed in real-time, as809

the curves are edited, which is convenient for the interactive810

design of a 2D morph.811


