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Abstract
We explore the automatic recovery of solids from their binary volumetric discretizations. In particular, we propose
an approach, called Pressing, for smoothing isosurfaces extracted from binary volumes while recovering their
large planar regions (flats). Pressing yields a surface that is guaranteed to contain the samples of the volume
classified as interior and exclude those classified as exterior. It uses global optimization to identify flats and
constrained bilaplacian smoothing to eliminate sharp features and high-frequencies from the rest of the isosurface.
It recovers sharp edges between flat regions and between flat and smooth regions. Hence, the resulting isosurface
is usually a very accurate approximation of the original solid. Furthermore, the segmentation of the isosurface
into flat and curved faces and the sharp/smooth labelling of their edges may be valuable for shape recognition,
simplification, compression, and various reverse engineering and manufacturing applications.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid, and
object representations, voxels, isosurfaces, smoothing, segmentation.

1. Introduction

Binary volumetric models have become more important over
the last few years. Binary voxelizations are commonly gen-
erated as the result of segmentation algorithms working on
volumetric medical data [TSH98] that must assign each
voxel to a specific organ. Discrete volume objects are also
created by the voxelization of different input models. Many
reconstruction [EBV05] and model repair [BPK05] algo-
rithms are based on volume binary models, and a number of
volume operations like splitting produce binary information
in the modified regions.

We can formally define the volume binary model as fol-
lows. Consider a solid model M whose boundary ∂M is
smooth and contains large planar faces (called flats). The set
of samples of a regular axis-aligned lattice in a box contain-
ing M may be divided into the set G of blue samples in M
and the set R of red samples out of M. The collection of cu-
bical voxels centered at the blue samples provides a rough
approximation of M.

The cells of the grid are axis-aligned boxes having for ver-
tices a 2× 2× 2 arrangement of neighboring samples from
the grid. Cells with vertices of different colors are said to be
mixed. The axis-aligned edges of the lattice connecting ad-

jacent nodes of different color are called sticks. Let the free
space F be the union of the mixed cells, and let S be a trian-
gulated isosurface in F that separates R from G and has as
its vertices the midpoints of the sticks (Figure 1-a). We ex-
plore isotopies in F that will deform S into S′ by sliding its
vertices along their sticks. In particular, we strive to increase
the smoothness of S and at the same time to reproduce in
S′ close approximations of the flats of ∂M, using only the
information encoded by G and R. The resulting surface S′

(Figure 1-c) is called the pressed S, and the process for com-
puting it is called Pressing.

This is a hard problem, parts of which have been
addressed by other authors previously [Gib98, Whi00,
NGH∗03, Nie04], also using only binary in–out data. How-
ever none of them solves both aspects of the problem
(smoothing and detecting features) in a completely satisfac-
tory way, as discussed in Section 4. In this paper we build on
their contributions, and propose new algorithms that yield
improved results.

In both two and three dimensions, Pressing starts by
grouping the sticks into clusters that can each be stabbed
by a flat separating the red and blue samples at the sticks’
endpoints. Then Pressing slides the sticks’ vertices to their
intersections with the flat and freezes them. The other fresh
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Figure 1: (a) The aliased isosurface was extracted from a 1283 binary voxelization. Its vertices are at the stick midpoints (as
shown by the inset image). (b) The flats were identified and color-coded. The junction points along the boundaries between
planar and non-planar regions are also identified and shown as orange dots. Note that a flat may be connected to other flats
(yellow square) or to smooth faces through sharp edges (red square) and to smooth faces through smooth edges (magenta
square). (c) The resulting pressed isosurface.

(non-frozen) vertices are then adjusted along their sticks to
smooth the isosurface.

We first illustrate this process with a 2D example. A re-
gion M with a boundary ∂M that contains several flats (line
segments) (Figure 2-a) is rasterized (Figure 2-b) on a regular
axis-aligned lattice by painting blue the lattice nodes in M
and red the other ones.

Pressing starts from this red/blue labeling and recon-
structs an isocontour S (Figure 2-c) approximating ∂M. The
mixed cells are the lattice squares having both red and
blue vertices. S is contained in their union. A mixed cell is
bounded by two or four sticks. A cell with two sticks con-
tributes a single edge to S. A cell with four sticks contributes
two edges to S. There are two ways of constructing these
two edges so that they do not intersect. The choice affects
the topology of the result. We have dealt with this problem
in three dimensions in [ABC∗05], which is the solution we
will adopt here. We will not dwell further in this issue, as the
algorithm presented in this paper will work equally with any
correct starting triangulation. For the purpose of this illustra-
tion, one can assume we have an oracle that decides for us
the connectivity to use.

Next, Pressing identifies the flats. It associates each flat
with a subset of the sticks it stabs, so that each stick is as-
sociated with at most one flat. Then it snaps the vertices of
these sticks to the flat that stabs them, by sliding these ver-
tices along their stick (Figure 2-d). These vertices will re-
main locked in this position (we say that they are frozen).
The remaining vertices are said to be fresh. Then Pressing
identifies junction points among the fresh vertices adjacent
to frozen vertices; these will correspond to sharp corners. Fi-
nally, Pressing perturbs the fresh vertices through a custom
smoothing process that retains sharp corners and produces
a polygonal curve S′ (Figure 2-e) that is isotopic to S (i.e.,

may be continuously deformed into S without crossing any
lattice point). Note that S′ is a close approximation of ∂M
and has straight lines, smooth curves, and sharp corners that
match those of ∂M.

In a similar fashion, the 3D version of the Pressing algo-
rithm works as follows:

• We cluster sticks [ABC∗04] into flats that may be stabbed
by a plane (Figure 1-b).

• We identify junction points: vertices between a flat and a
curved region (Figure 1-b) [Section 3].

• We fair non-flat regions by an iterative process, which, at
each step and for each fresh vertex combines arc-length
re-sampling, bilaplacian smoothing, and snapping. These
three operations are performed independently on each X ,
Y , and Z slice [NGH∗03]. Their results are combined for
each stick using a special filter at borders [Section 4].

• Sharp edges are recovered through the use of a modified
Edge Sharpener algorithm [AFRS04,AFSR05] (Figure 1-
c) [Section 5].

In summary, the technical contributions presented in this
paper are:

• We propose to combine segmentation (for recovering
flats) and smoothing (for joining them with smooth tran-
sition surfaces).

• We modify iso-surface smoothing to preserve portions
frozen by equality constraints corresponding to detected
flats.

• We present a new smoothing operator, which preserves
the connectivity of the initial iso-surface representation
and achieves smoothness in the presence of equality and
inequality constraints.

The combination of these advances leads to new function-
alities:
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Figure 2: 2D region M bounded by straight and curved edges (a) Red/blue classification of grid-samples produced by rasterizing
M. (b) Reconstructed isocontour S with vertices at stick midpoints. (c) Straight edges are recovered by snapping the vertices of
each cluster to its flat. (d) A pressed version S′ of S is obtained after 50 pressing iterations. (e) Its straight and curved edges
correspond to those of M.

• Flat regions, curved regions, and sharp edges can be au-
tomatically recovered from raw binary voxelizations even
though scalar field and Hermite data are not available.

• The reconstruction error is therefore bounded, since the
final isosurface is constrained to stab the initial sticks and
is completely contained in the set of mixed cells.

• The isosurface is automatically segmented into flat and
curved regions, which may facilitate shape identification,
manufacturing and assembly planning.

The paper is organized as follows. Section 2 discusses the
previous work and alternative approaches to the problem.
Section 3 describes how large planar regions are identified
along sharp features. In Section 4, a modified bilaplacian fil-
ter algorithm is used to smooth the rest of the isosurface.
Finally, sharp features are recovered as explained in Section
5. Sections 6 and 7 discuss the obtained results and its po-
tential applications.

2. Previous work

Algorithms that extract isosurfaces from a discrete sampling
of a scalar field on a regular grid strive to ensure topological
consistency and geometric fidelity [LC87, NFHL91, Nie03,
Lac96, MSS94, ABC∗05]. Some approaches base topologi-
cal decisions on scalar field values [CGMS00, Nie03, LB03]

or Hermite data [HWC∗05], i.e. the estimates of surface nor-
mals at the vertices. Geometric fidelity often depends on the
delicate ability to recover sharp features (which may follow
smooth curved edges) and to smooth the isosurface away
from these edges. The Extended Marching Cubes [KBUS01]
detects cells containing features and recovers them by in-
serting an additional point in each one of these cells. The
Dual Contouring algorithm [JLSW02] uses a quadratic error
metric to compute a new point inside each of the four cells
around each stick and generates a quad connecting these four
new points. A similar approach is adopted in [VKSM04].
Several of these methods make use of Hermite data and
thus cannot be applied to recover sharp features on binary
grids where only the in/out classification of the grid nodes is
stored.

Mesh smoothing algorithms strive to remove noise and
high-frequency details from a general triangulated surface
by the iterative application of a smoothing operator. Most
approaches derive non-shrinking smoothing operators from
discrete approximations of the Laplacian [Tau95, Kob97,
DMSB99].

One of the first approaches that proposed an algorithm
for smoothing Marching Cubes isosurfaces from binary (and
not binary) volume models is [OB01]. A major concern of
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smoothing techniques is the addition of constraints on the
vertex placement to guarantee the separation of in/out grid
nodes [Gib98,Whi00,NGH∗03,Nie04]. Gibson [Gib98] pro-
posed an algorithm for reducing the terracing artifacts in
isosurfaces extracted from binary grids. It places one ver-
tex in each mixed cell and then links the vertices in face-
connected mixed cells to form a net. This net is relaxed
to reduce the energy measure in the links, and this relax-
ation process minimizes edge lengths, similar to a Laplacian.
A constraint is applied to keep each node in this original
cell. After the relaxation a triangulated surface, which may
not be a manifold, is generated in a straightforward way.
Nielson et al. [NGH∗03] proposed a closely related tech-
nique to our constrained smoothing approach. Like Press-
ing, mesh vertices are moved along the sticks and surface
smoothing is obtained by combining two orthogonal polyg-
onal smoothing operations. However, the displacement for
each vertex in [NGH∗03] is driven by a non-linear optimiza-
tion algorithm that minimizes an energy function defined
on each polygonal curve. A different approach is presented
in [Nie04] which introduced a smoothing operator based on
the dual of the dual surface of a Marching Cubes mesh, lo-
cating the vertices at the intersections of the dual’s quads
with the lattice edges. In [Fre04] a smoothing algorithm for
biomedical data that does not shrink the model is presented,
but it does not restrict the isosurface to remain inside the
discrete band and does not recover features.

The computation of planar regions (flats) approximating a
given geometric model is an important problem with wide
applications in computer vision, modeling and impostor-
based simplification. The technique we apply for detect-
ing flats is related to superfaces [KT94] and face cluster-
ing [GWH01, She01], which group connected sets of nearly
coplanar faces of a given triangulated surface. Superfaces
uses a greedy algorithm to cluster triangles. Each trian-
gle in a superface imposes constraints on the set of feasi-
ble approximating planes for the superface, most notably
that the triangle’s vertices must be within a fixed distance
of the planes. Hierarchical face clustering [GWH01] uses
quadric error metrics [GH97] to iteratively merge adjacent
faces. Cohen-Steiner et al. [CSAD04] adopt a variational
geometric partitioning approach to group faces into best-
fitting regions according to a normal deviation error metric.
Decoret et al. [DDSD03] use an optimization algorithm to
find a set of approximating planes, using a discretization of
a plane parameterization in spherical coordinates, and pro-
pose a greedy optimization algorithm of a density field in
this plane parameterization. The main drawback is the time
complexity of the plane optimization algorithm and the lack
of uniformity in the parameterization of planes.

Unlike the approaches above, which require a triangulated
surface, Andujar et al. [ABC∗04] propose an efficient algo-
rithm for the computation of the largest flat region (tile) in a
discrete geometric model. The input of the algorithm is the

set of sticks. Using a voting-based approach, the plane that
slices the largest number of sticks is computed.

3. Detection of flats and junction points

The first step of Pressing identifies sufficiently large flat clus-
ters of sticks and freezes their vertices on the best fit plane
for each cluster. To do so, we use the approach proposed
in [ABC∗04] for computing maximum tiles (flat regions).

A large flat is characterized by the fact that there is a plane
that separates black nodes from white ones. Thus, the prob-
lem of finding a large planar region is transformed to that of
looking for the plane which intersects the maximum num-
ber of sticks. Every stick votes for all the planes on a given
discretization which intersect them. After this process, the
plane with the largest number of votes is the largest stabbing
plane. This procedure may be repeated by removing from the
vote process all those sticks which stab previously obtained
planes.

As shown in Figure 1-b, the boundary of a flat F may
include three types of edges. (1) Edges connecting F to an-
other flat. (2) Sharp edges connecting F to a curved surface.
(3) Smooth edges connecting F to a curved surface with nor-
mal continuity. Edges of type (1) and (2) will be identified
as sharp edges and will be preserved. Edges of type (3) will
be faired by our smoothing algorithm.

To detect cases where (2) or (3) apply, and before proceed-
ing to the smoothing step, we consider every edge of S join-
ing a frozen vertex Vp on a planar region and a fresh vertex
Vs on a smooth region. Let Np be the normal of the tile stab-
bing Vp. Let Ns be normal to the plane produced by a least
square fit to the fresh vertices on the 2-ring neighborhood
around Vs. When the angle between Np and Ns exceeds 30
degrees, we decide that the edge is a chamfer-edge cutting
through a sharp edge of S and label Vs as a junction point.
After experimenting with various angles, we have empiri-
cally concluded that a 30 degree threshold leads to the best
compromise limiting the false positives and false negatives.

4. Smoothing and snapping

In the next step, we seek to smooth out the surface obtained
thus far, with a special consideration for sharp edges be-
tween smooth and planar portions. To this end, we iterate the
following two steps of our approach: Smoothing and Snap-
ping. Together, they iteratively modify the positions of the
fresh vertices.

The current literature contains different algorithms that
address similar situations, but which fail here for different
reasons. Those which are not prepared to deal with non-
uniform sample spacing do not yield an acceptable result
( [Tau95,Gib98]). Given that the snapping step, which main-
tains vertices on their sticks, preserves non uniformity, it also
affects the smoothing step adversely. In order to compensate
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Figure 3: The smoothing operator (drawn in blue) is com-
puted on the corresponding two isocurves (in cyan). Each
isocurve is on an axis-aligned slice. The resulting combina-
tion is shown in orange.

for this effect, a filtering method like cotangent weights may
be applied. The problem remains though, because vertices’
movement may cause some edges to collapse, which in turn
can produce spikes on the surface. To fix this problem, we
have implemented a constrained modified version of the bi-
laplacian filter.

The 3D smoothing step computes for each fresh vertex
C of S a displacement vector w along the stick I of C. w is
obtained as a linear combination of the two displacements,
computed in each of the two different axis-aligned slices of
the grid that contain I, as shown in Figure 3.

Consider one such slice. Assume that C lies on a curve
where the slice intersects S. To compute the corresponding
displacement, we have developed a variant of the bilapla-
cian smoothing, which uses two points at a fixed arc-length
distance from C along the curve on each side of C. The con-
struction is explained below. The resulting displacement is
projected onto the line supporting the stick I.

Consider five consecutive vertices (A,B,C,D,E) along
a polygonal curve. As shown in Figure 4, the bilaplacian
smoothing displacement vector L2(C) associated with ver-
tex C may be computed as:

L2(C) =
−A+4B−6C +4D−E

4
(1)

We first precompute and store L2(C) for each vertex C.
Then, we move each vertex C to C′′ = C + s2L2(C), where
s represents the step size of the filter at each iteration. Small
values of s need more iterations to converge, but a too large

(a)

(b)

Figure 4: The applied bilaplacian smoothing L2(C) can be
computed as the difference L(C)− L(C′) of two Laplacian
displacements. L(C) moves C to the average C′ of its neigh-
bors. Now assume that B and D have also been moved to the
averages B′ and D′ of their neighbors. −L(C′) moves C′ to
C′′.

value destabilizes the smoothing process. We have found
that a value of s = 0.85 yields good results.

Next, the snapping step projects each displaced vertex
C′′ to the closest point on the line supporting the stick it
came from. Then, it is constrained to its stick to ensure that
the isosurface will not cross any nodes. As a consequence,
the node classification is not altered. Anyway this naïve ap-
proach does not converge to the smoothest possible curve
subject to the constraints (Figure 5). We found that, rather
than approaching zero, some displacement vectors eventu-
ally become orthogonal to the sticks, so that projecting a
displaced vertex simply returned it to its previous position.
Hence, the curve is stuck in a suboptimal shape. Further-
more, when the curve converges to a node of the grid, the
node imposes inequality constraints on the displacements of
vertices of incident sticks. Thus as two or three of these ver-
tices converge towards the node, the arc-length parameteri-
zation of the samples along the curve is no longer uniform.
Because the formula in equation 1 was developed for con-
verging to a uniform parameterization, it performs poorly
near these nodes, creating sharp discontinuities.

To solve this problem, we have explored a variety of
alternatives, including using a more general cubic fit to
non-uniformly distributed samples, whose parameters in the
parametric cubic expression are estimated from the arc-
length distances between vertices. We have concluded that
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Figure 5: The color-coding of the nodes was obtained by rasterizing a circle. Computing the bilaplacian from neighboring
vertices and snapping does not converge to an acceptable approximation of the circle (center). Applying arc-length resampling
yields a much better fit (right).

Figure 6: Instead of using the vertices B and D, two virtual
neighbors (CR and CL) are computed on each side of C by
moving a fixed amount along the curve .

the resampling approach described below leads to the most
effective smoothing. Hence when computing the bilaplacian
L2(C), we do not use A,B,D, and E — the neighboring ver-
tices of C on the curve. Instead, we compute new samples
at a fixed distance d along the curve in both directions (Fig-
ure 6). This arc-length resampling prevents the formation of
unwanted corners and yields satisfactory results when used
with the snapping. In any case, d has to be chosen large
enough to result in big steps (which translate into less it-
erations), while not being so large that it lets the curve twist
around too much. We select d to be 75% of the length of
a cell’s side. As the bilaplacian filter is computed in two
passes, we only need to add 2 points at distance d at each
pass, rather than adding four at distances d and 2d, which is
equivalent.

Next we turn the combination of these results into a dis-
placement w. We could compute the displacement one vertex
at a time. For example, consider the vertex V on a stick I that
is parallel to the Z axis. We could compute its displacements
in the X − Z section of the grid that contains I and on the
Y −Z section. Then we would combine these displacements
ensuring that the resulting vertex remains on I. Instead, for
simplicity and implementation efficiency, we perform the
smoothing and line-snapping steps on each X −Y,X − Z,
and Y −Z slice and then collect the results, combining two

displacements for each stick and clamping the result to the
stick. Both approaches decompose the bivariate surface bi-
laplacian into the equivalent combination of two univariate
curve bilaplacians, so we choose the second one which re-
sults in a simpler implementation.

Because the stick of each vertex belongs to exactly two
slices [NFHL91], we have two suggested displacements for
each vertex. We average the two displacement vectors to ob-
tain the vertex’s displacement and then snap the displaced
vertex to the closest point onto its stick. When averaging
the two displacements different weighting techniques can
be applied. We have experimented with three methods: (1)
equal weights, (2) weights are proportional to the dot prod-
ucts of the stick tangent with the normal to the curve, and
(3) weights are proportional to the dot products of the stick
tangent with the tangent to the curve. There are special cases
in which (2) yields markedly worse results, and cases where
(3) does that. We found that the simpler approach in case (1)
uniformly yields good results that are close to those of the
best of the other two.

In order to avoid artifacts at junction areas we have mod-
ified the smoothing filter for vertices that lie close enough
to a feature edge. If a vertex is at a distance less than d of a
feature edge, the sampled neighbors of our arc-length resam-
pling method cannot be reliably computed. Those vertices do
not use the bilaplacian. Instead, they align themselves with
the vertices on the smooth side (Figure 7). In the absence of
any information on this junction, we have adopted this un-
clamped approach, which has been used in generating all the
pictures.

5. Sharp edge recovering

The errors between the original shape and the iso-surface re-
covered thus far are usually concentrated near the features,
which were not appropriately captured by the regular sam-
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Figure 7: The "smooth" vertices on a feature edge move
themselves along their stick to be aligned with the neighbors
on their "smooth" side.

pling. To improve the accuracy of the recovered surface, we
sharpen the boundaries of planar regions using a variant of
EdgeSharpener [AFRS04, AFSR05].

The vertices belong to either a tile (planar face) or to a
curved face. We use the term chamfer edges for those mesh
edges with vertices on two different faces. A triangle with
one or more chamfer edges is called chamfer triangle.

In order to recover the sharp features we apply three steps.
First, the chamfer triangles are identified. Then, we subdi-
vide them appropriately by inserting new vertices. Finally,
we position the new vertices to better recover the sharp fea-
tures.

Figure 8: Subdivision of a chamfer triangle with one (a) two
(b) or three (c) chamfer edges.

Three cases arise when subdividing the chamfer triangles
(Figure 8):

1. Triangles with one chamfer edge are split into two trian-
gles.

2. Triangles with two chamfer edges result in three trian-
gles.

3. When three different faces meet at a triangle we have
three chamfer edges. After subdividing we will have six
triangles and one interior vertex to represent the corner.

The process is presented in Figures 9 and 10. To find
the position of a new vertex V inserted in a chamfer edge
E, we consider the two original vertices, A and B, of E. We
compute a normal NA for the vertex A using its face, and
define a plane P that is orthogonal to NA and passes through
A. Similarly, we compute a normal NB for the vertex B using
its face, and define a plane Q that is orthogonal to NB and
passes through B. Finally, we move V to the closest point on
the line of intersection between planes P and Q. When one of

Figure 9: Inserting a new vertex on a triangle with its ver-
tices on three different faces.

Figure 10: Edges with vertices on two different faces are
subdivided to recover a feature.

these vertices belongs to a curved face, its normal is taken to
be the normal to a plane estimated as in the computation of
junction points (the minimum square fit to the free neighbors
in a 2-ring).

To find the position of an interior vertex W , we consider
the vertices A, B and C of the corner triangle. We compute
normals NA, NB and NC using their respective faces. Using
them we define planes P, Q and R which are orthogonal to
NA, NB and NC, and pass through A, B and C, respectively.
Then, W is moved to the intersection point of P, Q and R.

Junction points estimated by the Edge Sharpener are
based on inaccurate nodes, and therefore are noisy. Thus, we
recognize features by arranging the new vertices into chains
that follow the newly inserted edges. The curves defined by
these chains are smoothed using the bilaplacian algorithm
described previously. Vertices at any of the two endpoints of
a chain are left untouched. This includes vertices generated
by the intersection of three tiles.

6. Results and discussion

In this section we present and discuss several examples.
They are shown in Figures 11, 12, 13 and 14. All isosur-
faces are rendered using flat shading with surface normals
calculated directly from each triangle in order to emphasize
the underlying geometry. The initial surfaces of these models
have been converted into a binary voxel representation, and
these voxelizations have been used as the input to Pressing.
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Figure 11: A 128×128×128 voxelization of a pump model, and the final pressed isosurface.

Figure 12: A 128× 128× 128 voxelization of a mechanical part (referenced as MECH PART in Tables 1 and 2), the final
pressed isosurface, and a closer look to the recognized features.

In order to show the performance of Pressing in the most
general case, we have intentionally applied a random rota-
tion to the models to ensure that the main faces are not axis-
aligned. The leftmost part of Figure 13 displays the results of
just smoothing the Fandisk model, without processing flats
separately. It also displays the improvements achieved with
Pressing by showing the results at resolutions of 128 and
256.

All these models show several sharp edge features be-
tween flat regions. Although the initial information is only
a binary voxelization, our algorithm is successful in detect-
ing and reconstructing flats and sharp edges. In Figures 11
and 12, Pressing also recovers the smooth regions of the
model and the curved features between flat and smooth
pieces. Tables 1 and 2 summarize the performance of the
algorithm to obtain the results depicted in Figures 15, 11,
12, 13 and 14. Notice —by comparing Figure 11 with Fig-
ure 1-c (which uses 300 iterations)— that a larger number of
iterations can achieve still smoother results, at the expense of
time. The smoothing algorithm may be also applied to med-

ical models and the results may be seen in Figure 15. These
display the good behavior of our constrained smoothing al-
gorithm even when there are no features.

Table 1 presents the running time of our algorithm, run-
ning on a Pentium 4 at 3.4 GHz and 1 GB of RAM. The
Max Tiles step for the detection and reconstruction of flat
regions is based on a previous work and is not presented as
a contribution in this paper. The times for detecting sharp
features and edge sharpening are not significant in front
of the time complexity of the smoothing part of the algo-
rithm. This smoothing step is however below 10 seconds
in all 128× 128× 128 CAD models. The higher times in
the second mechanical part are a consequence of the finer
256×256×256 voxelization.

We have observed that our algorithm achieves excel-
lent approximations to the original models in the examples
tested. Table 2 presents the evolution of the reconstruction
errors, which are computed as the average of the unsigned
distances between a vertex of the isosurface and the inter-
section of its stick with the original model. Voxels are con-
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Figure 13: From left to right, the result of smoothing a 128× 128× 128 voxelization of the Fandisk model, its corresponding
pressed isosurface, and the pressed isosurface obtained from a 256× 256× 256 discretization. Notice that the result at 256×
256×256 contains fewer artifacts, because at that resolution features are sufficiently separated by binary samples.

Figure 14: A 256×256×256 voxelization of a second mechanical part (referenced as MECH PART 2 in Tables 1 and 2), and
the final pressed isosurface.

sidered to be of size 1.0×1.0×1.0. The medical models are
not included in Table 2, because they are the result of the
binary segmentation of a volumetric model.

The first row measures the error between the scanned iso-
surface and the midpoint isosurface, the second one adds the
planar regions, while the third and the fourth ones include
the smoothing with 100 and 1000 iterations each. The er-
rors monotonically decrease at each Pressing step, and reach
small values after only 100 smoothing operations. The in-
crease of accuracy when the number of iterations goes from
100 to 1000 is not significant.

7. Conclusions

We have proposed a novel smoothing approach for the auto-
matic recovery of solids from binary volumetric discretiza-
tions. Our approach uses global optimization to identify flats
and a constrained smoothing algorithm to recover the shape
of non-planar regions. The proposed smoothing algorithm

involves a snapping step after each bilaplacian smoothing
step to guarantee that final vertices remain in the initial sticks
of the voxelization.

Pressing works on general binary voxelizations and can
recover flat and curved regions, and is hence particularly
useful when no scalar field data or Hermite data are avail-
able. The isosurface is automatically segmented by se-
quences of junction points and it is constrained to stab the
initial sticks. The reconstruction error is therefore bounded
and the topology is preserved.

We use a three dimensional implementation of the con-
strained smoothing, which combines two two-dimensional
smoothing steps for each vertex, one in each axis-aligned
plane containing the vertex’s stick, followed by snapping. A
special version of the filter for vertices at the borders of the
curved regions has been also developed.

Results on a variety of models have been reported and
discussed. Pressing achieves small reconstruction errors and
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Figure 15: After segmenting a volume, the extracted isosurface may be smoothed using our algorithm. These pictures show the
results of doing so, on the 256×256×256 discretizations of a skull and a jaw.

Stats (times in seconds) PUMP MECH PART MECH PART 2 FANDISK SKULL JAW
TIME (MaxTiles) 73.39 15.99 94.38 58.89 0 0

TIME (Detect Junctions) 0.223 0.175 0.745 0.272 0 0
TIME (Smoothing) 8.296 5.314 29.207 6.036 113.619 61.563

TIME (Edge Sharpening) 0.221 0.248 0.693 0.244 0 0
# Tiles 8 8 10 11 0 0

# Iterations 52 68 98 65 100 100

Table 1: Running time, number of reconstructed flat regions and number of iterations for each of the presented models.

successfully recovers flats and sharp features in a reasonable
amount of time.

Potential applications include shape recognition, simpli-
fication, compression and various reverse engineering and
manufacturing problems.
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