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Abstract

An ordered series of control poses may be interpolated by a polyscrew rigid body motion composed of a series of
screws, each interpolating a pair of consecutive control poses. The trajectory of each point during screw motion
is (C∞). Although a polyscrew is continuous, velocities are typically discontinuous at control poses when the
motion switches between screws. We obtain a smooth motion by subdividing the polyscrew. Three subdivision
schemes are proposed: the interpolating 4-point subdivision, the smooth cubic B-spline subdivision, and the Jarek
subdivision, an average of these two. Their implementation is trivial and their computation sufficiently fast for
realtime subdivision and animation, which is particularly important for interactive motion editing and hardware
support for animation.

Categories and Subject Descriptors (according to ACM CCS): G.1.1 [Interpolation]: Spline and piecewise poly-
nomial interpolation; I.3.5 [Computational Geometry and Object Modeling]: Geometric Transformations; I.3.7
[Three-Dimensional Graphics and Realism]: Animation

1. Introduction

A rigid object whose position and orientation evolve with
time is undergoing a motion. At each moment, t, its position
and orientation are given by a pose L(t). The pose may be
specified in terms of a rigid body transformation that maps a
local coordinate system L, in which the object was defined,
into a current coordinate system L(t) defined by an origin
O(t) and by three orthonormal basis vectors I(t), J(t), and
K(t). At a time t, a vertex of the object defined by its three
coordinates (x, y, z) in L will be at O(t)+xI(t)+yJ(t)+zK(t).
The time-evolving origin O(t) and basis vectors I(t), J(t), and
K(t) are typically specified in terms of a discrete sequence of
user-defined or captured control poses.

For simplicity, we ignore dynamic constraints and assume
that the sequence of control poses are sampled at uniformly
spaced parameter values. If this was not the case, a poly-
nomial mapping p(t) between parameter t and time in an
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animation could be used to resynchronize the motion yield-
ing O(p(t))+xI(p(t))+yJ(p(t))+zK(p(t)). For instance, one
may specify constraints in value p(i) = pi and derivative
p′(i) = vi of p at the times initially associated with control
poses. These constraints can be interpolated by a C1 piece-
wise cubic map.

A motion interpolating two control poses,
L0 = [O0, I0,J0,K0] and L1 = [O1, I1,J1,K1], is a pose-
valued function L(t) satisfying the constraints L(0) = L0
and L(1) = L1. If L(t) is defined as a combination of a
minimum angle rotation with a linear translation from O0 to
O1, the result will depend on the choice of the position and
orientation of the local coordinate system L, with respect
to the object. Such a dependency may create surprising
and unwanted effects [RK01]. To overcome this problem,
we use screw motions to interpolate between poses. A
screw is fully defined by the initial and final control poses.
It combines a minimum-angle linear rotation around a
fixed axis of direction S with a minimum-distance linear
translation along S.

Interpolating each pair of consecutive poses of a control
cycle by a screw yields a polyscrew motion. Although con-
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Figure 1: A cycle of parallel control poses defines an animation with sharp changes of velocity at control poses (a). The
trajectory of a polygonal translation interpolating them (b) may be smoothed by a cubic B-spline (c), Jarek (d), or 4-point
polygon subdivision (e). When four of the control poses are rotated (f), a polyscrew that interpolates between consecutive poses
by independent screw motions (g) may be smoothed by the proposed ScrewBender approach, which adapts to polyscrews the
Split&Tweak formulations of the cubic B-spline (h), Jarek (i) and 4-point (j) subdivisions. Note that in spite of the apparent
cusp in the trajectories at the bottom-left control pose, the resulting animations are smooth as the object decelerates at the cusp.
The three subdivided motions are at least C1. The B-spline is C2.

tinuous, polyscrews may exhibit sharp discontinuities of ve-
locity at control poses, where the motion switches between
one screw and the next one. The ScrewBender subdivi-
sion proposed here may be used to smooth polyscrews. It is
based on the realization that the Split&Tweak formulation of
polygon-smoothing subdivision techniques [Ros04] may be
trivially extended to polyscrews. Hence, starting from an ini-
tial control polyscrew defined by the original control poses,
a Split&Tweak polyscrew subdivision step produces a re-
fined polyscrew with twice as many control poses. As this
subdivision process is repeated, the refined polyscrew con-
verges quickly to a close approximation of a smooth motion
that concatenates short screw motions. The polyscrew sub-
division and the polyscrew animations are simple and may
be computed in realtime. Hence ScrewBender is well suited
for the interactive design of motions (Figure 10).

We also assume that the control poses form a control cy-
cle and that the motion is cyclic. Acyclic motions defined by
a non-cyclic sequence of control poses may be easily sup-
ported by extending them with dummy screws, treating them
as cyclic motions, and removing from the subdivided motion
3 spans for the B-spline or 5 spans for the other schemes.

2. Smoothing Translational Motions

A closed loop control polygon of n vertices may be subdi-
vided into a polygon of 2n vertices by a subdivision pro-
cess that inserts new vertices and possibly displaces the
old ones. Several subdivision schemes have been suggested
(Figure 2). The uniform cubic B-spline curve defined by the

control polygon may be approached by a subdivision pro-
cess [Sab02] that inserts a new vertex in the middle of each
edge and moves each old vertex b in a sequence (a,b,c) of
consecutive vertices to (a+6b+c)/8. Cubic B-spline curves
are attractive because they are C2 smooth. Unfortunately,
they do not interpolate the original control vertices. The 4-
point subdivision scheme [NDG87] inserts a new vertex at
(−a+9b+9c−d)/16 between each pair of consecutive ver-
tices b and c in a sequence (a,b,c,d) and leaves the old ver-
tices in place, hence ensuring that the subdivided curve inter-
polates the original vertices. The Jarek subdivision [Ros04]
uses, at each step, for each old and new vertex, the average
of its positions as computed by the other two schemes. It of-
fers a compromise between B-spline and 4-point and nearly
preserves area of the control polygon in 2D.

Figure 2: The original L-shaped control polygon (gray) is
subdivided once (left) and then 5 times (center) by the B-
spline (red), by the 4-point (blue), and by the Jarek (green)
schemes. Corresponding subdivisions of a more complex
polygon is shown (right).

When all the control poses of an animation are obtained
by pure translation from L (no rotation), a smooth animation
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may be defined by considering the origins Oi of the consec-
utive poses to be the vertices of a control polygon and by
refining this polygon through a B-spline, Jarek, or 4-point
subdivision (Figure 1, top row). This solution is simple, fast,
and independent of the choice of L. Unfortunately, it is lim-
ited to pure translations.

3. Polyscrew Composition and Animation

The representation of a polyscrew is an array of control
poses, each represented by the origin Oi and by the asso-
ciated basis [Ii,Ji,Ki].

In order to support rotations between control poses, we
interpolate each pair of consecutive poses by a screw, which
combines a translation by dS, where S is a unit vec-
tor, with a rotation by angle r around an axis parallel to
S through a point P. Consider poses, L0 = [O0, I0,J0,K0]
and L1 = [O1, I1,J1,K1]. Following [RK01], to obtain
the parameters of the interpolating screw, let I = I1 − I0,
J = J1 − J0, K = K1 −K0, and O = O1 −O0. At least one
of the three cross-products I× J, J×K, and K× I is
not a null vector. Without loss of generality, assume
that I× J is the longest of the three (otherwise, rotate
the symbols). Compute S = I× J and normalize it with
S = S/‖S‖. Compute r as the angle between S× I0 and
S× I1. Compute d as the dot product O ·S. Finally, compute
P = (O1 +O2 +(S×O)/tan(r/2))/2.

To animate the motion of an object along a single screw,
we vary parameter t, translate L0 by tdS and rotate it by
angle tr around the screw axis through P with direction S.
As t varies from 0 to 1, L(t) follows a screw interpolating
between L0 to L1. (These transformations are supported in
hardware on commodity graphics adapters.) Note that we
can move along the screw past L0 or L1 by simply letting
t fall outside [0,1].

The resulting polyscrew motion is continuous, but usually
not smooth at the control poses (Figure 1g).

4. Smoothing Polyscrew Motions

Our contribution is simply to combine these two ideas
(Split&Tweak and polyscrews) and define subdivision rules
for polyscrews that correspond to the cubic B-spline, Jarek,
and 4-point subdivisions of polygons. ScrewBender provides
this capability. It only requires the ability to compute and
evaluate screws interpolating pairs of control poses, using
the simple procedure reviewed above.

ScrewBender is based on the Split&Tweak reformula-
tion [Ros04] of the three subdivision rules discussed earlier.
At each step, all three subdivisions first perform a split oper-
ation that inserts a new vertex in the middle of each edge.
They then each perform a tweak operation. The B-spline
tweak moves the old vertices halfway towards the average
of their new neighbors. The 4-point tweak moves the new

vertices by one-quarter away from the average of their new
second-degree neighbors. The Jarek tweak moves the old
vertices by half of the B-spline tweak and the new vertices
by half of the 4-point tweak displacements (Figure 3).

Figure 3: The polygon (top-left) is split by inserting a new
vertex in the middle of each edge. Then, vertices are tweaked
to complete the B-spline, Jarek, or 4-point subdivision step.

Adopting the Split&Tweak formulation to polyscrews is
simple. Let the procedure s(L0, t,L1) return a pose L0,1(t)
obtained by moving L0 by a fraction t of the screw mo-
tion defined by L0 and L1. For example, L0,1(0) = L0 and
L0,1(1) = L1. To compute s(L0, t,L1), we first compute the
screw parameters S, r, d, and P, as discussed in Section 3,
and then translate L0 by tdS and rotate it by angle tr around
the screw axis through P with direction S.

For the B-spline scheme, we insert a new control pose
La,b( 1

2 ) between each pair of consecutive poses La and
Lb and obtain a new cycle of control poses alternat-
ing between old and new poses. This corresponds to the
split step and does not change the motion. Then, we re-
place each old pose Lb in a subsequence (La,Lb,Lc) by
s(s(Lb,

1
4 ,La), 1

2 ,s(Lb,
1
4 ,Lc))).

For the 4-point scheme, we insert a new control pose
computed by s(s(La,

9
8 ,Lb), 1

2 ,s(Ld , 9
8 ,Lc))) between con-

trol poses Lb and Lc in the subsequence (La,Lb,Lc,Ld).

For the Jarek scheme, compute (but do not insert) new
poses using s(s(La,

17
16 ,Lb), 1

2 ,s(Ld , 17
16 ,Lc))) between con-

trol poses Lb and Lc in the subsequence (La,Lb,Lc,Ld).
Then, we replace each old pose Lb in a subsequence
(La,Lb,Lc) by s(s(La,

7
8 ,Lb), 1

2 ,s(Lc,
7
8 ,Lb))). Finally, we

insert the new poses.

These steps are illustrated in Figure 4 and the results are
shown in Figures 1(h-j).

5. Results and Applications

In this section, we demonstrate how both simple and com-
plex smooth motions can be easily specified using Screw-
Bender.
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Figure 4: An example is used to demonstrate the
Split&Tweak process for polyscrew subdivision. Top left: A
new pose is inserted and tweaked in 4-point subdivision. Top
right: After new poses are inserted in B-spline subdivision,
an old pose is tweaked. The Jarek subdivision process in-
volves tweaking the new vertices (bottom left) and tweaking
the old (bottom right).

The smoothly subdivided L-shaped polyscrew of Figure
1(j) may be edited by dragging or rotating a graphically se-
lected control pose (Figure 10). The new control polyscrew
is subdivided in realtime and rendered using the stroboscopic
instancing, which acts as a 3D rubber-band to provide con-
venient visual feedback. Our non-optimized implementation
can compute more than 110,000 s(La, t,Lb) operations per
second on a 1.5 GHz Apple PowerBook G4.

Simple smooth motions can be easily defined using a few
poses as demonstrated by Figure 5.

Figure 5: A polyscrew obtained through 4-point subdivision
from only two control poses produces a smooth pendulum
motion (left). A polyscrew obtained through B-spline subdi-
vision from four control poses (in red) produces a spinning
motion of a block (right).

It takes only 5 poses to define the complex, yet smooth,
motion in Figure 6a. Note that interpolating motions may be
trivially combined with automatic PIP 3D morphing tech-
niques [KR92]. When the interpolated shapes are sufficiently

simple, the combined PIPs and ScrewBender subdivision
and animation may still be performed in realtime (Figure
6b).

(a) (b)

Figure 6: A stroboscopic rendering of the motion of a cylin-
der (a). In (b), a different shape is associated with each con-
trol pose of the animation. As the object moves along the
4-point subdivided polyscrew, its shape morphs between a
cone, a star, a block, a cylinder, and a sphere.

Sometimes, the degree of smoothness of a motion may be
derived by analyzing the fairness of the curve that represents
it in the Lie group SE(3) [PR97]. Due to the lack of tools
for performing such an analysis on our polyscrew refine-
ment scheme, we can only offer conclusions on continuity
properties suggested through a numeric test, as was done by
Hofer, Pottmann, and Ravani [HPR02] for showing that their
pose refinement scheme converges to a C2 motion. As they
did, we use discrete plots of positions, velocity, and accel-
eration of points to explore the smoothness of the limit mo-
tion produced by the three polyscrew Split&Tweak schemes
described here. We include one example in Figure 7. From
studying these plots for a variety of motions, we conjecture
that the 4-point polyscrew subdivision yields C1 trajectories
for points on the model and that the B-spline polyscrew sub-
division yields C2 trajectories. The Jarek subdivision yields
at least C1 trajectories.

6. Contributions in the Context of Prior Art

The problem of computing smooth motions that interpolate
a series of control poses has received a considerable amount
of attention from the graphics and animation communities.
An overview may be found in [Ale02].

Shoemake [Sho85, SD92] animated transformations by
using quaternions interpolated with spherical linear interpo-
lation (SLERP). While screw motions have velocity and an-
gular velocity in the direction of the screw axis, SLERP only
has an angular velocity component, necessitating the addi-
tion of a stretch matrix interpolated in matrix space in Shoe-
make’s interpolated transformations. Barr et al. [BCGH92]
demonstrated smooth interpolation of orientations with an-
gular constraints using quaternions. Kim et al. [KKS95] for-
mulated a general framework for unit quaternion splines.
These unit quaternion splines are computationally intensive.
Möller and Hughes [MH99] computed efficiently a matrix
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Figure 7: Plots of the x-coordinate of the points (0,0,0) (left
column) and (2,0,0) (right column) on the moving object
(blue), of its first derivative (red), and of its second deriva-
tive (gold) as a function of time for the B-spline, Jarek, and
4-point polyscrew subdivisions.

that would rotate one vector to another, but without consid-
eration of smoothness from one rotation to the next. Gras-
sia [Gra98] introduced to computer graphics the concept of
using an exponential map for parameterizing rotations. Fi-
nally, Alexa’s [Ale02] interpolation in Lie groups by means
of the exponential map was extended to handle general trans-
formations.

In particular, we expect that the motion blending used by
Alexa [Ale02] to compute intermediate poses between two
consecutive control poses could also be used to implement
our s(La, t,Lb) procedure, and hence the Split&Tweak sub-
divisions. In fact, Alexa has suggested that his scheme could
be used to implement a Bezier and 4-point subdivision. The
computational cost of such a solution as discussed in [Ale02]
and the fact that the result will be dependent on the choice of
a coordinate system lead us to believe that ScrewBender of-
fers an interesting alternative for the realtime design of sim-
ple smooth motions.

It is possible to decouple the motion into a translation
and a rotation around the center of the object. The transla-
tion can be smoothed through 4-point polygon subdivision.
The rotation may be smoothed through a restricted version of
the polyscrew subdivision or through subdividing or blend-
ing spherical spline curves on the S3 unit sphere [BF01] as

proposed by several authors [Sho85, Sho87, Duf86, WJ93,
RBG88, KN95]. Such an approach has two disadvantages
with respect to the non-decoupled polyscrew subdivision
advocated here. First, the dependency on the choice of
the "center" of the object may produce undesirable arti-
facts [JW96], especially when the moving object is changing
shape (Figure 6b). Second, the motion may sometimes ap-
pear less natural. For example, when the poses are sampled
along a linear translation, along a circular motion, or along a
screw motion, all three of our Split&Tweak polyscrew sub-
divisions will preserve the initial trajectory perfectly (Figure
8a). However, a decoupled smoothing, where the center of
the object follows a trajectory obtained by a 4-point poly-
loop subdivision and where the orientation is smoothed as
described here, does not preserve the initial trajectory (Fig-
ure 8b).

(a) (b)

Figure 8: When subdivided with any of the polyscrew sub-
divisions presented here, a circular motion defined by four
control poses (shown in red) retains its initial trajectory (a).
A decoupled smoothing results in a less natural subdivided
trajectory (b).

Hofer, Pottmann, and Ravani [HPR02] offer two motion
refinement approaches, both of which refine the motion by
iteratively inserting intermediate poses. The resulting dense
set of discrete poses may be sufficient for most applications
or, if a continuous motion is desired, it may be interpolated
by piecewise screw motions without concern for smooth-
ness.

Their first approach applies the global, linear variational
subdivision scheme proposed by Kobbelt [Kob96] to four
arbitrary non-coplanar feature points on the object. Because
the scheme is linear, the position of all points at an inter-
mediate pose may be derived from these four through linear
combination. The result is an affinely distorted object. They
use a least-square registration [Hor87] to best align the mov-
ing shape with its distorted copy, and hence produce a new
intermediate pose for the rigid body motion. They invoke the
smoothness of discrete plots of the x-coordinate of a point
on the object and of its first derivative as evidence that the
motion is C2.

Their second approach computes the translations of the in-
termediate poses using the above global variational subdivi-
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sion to refine the positions of the local origin. They compute
the orientation of each pose using a local angle-minimizing
interpolation, which corresponds to our s(A, 1

2 ,B) primi-
tive described in detail above. Hence, the inserted poses are
not the mid-screw poses produced by the Split stage of our
approach. Instead, they correspond to a decoupled scheme
where the translation part is computed independently from
the rotation. Then, they correct all of the new poses using
linearized motions. To each feature point, they attach its ve-
locity vector computed assuming a piecewise screw motion
interpolating the neighboring poses. Finally, they minimize
the variations of these velocities by solving a system of lin-
ear equations, whose solution defines screw-motion tweaks
to the intermediate poses. Again, discrete plots suggest that
the resulting motion is C2.

Finally, Wallner and Pottmann [WP06] offer an angle-
minimizing helical interpolation and show that the C1 and
C2 smoothness of certain geodesic subdivision methods ex-
tend to helical subdivision in the Lie group SE(3).

7. Conclusion

We have proposed an extremely simple approach for the con-
struction of smooth motions defined by a cycle of control
poses. It is based on the ScrewBender subdivision scheme,
which adapts the cubic B-spline, Jarek, and 4-points polygon
subdivision schemes to polyscrews. ScrewBender can subdi-
vide and animate complex polyscrews in realtime. We have
combined it with automatic 3D morphing to provide a sim-
ple and effective tool for the interactive design of animations
where 3D objects move and morph.

The simplicity and speed of the approach proposed here
makes it a useful alternative to the large number of previ-
ously proposed schemes, even though some of them may
yield higher order continuity.

By coupling the rotational and translational components
into a piecewise screw motion we achieve natural interpola-
tions that perfectly preserve linear, circular, and screw trajec-
tories. The generality of the Split&Tweak formulation per-
mits the creation of a large variety of motions with very few
control poses.

The user may insert control poses anywhere in the se-
quence and interactively rotate and translate any control pose
with real-time feedback provided by the stroboscopic rendi-
tion. Because a stroboscopic rendition of a complex subdi-
vided polyscrew can be computed and rendered at more than
20 frames per second while manipulating the initial control
poses, ScrewBender offers the ideal environment for the di-
rect manipulation of motions.
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Figure 9: A cyclic animation of a non-planar motion of bunny is defined with 6 control poses (shown in red). Top left: The
path for an animation composed of single screws that each interpolate two consecutive control poses. Notice the sharp direction
discontinuities at the control poses. Bottom left: Intermediate poses for the above trajectory, showing the orientation of the
bunny. Top Right: The path of an animation that interpolated the same control poses produced by our ScrewBender 4-point
polyscrew subdivision. Notice that the trajectory is now smooth. Bottom right: Intermediate poses for the smooth animation.

Figure 10: The stroboscopic rendering of the subdivided polyscrew in Figure 1 is updated in realtime as the user translates
(left) or rotates (right) the top-left control pose of the model. Note that the user has local control over the smooth motion.
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