Join Algorithms

Recap

= 9Dae 2/73

Y Reaap
External Merge Sort

e Divide-and-conquer sorting algorithm that splits the data set into separate runs and
then sorts them individually.

e Phase 1 - Sorting

> Sort blocks of data that fit in main-memory and then write back the sorted blocks to a file
on disk.

e Phase 2 - Merging

> Combine sorted sub-files into a single larger file.

Aggregation

e Collapse multiple tuples into a single scalar value.
e Two implementation choices:

> Sorting
> Hashing

] Recap
Hashing Aggregate

Populate an ephemeral hash table as the DBMS scans the table.

For each record, check whether there is already an entry in the hash table:

> GROUP BY: Perform aggregate computation.
» DISTINCT: Discard duplicates.

If everything fits in memory, then it is easy.
If the DBMS must spill data to disk, then we need to be smarter.

] Recap
Today’s Agenda

Overview

Nested Loop Join

Sort-Merge Join
Hash Join

Overview

= 9Dae 7/73

I Overview
Why do we need to join?

e We normalize tables in a relational database to avoid unnecessary repetition of
information.

e We use the join operator to reconstruct the original tuples without any information loss.

Ny v

Denormalized Tables

Artists (ID, Artist, Year, City)
Albums (ID, Album, Artist, Year)

ID Artist Year City
Artists 1 Mozart 1756 Salzburg

2 Beethoven 1770 Bonn

ID Album Artist Year
Albums The Marriage of Figaro Mozart 1786

1
2 Requiem Mass In D minor Mozart 1791
3 Fir Elise Beethoven 1867

B R Overview
Normalized Tables

Artists (ID, Artist, Year, City)
Albums (ID, Album, Year)
ArtistAlbum (Artist_ID, Album_ID)

Artist ID Album_ID

ArtistAlbum 1 1
2 1

2 2

I
Join Algorithms

e We will focus on combining two tables at a time with inner equi-join algorithms.

» These algorithms can be tweaked to support other types of joins.

e In general, we want the smaller table to always be the left table (outer table) in the
query plan.

Ny v

Join Operators

e Decision 1: Output

> What data does the join operator emit
to its parent operator in the query
plan tree?

e Decision 2: Cost Analysis Criteria

» How do we determine whether one
join algorithm is better than another?

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

n R.id, S.cdate

f
NR.id:S.id
™

G value>100
N

S

N O riew
Join Operator Output

e Foratupler € Rand a tuple s € S that match on join attributes, concatenate r and s
together into a new tuple.
e Contents can vary:

> Depends on query processing model
> Depends on storage model
> Depends on the query

Ny v
Join Operator Output: Data

e Copy the values for the attributes in R(id,name) S(id,value,cdate)
outer and inner tuples into a new m <1112 [ieco. 10/26/20
L

output tuple. 123 [2000 |10/26/20

J

e Subsequent operators in the query .

plan never need to g0 back to the base 123 |abc [123 [1000 |10/26/20
tables to get more data 123 |abc [123 [2000 [10/26/20

N ©'-**

Join Operator Output: Record Ids

e Only copy the joins keys along with
the record ids of the matching tuples.

e Ideal for column stores because the
DBMS does not copy data that is not
need for the query.

e This is called late materialization.

R(id,name) S(id,value,cdate)

id value cdate
N 123 |1000 10/26/20

1 23 2000 [10/26/20

|
R.id R.RID d RID
123 |R.#H#H# |123 [S.##H#
123 |R.#HHE (123 |S.###

I B 0. =
I/O Cost Analysis

e Assume:
> M pages in table R, m tuples in R
> N pages in table S, n tuples in S
e Cost Metric: Number of IO operations to compute join

e We will ignore output costs (since that depends on the data and we cannot compute
that yet).

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

N ©'-**

Join vs Cross-Product

e RS is the most common operation and thus must be carefully optimized.
e R x S followed by a selection is inefficient because the cross-product is large.

e There are many algorithms for reducing join cost, but no algorithm works well in all
scenarios.

I
Join Algorithms

e Nested Loop Join
> Naive
> Block
> Index
e Sort-Merge Join
e Hash Join

Nested Loop Join

Y st Loop Join
Nested Loop Join

R (id, name)
S (id, value, cdate)

operator NestedLoopJoin(R, S):
for each tuple r € R: // Outer Table
for each tuple s € S: // Inner Table
emit, if r and s match

N -~ ---» Joi
Naive Nested Loop Join

Why is this algorithm naive?
> For every tuple in R, it scans S once

R: M pages, m tuples

S: N pages, n tuples
Cost: M + (m x N)

Y st Loop Join
Naive Nested Loop Join

e Example Database:
> Table R: M = 1000 pages, m = 100,000 tuples
> Table S: N = 500 pages, n = 40,000 tuples
> Each page =4 KB = Database size = 6 MB
e Cost Analysis:
> M + (m x N) = 1000 + (100000 x 500) = 50,001,000 IOs
> At 0.1 ms/IO, Total time ~ 1.3 hours
e What if smaller table (S) is used as the outer table?

> N + (n x M) =500 + (40000 x 1000) = 40,000,500 IOs
> At 0.1 ms/IO, Total time ~ 1.1 hours

Y st Loop Join
Block Nested Loop Join

R (id, name)
S (id, value, cdate)

operator BlockNestedLoopJoin(R, S):
for each block bg € R: // Outer Table
for each block bs € S: // Inner Table
for each tuple r € bg:
for each tuple s € bs:
emit, if r and s match

N -~ ---» Joi
Block Nested Loop Join

e This algorithm performs fewer disk accesses.
> For every block in R, it scans S once

e Costt M+ (M xN)

N -~ ---» Joi
Block Nested Loop Join

e Which one should be the outer table?
> The smaller table in terms of number of pages

Y st Loop Join
Block Nested Loop Join

e Example Database:
> Table R: M = 1000 pages, m = 100,000 tuples
> Table S: N = 500 pages, n = 40,000 tuples

e Cost Analysis:

> M+ (M x N) =1000 + (1000 x 500) = 501,000 IOs
> At 0.1 ms/IO, Total time = 50 seconds

N -~ ---» Joi
External Block Nested Loop Join

e What if we have B buffers available?

> Use B-2 buffers for scanning the outer table.
> Use one buffer for the inner table, one buffer for storing output.

Y st Loop Join
External Block Nested Loop Join

R (id, name)
S (id, value, cdate)

operator ExternalBlockNestedLoopJoin(R, S):
for each B-2 block br € R:// Outer Table
for each block bs € S: // Inner Table

for each tuple r € bg:
for each tuple s € bs:
emit, if r and s match

Y st Loop Join
Block Nested Loop Join

e This algorithm uses B-2 buffers for scanning R.
e Cost: M+ ([M/(B-2) | xN)
e What if the outer relation completely fits in memory (i.e., B-2 > M)?

» Cost: M + N = 1000 + 500 = 1500 IOs
> At 0.1 ms/IO, Total time =~ 0.15 seconds

Y st Loop Join
Nested Loop Join

e Why do basic nested loop joins suck?

> For each tuple in the outer table, we must do a sequential scan to check for a match in the
inner table.

e We can avoid sequential scans by using an index to find inner table matches.

> Use an existing index for the join.
» Or build an index on the fly (e.g., hash table, B+Tree).

Y st Loop Join
Index Nested Loop Join

R (id, name)
S (id, value, cdate)
Index on S (id)

operator IndexNestedLoopJoin(R, S):
for each tuple r € R: // Outer Table
for each tuple s € Index(r; = s1): // Index on Inner Table
emit, if r and s match

N -~ ---» Joi
Index Nested Loop Join

e Assume the cost of each index probe is some constant C per tuple.
e Cost: M + (m xC)

Summary

e Pick the smaller table as the outer table.
e Buffer as much of the outer table in memory as possible.

e Loop over the inner table or use an index if available.

Sort-Merge Join

|Gz
Sort-Merge Join

e Phase 1: Sort
> Sort both tables on the join key(s).
e Phase 2: Merge

> We can then use the external merge sort algorithm to join the sorted tables.
> Step through the two sorted tables with cursors and emit matching tuples.
> May need to backtrack depending on the join type.

|Gz
Sort-Merge Join

R (id, name)
S (id, value, cdate)

operator SortMergeJoin(R, S):
sort R,S on join keys
cursorg < Rsorted, CUrsorS < Sqorted
while cursorg and cursorS:
if cursorg > cursorS:
increment cursorS
else if cursorg < cursorsS:
increment cursorR
else if cursorg and cursorS match:
emit
increment cursorS

|Gz
Sort-Merge Join

R(id,name) S(id,value,cdate) SELECT R.id, S.cdate
d name FROM R JOIN S

600 [Mark 100 [2222 [10/27/20 ON R.id = S.id
200 [Rahul 500 7777 [10/27/20 WHERE S.value > 100
100 |Maria 400 |6666 |10/27/20

300 |Li 100 (9999 [10/27/20

500 |Shiyi 200 8888 [10/27/20

700 |Alex

200 [Peter

400 [Ranveer

Y 5 Merge oin
Sort-Merge Join

R(id,name) S(id,value,cdate) SELECT R.id, S.cdate
d |value cdate FROM R JOIN S

600 |Mark 100 [2222 [10/27/20 ON R.id = S.id
200 |Rahul 500 |7777 [10/27/20 WHERE S.value > 100
100 |Maria 400 |6666 [10/27/20

300 |Li 100 9999 [10/27/20

500 |shiyi 200 [s888 [10/27/20

700 |Alex

200 |peter t

400 |Ranveer Sort!

*

Sort!

Sort-Merge Join

R(id,name)
id name

100 [Maria
200 |Rahul
200 |Peter
300 |Li

400 |Ranveer
500 |Shiyi
600 |Mark

700 |Alex

*

Sort!

S(id,value,cdate)

id
100

value cdate

2222

10/27/20

100

9999

10/27/20

200

8888

10/27/20

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

400

6666

10/27/20

500

7777

10/27/20

*

Sort!

Sort-Merge Join

R(id, name)

d ame
» 100 |Maria

200 [Rahul

200 |Peter

300 |Li

400 |Ranveer

500 [Shiyi

600 [Mark

700 |Alex

S(id,value,cdate)

»

100

2222

10/27/20

100

9999

10/27/20

200

8888

10/27/20

400

6666

10/27/20

500

7777

10/27/20

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Output Buffer
R.id R.name S.id S.value S.cdate
100 |Maria |100 2222 10/27/20

Sort-Merge Join

R(id,name)
d e

» 100 [Maria

200 |Rahul

200 |Peter

300 |Li

400 [Ranveer

500 [Shiyi

600 |Mark

700 |Alex

S(id,value,cdate)

id value cdate

»

100

2222

10/27/20

100

9999

10/27/20

200

8888

10/27/20

400

6666

10/27/20

500

7777

10/27/20

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Output Buffer
R.id R.name S.id S.value S.cdate
100 [Maria [100 [2222 [10/27/20
[100 |Maria [100 [9999 [10/27/20

Sort-Merge Join

R(id, name)
d .

» 100 |Maria

200 |Rahul

200 |Peter

300 |Li

400 |Ranveer

500 [Shiyi

600 [Mark

700 |Alex

S(id,value,cdate)

id value cdate

100

2222

10/27/20

100

9999

10/27/20

»

200

8888

10/27/20

400

6666

10/27/20

500

7777

10/27/20

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Output Buffer
R.id R.name S.id S.value S.cdate
100 |Maria 100 [2222 [10/27/20
[100 [Maria [100 [9999 [10/27/20

Sort-Merge Join

R(id,name)

100 [Maria
» 200 |Rahul

200 |[Peter

300 [Li

400 |Ranveer

500 [Shiyi

600 |Mark

700 |Alex

S(id,value,cdate)

»

id
100

value cdate

2222

10/27/20

100

9999

10/27/20

200

3888

10/27/20

400

6666

10/27/20

500

7777

10/27/20

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

Output Buffer
R.id R.name S.id S.value S.cdate
100 |Maria [100 (2222 [10/27/20
[1e0 [Maria [100 [9999 [1e/27/20

|Gz
Sort-Merge Join

R(id,name) S(id,value,cdate) SELECT R.id, S.cdate

d value cdate FROM R JOIN S

100 |Maria 100 [2222 [10/27/20 ON R.id = S.id

200 [Rahul 100 [9999 [10/27/20 WHERE S.value > 100

200 [Peter 200 [8888 [10/27/20

300 |Li 400 [6666 [10/27/20

400 |Ranveer 500 [7777_|10/27/20

500 Jshiyi » Output Buffer
»m Alex 100 |Maria [100 [2222 [10/27/20

100 [Maria [100 [9999 10/27/20
200 |[Peter 200 8888 10/27/20
200 |[Peter 200 |8888 10/27/20
400 |Ranveer (200 (6666 10/27/20
500 |Shiyi |5e@ 7777 10/27/20

|Gz
Sort-Merge Join

Sort Cost (R): 2M x (1 + [logg—1 [M/B] |)
Sort Cost (S): 2N x (1 + [logg—1 [N/B])
Merge Cost: (M + N)

Total Cost: Sort + Merge

|Gz
Sort-Merge Join

e Example Database:
> Table R: M = 1000 pages, m = 100,000 tuples
» Table S: N = 500 pages, n = 40,000 tuples

e With B=100 buffer pages, both R and S can be sorted in two passes:

» Sort Cost (R) =2000 x (1 + [logge 1000 /100]) = 4000 I0s
Sort Cost (S) = 1000 x (1 + [logge 500/ 100]) = 2000 IOs
Merge Cost = (1000 + 500) = 1500 1Os

Total Cost = 4000 + 2000 + 1500 = 7500 I10s

>
>
>
> At 0.1 ms/IO, Total time = 0.75 seconds

|Gz
Sort-Merge Join

e The worst case for the merging phase is when the join attribute of all of the tuples in
both relations contain the same value.

e Cost: (M x N) + (sort cost)

|Gz
When is Sort-Merge Join Useful?

® One or both tables are already sorted on join key.
e Output must be sorted on join key.

e The input relations may be sorted by either by an explicit sort operator, or by scanning
the relation using an index on the join key.

Hash Join

N
Hash Join

e If tupler € R and a tuple s € S satisfy the join condition, then they have the same value
for the join attributes.

e If that value is hashed to some partition i, the R tuple must be in r; and the S tuple in s;.

e Therefore, R tuples in r; need only to be compared with S tuples in s;.

N
Basic Hash Join Algorithm

e Phase 1: Build
> Scan the outer table and populate a hash table using the hash function h; on the join
attributes.
e Phase 2: Probe

> Scan the inner table and use h; on each tuple to jump to a location in the hash table and
find a matching tuple.

N
Basic Hash Join Algorithm

R (id, name)
S (id, value, cdate)

operator BasicHashJoin(R, S):
build hash table HTg for R
for each tuples € S

emit, if hy(s) in HTg

N
Basic Hash Join Algorithm

Hash Table

R(id,name) R

f s(id,value, cdate)

HYEEESO
i & -

it
S
el
Q

53/73

Y Hash Join
Hash Table Contents

e Key: The attribute(s) that the query is joining the tables on.

e Value: Depends on what the parent operator above the join in the query plan expects
as its input.
> Approach 1: Full Tuple
> Avoid having to retrieve the outer table’s tuple contents on a match.
> Takes up more space in memory.
> Approach 2: Tuple Identifier

» Ideal for column stores because the DBMS does not fetch data from disk unless needed.
> Also better if join selectivity is low.

N <1 in
Probe Phase Optimization

e Create a bloom filter during the build phase when the key is likely to not exist in the
hash table.
> Threads check the filter before probing the hash table.
> This will be faster since the filter will fit in CPU caches.
> a.k.a., sideways information passing.

Probe Phase Optimization

YBloom Filter / \

S\ ‘)""‘

= Dalx 56/73

N
Hash Join

e What happens if we do not have enough memory to fit the entire hash table?

e We do not want to let the buffer pool manager swap out the hash table pages randomly.

N
Grace Hash Join

e Hash join when tables do not fit in
memory.
» Build Phase: Hash both tables on the
join attribute into partitions.
> Probe Phase: Compares tuples in
corresponding partitions for each

table.
e Named after the
. GRACE
GRACE database machine from University of Tokyo

Japan in the 1980s.

Grace Hash Join

e Hash R into (0, 1, ..., max) buckets.
e Hash S into the same number of buckets with the same hash function.

e Join each pair of matching buckets between R and S.

Grace Hash Join

R (id, name)
S (id, value, cdate)

operator Grace Hash Join(R, S):
for bucketi € [0, max]
for each tuple r € bucket Ry
for each tuple s € bucket S;
emit, if r and s match

N
Grace Hash Join

R(id,name)

S(id,value,cdate)

e

(

id, name)

: S(id,value,cdate)

61/73

Grace Hash Join

e If the buckets do not fit in memory, then use recursive partitioning to split the tables
into chunks that will fit.

> Build another hash table for bucketg ; using hash function h, (with h; !=hy).
> Then probe it for each tuple of the other table’s bucket at that level.

Y Hashgoin
Recursive Partitioning

R(id,name)

@)

63/73

Y Hashgoin
Recursive Partitioning

R(id,name)

1"

1

A

64/73

Y Hashgoin
Recursive Partitioning

R(id,name) 0
]
| 1
@) B
: 1
-IIII
n

Do 65/73

Y Hashjoin
Recursive Partitioning
R(id, name)

S(id,value,cdate)
|

A

66/73

Y Hashjoin
Recursive Partitioning
R(id, name)

S(id,value,cdate

A

67/73

Grace Hash Join

e Partitioning Phase:

»> Read+Write both tables
> 2x (M + N)IOs

e Probing Phase:

> Read both tables
> M + N IOs

e Total Cost: 3 x (M + N)

Grace Hash Join

e Example Database:
> Table R: M = 1000 pages, m = 100,000 tuples
> Table S: N = 500 pages, n = 40,000 tuples

e Cost Analysis:

> 3x (M + N) =3 x(1000 + 500) = 4,500 IOs
> At 0.1 ms/IO, Total time =~ 0.45 seconds

Observation

e If the DBMS knows the size of the outer table, then it can use a static hash table.
> Less computational overhead for build / probe operations.

e If we do not know the size, then we have to use a dynamic hash table or allow for
overflow pages.

N ol sion

Conclusion

N ol sion

Join Algorithms: Summary

Join Algorithm IO Cost Example
Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M+ (M xC) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3x (M +N) 0.45 seconds

N ol sion

Conclusion

Hashing is almost always better than sorting for operator execution.

Caveats:

> Sorting is better on non-uniform data.
> Sorting is better when result needs to be sorted.

Good DBMSs use either or both.

Next Class
> Composing operators together to execute queries.

	Join
	Recap
	Overview
	Nested Loop Join
	Sort-Merge Join
	Hash Join
	Conclusion

