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] Recap
Scheduling

e For each query plan, the DBMS must decide where, when, and how to execute it.
> How many tasks should it use?
» How many CPU cores should it use?
» What CPU core should the tasks execute on?
> Where should a task store its output?

e The DBMS always knows more than the OS.



Join Algorithms: Summary

Join Algorithm IO Cost Example
Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M+ (M xC) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3x (M +N) 0.45 seconds




] Recap
Today’s Agenda

Background
Partition Phase
Build Phase
Probe Phase

Evaluation
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Parallel Join Algorithms

e Perform a join between two relations on multiple threads simultaneously to speed up
operation.
e Two main approaches:
> Hash Join
> Sort-Merge Join

e We won't discuss nested-loop joins.



Observation

e Many OLTP DBMSs do not implement hash join.

e But an index nested-loop join with a small number of target tuples is at a high-level
equivalent to a hash join.
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Hashing vs. Sorting

1970s — Sorting (External Merge-Sort)

1980s — Hashing (Database Machines)

1990s — Equivalent

2000s — Hashing (For Unsorted Data)

2010s — Hashing (Partitioned vs. Non-Partitioned)
2020s - ???



Parallel Join Algorithms

SORT VS, HASH REVISITED: FAST ORACLE
T ;
VLDB 2009 intel

— Hashing is faster than Sort-Merge.
—> Sort-Merge is faster w/ wider SIMD.

WISCONSIN

PR RO CORE
011

DESIGN AND EVALUATION OF MAIN

Y HASH JOIN ALGORITHMS

CPUS
SIGMOD 20;

— Trade-offs between partitioning &

MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS

VLDB 2012

47-{ HyPer

— Sort-Merge is already faster than
Hashing, even without SIMD.

MASSIVELY PARALLEL NUMA-AWARE
HASH JOINS
IMDM 2013

ﬂ-l HyPer

— Ignore what we said last year.
— You really want to use Hashing!

non-partitioning Hash-Join.

MAIN-MEMORY HASH JOINS ON
MULTI-CORE CPUS: TUNING TO THE
' UNDERLYING HARDWARE

ICDE 2013

Semormiia
— New optimizations and results for
Radix Hash Join.

IN MAIN' MEMORY

= | AN EXPERIMENTAL COMPARISON OF
< | THIRTEEN RELATIONAL EQUI-JOINS
SIGMOD 2016

— Hold up everyone! Let's look at
everything more carefully!
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Design Goals

e Goal 1: Minimize Synchronization

> Avoid taking latches during execution.
e Goal 2: Minimize Memory Access Cost

> Ensure that data is always local to worker thread.
> Reuse data while it exists in CPU cache.



Improving Cache Behavior

e Factors that affect cache misses in a DBMS:
> Cache + TLB capacity.
> Locality (temporal and spatial).

e Sequential Access (Scan):

> Clustering data to a cache line.
> Execute more operations per cache line.

e Random Access (Lookups):
> Partition data to fit in cache + TLB.
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Parallel Hash Join

e Hash join is the most important operator in a DBMS for OLAP workloads.
e Itis important that we speed up our DBMS’s join algorithm by taking advantage of
multiple cores.
e We will focus on in-memory DBMSs.
> We want to keep all cores busy, without becoming memory bound.
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Hash Join

Phase 1: Partition (optional)

> Divide the tuples of R and S into sets using a hash on the join key.
Phase 2: Build

> Scan relation R and create a hash table on join key.
Phase 3: Probe

» For each tuple in S, look up its join key in hash table for R. If a match is found, output
combined tuple.

Reference


https://dl.acm.org/doi/10.1145/2882903.2882917

Partition Phase



Partition Phase

e Split the input relations into partitioned buffers by hashing the tuples’ join key(s).

> Ideally the cost of partitioning is less than the cost of cache misses during build phase.
> a.k.a., hybrid hash join / radix hash join.

e Contents of buffers depends on storage model:

> NSM: Usually the entire tuple.
> DSM: Only the columns needed for the join + offset.



Partition Phase

e Approach 1: Non-Blocking Partitioning

> Only scan the input relation once.
> Produce output incrementally.

e Approach 2: Blocking Partitioning (Radix)

> Scan the input relation multiple times.
> Only materialize results all at once.
> a.k.a., radix hash join.



I partition Phase
Non-Blocking Partitioning

e Scan the input relation only once and generate the output on-the-fly.
e Approach 1: Shared Partitions

> Single global set of partitions that all threads update.
> Must use a latch to synchronize threads.

e Approach 2: Private Partitions

> Each thread has its own set of partitions.
» Must consolidate them after all threads finish.



I partition Phase
Shared Partitions

Data Table




Private Partitions
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Private Partitions
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Blocking Partitioning (Radix Partitioning)

e Scan the input relation multiple times to generate the partitions.

* No need to synchronize.
e Multi-step pass over the relation:
> Step 1: Scan R and compute a histogram of the number of tuples per hash key for the
radix at some offset.

> Step 2: Use this histogram to determine output offsets by computing the prefix sum.
> Step 3: Scan R again and partition them according to the hash key.



I partition Phase
Radix

e The radix of a key is the value of an integer at a position (using its base).

Keys | 8)9[| 1]2|| 2]3]] o[8]] 4[1]| 6]4

Radix| 9 [ 2 [3[8[1]4]




I partition Phase
Radix

e The radix of a key is the value of an integer at a position (using its base).

Keys |89 |[1]2 ||2[3 [|o|8 |[4]1 ||6|4

Radix| 8 [1]2[0]4]6]




N i ton Phase

Prefix Sum

e The prefix sum of a sequence of numbers (xo, x1,. .., Xn) is a second sequence of
numbers (Yo, Y1,. . ., Yn) that is a running total of the input sequence.

Input[1 [ 23456 ]
IR
B ra e

PrefixSum[ 1] 3 [ 6 [10]15]21]




Radix Partitions

Step #1: Inspect input,

yreate histograms
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Radix Partitions

Step #2: Compute output
offsets
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Radix Partitions

Step #3: Read input

’ and partition
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Radix Partitions
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Build Phase



] Build Phase
Build Phase

e The threads are then to scan either the tuples (or partitions) of R.

e For each tuple, hash the join key attribute for that tuple and add it to the appropriate
bucket in the hash table.

> The buckets should only be a few cache lines in size.



] Build Phase
Hash Table

e Design Decision 1: Hash Function

> How to map a large key space into a smaller domain.
> Trade-off between being fast vs. collision rate.

e Design Decision 2: Hashing Scheme

> How to handle key collisions after hashing.
> Trade-off between allocating a large hash table vs. additional instructions to find/insert
keys.
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Hashing Schemes

Approach 1: Chained Hashing (Dynamic)

Approach 2: Linear Probe Hashing (Static)
Approach 3: Robin Hood Hashing (Static)
Approach 4: Hopscotch Hashing (Static)
Approach 5: Cuckoo Hashing (Static)



] Build Phase
Chained Hashing

e Maintain a linked list of buckets for each slot in the hash table.
e Resolve collisions by placing all elements with the same hash key into the same bucket.

> To determine whether an element is present, hash to its bucket and scan for it.
> Insertions and deletions are generalizations of lookups.



Chained Hashing

| Buckets
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Chained Hashing

hash(key)

hash(B)| B

hash(4)| A
hash(C)|C
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Chained Hashing

s HyPer

64-bit Bucket Pointers
K 48-bit Pointer

¥ 16-bit Bloom Filter

hash(F) | F
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) build Phase
Linear Probe Hashing

e Single giant table of slots.
 Resolve collisions by linearly searching for the next free slot in the table.

> To determine whether an element is present, hash to a location in the table and scan for it.
> Must store the key in the table to know when to stop scanning.
> Insertions and deletions are generalizations of lookups.



Y BuildPhase
Linear Probe Hashing

hash(B)| B

hash(A)| A
hash(C)| C
hash(D)| D
hash(E) | E
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Observation

e To reduce the number of wasteful comparisons during the join, it is important to avoid
collisions of hashed keys.

e This requires a chained hash table with 2x the number of slots as the number of
elements in R.



] Build Phase
Robin Hood Hashing

e Variant of linear probe hashing that steals slots from rich keys and give them to poor
keys.
> Each key tracks the number of positions they are from where its optimal position in the
table.
> On insert, a key takes the slot of another key if the first key is farther away from its
optimal position than the second key.



N CuildPhase
Robin Hood Hashing
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Robin Hood Hashing

hash(A)| A [@]
hash(C)|C [1]
hash(E) | E [ 2]

hash(D)| D [ 2]

Alo] ==E[0]
C[1] ==E[1]
D[1] <E[2]
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Hopscotch Hashing

e Variant of linear probe hashing where keys can move between positions in a
neighborhood.

> A neighborhood is contiguous range of slots in the table.
> The size of a neighborhood is a configurable constant.

e A key is guaranteed to be in its neighborhood or not exist in the table.
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Hopscotch Hashing
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Hopscotch Hashing

Neighborhood Size = 3

Neighborhood #3
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Hopscotch Hashing

Neighborhood Size = 3
Neighborhood #1
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Hopscotch Hashing
hash(key)

Neighborhood Size = 3
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N ©dThese
Hopscotch Hashing
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N ©dThese
Hopscotch Hashing

Neighborhood Size = 3

Neighborhood #3
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Hopscotch Hashing
hash(key)
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Hopscotch Hashing
hash(key)

Neighborhood Size = 3
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) build Phase
Cuckoo Hashing

e Use multiple tables with different hash functions.

> On insert, check every table and pick anyone that has a free slot.
> If no table has a free slot, evict the element from one of them and then re-hash it find a
new location.

e Look-ups are always O(1) because only one location per hash table is checked.



N BcildPrase
Cuckoo Hashing

Hash Table #1
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I Hash Table #2
Insert X
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Probe Phase



N probe Phase
Probe Phase

e For each tuple in S, hash its join key and check to see whether there is a match for each
tuple in corresponding bucket in the hash table constructed for R.

> If inputs were partitioned, then assign each thread a unique partition.
> Otherwise, synchronize their access to the cursor on S.



] Probe Phase
Probe Phase — Bloom Filter

e Create a Bloom Filter during the build phase when the key is likely to not exist in the
hash table.
> Threads check the filter before probing the hash table.
> This will be faster since the filter will fit in CPU caches.
> ak.a., called sideways information passing.




Probe Phase — Bloom Filter
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Evaluation
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Hash Join Variants

No-P  Shared-P Private-P Radix
Partitioning No Yes Yes Yes
Input scans 0 1 1 2
Sync during partitioning - Spinlock per tuple Barrier Barriers
Hash table Shared Private Private Private
Sync during build phase Yes No No No
Sync during probe phase No No No No
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Benchmarks

Primary key — foreign key join
> Outer Relation (Build): 16 M tuples, 16 bytes each
> Inner Relation (Probe): 256 M tuples, 16 bytes each

Uniform and highly skewed (Zipf; s=1.25)

No output materialization

Reference


https://dl.acm.org/doi/abs/10.1145/1989323.1989328

Hash Join - Uniform Dataset

Intel Xeon CPU X5650 @ 2.66GHz
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Hash Join - Skewed Dataset

Intel Xeon CPU X5650 @ 2.66GHz
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Observation

e We have ignored a lot of important parameters for all these algorithms so far.
> Whether to use partitioning or not?
> How many partitions to use?
» How many passes to take in partitioning phase?
e In a real DBMS, the optimizer will select what it thinks are good values based on what
it knows about the data (and maybe hardware).



Radix Hash Join - Uniform Dataset
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Radix Hash Join - Uniform Dataset

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions
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Conclusion

e Partitioned-based joins outperform no-partitioning algorithms in some settings, but it
is non-trivial to tune it correctly.
o AFAIK, every DBMS vendor picks one hash join implementation and does not try to be
adaptive.
e Next Class
> Parallel Sort-Merge Join Algorithms



	Parallel Hash Join
	Recap
	Background
	Partition Phase
	Build Phase
	Probe Phase
	Evaluation
	Conclusion

