Parallel Hash Join

Recap

= Dalx 2/68

] Recap
Scheduling

e For each query plan, the DBMS must decide where, when, and how to execute it.
> How many tasks should it use?
» How many CPU cores should it use?
» What CPU core should the tasks execute on?
> Where should a task store its output?

e The DBMS always knows more than the OS.

Join Algorithms: Summary

Join Algorithm IO Cost Example
Simple Nested Loop Join M + (m x N) 1.3 hours
Block Nested Loop Join M + (M x N) 50 seconds
Index Nested Loop Join M+ (M xC) Variable
Sort-Merge Join M + N + (sort cost) 0.75 seconds
Hash Join 3x (M +N) 0.45 seconds

] Recap
Today’s Agenda

Background
Partition Phase
Build Phase
Probe Phase

Evaluation

Background

| g
Parallel Join Algorithms

e Perform a join between two relations on multiple threads simultaneously to speed up
operation.
e Two main approaches:
> Hash Join
> Sort-Merge Join

e We won't discuss nested-loop joins.

Observation

e Many OLTP DBMSs do not implement hash join.

e But an index nested-loop join with a small number of target tuples is at a high-level
equivalent to a hash join.

I sackground
Hashing vs. Sorting

1970s — Sorting (External Merge-Sort)

1980s — Hashing (Database Machines)

1990s — Equivalent

2000s — Hashing (For Unsorted Data)

2010s — Hashing (Partitioned vs. Non-Partitioned)
2020s - ???

Parallel Join Algorithms

SORT VS, HASH REVISITED: FAST ORACLE
T ;
VLDB 2009 intel

— Hashing is faster than Sort-Merge.
—> Sort-Merge is faster w/ wider SIMD.

WISCONSIN

PR RO CORE
011

DESIGN AND EVALUATION OF MAIN

Y HASH JOIN ALGORITHMS

CPUS
SIGMOD 20;

— Trade-offs between partitioning &

MASSIVELY PARALLEL SORT-MERGE
JOINS IN MAIN MEMORY MULTI-
CORE DATABASE SYSTEMS

VLDB 2012

47-{ HyPer

— Sort-Merge is already faster than
Hashing, even without SIMD.

MASSIVELY PARALLEL NUMA-AWARE
HASH JOINS
IMDM 2013

ﬂ-l HyPer

— Ignore what we said last year.
— You really want to use Hashing!

non-partitioning Hash-Join.

MAIN-MEMORY HASH JOINS ON
MULTI-CORE CPUS: TUNING TO THE
' UNDERLYING HARDWARE

ICDE 2013

Semormiia
— New optimizations and results for
Radix Hash Join.

IN MAIN' MEMORY

= | AN EXPERIMENTAL COMPARISON OF
< | THIRTEEN RELATIONAL EQUI-JOINS
SIGMOD 2016

— Hold up everyone! Let's look at
everything more carefully!

10/ 68

Y =570
Design Goals

e Goal 1: Minimize Synchronization

> Avoid taking latches during execution.
e Goal 2: Minimize Memory Access Cost

> Ensure that data is always local to worker thread.
> Reuse data while it exists in CPU cache.

Improving Cache Behavior

e Factors that affect cache misses in a DBMS:
> Cache + TLB capacity.
> Locality (temporal and spatial).

e Sequential Access (Scan):

> Clustering data to a cache line.
> Execute more operations per cache line.

e Random Access (Lookups):
> Partition data to fit in cache + TLB.

| g
Parallel Hash Join

e Hash join is the most important operator in a DBMS for OLAP workloads.
e Itis important that we speed up our DBMS’s join algorithm by taking advantage of
multiple cores.
e We will focus on in-memory DBMSs.
> We want to keep all cores busy, without becoming memory bound.

| g
Hash Join

Phase 1: Partition (optional)

> Divide the tuples of R and S into sets using a hash on the join key.
Phase 2: Build

> Scan relation R and create a hash table on join key.
Phase 3: Probe

» For each tuple in S, look up its join key in hash table for R. If a match is found, output
combined tuple.

Reference

https://dl.acm.org/doi/10.1145/2882903.2882917

Partition Phase

Partition Phase

e Split the input relations into partitioned buffers by hashing the tuples’ join key(s).

> Ideally the cost of partitioning is less than the cost of cache misses during build phase.
> a.k.a., hybrid hash join / radix hash join.

e Contents of buffers depends on storage model:

> NSM: Usually the entire tuple.
> DSM: Only the columns needed for the join + offset.

Partition Phase

e Approach 1: Non-Blocking Partitioning

> Only scan the input relation once.
> Produce output incrementally.

e Approach 2: Blocking Partitioning (Radix)

> Scan the input relation multiple times.
> Only materialize results all at once.
> a.k.a., radix hash join.

I partition Phase
Non-Blocking Partitioning

e Scan the input relation only once and generate the output on-the-fly.
e Approach 1: Shared Partitions

> Single global set of partitions that all threads update.
> Must use a latch to synchronize threads.

e Approach 2: Private Partitions

> Each thread has its own set of partitions.
» Must consolidate them after all threads finish.

I partition Phase
Shared Partitions

Data Table

Private Partitions

Data Table Partitions Combined
H=E=] P L)

£ DB - » "
== 17 —
A=g=

oiwa—_ »"E
H=E=]

fu < - »,—=

it

)
el
QD

20/ 68

Private Partitions

Qe 21/68

|l
Blocking Partitioning (Radix Partitioning)

e Scan the input relation multiple times to generate the partitions.

* No need to synchronize.
e Multi-step pass over the relation:
> Step 1: Scan R and compute a histogram of the number of tuples per hash key for the
radix at some offset.

> Step 2: Use this histogram to determine output offsets by computing the prefix sum.
> Step 3: Scan R again and partition them according to the hash key.

I partition Phase
Radix

e The radix of a key is the value of an integer at a position (using its base).

Keys | 8)9[| 1]2|| 2]3]] o[8]] 4[1]| 6]4

Radix| 9 [2 [3[8[1]4]

I partition Phase
Radix

e The radix of a key is the value of an integer at a position (using its base).

Keys |89 |[1]2 ||2[3 [|o|8 |[4]1 ||6|4

Radix| 8 [1]2[0]4]6]

N i ton Phase

Prefix Sum

e The prefix sum of a sequence of numbers (xo, x1,. .., Xn) is a second sequence of
numbers (Yo, Y1,. . ., Yn) that is a running total of the input sequence.

Input[1 [23456]
IR
B ra e

PrefixSum[1] 3 [6 [10]15]21]

Radix Partitions

Step #1: Inspect input,

yreate histograms

Sl ==
SO |[— @[[©[® 3

hash,,(key)
s Jse e e e e e e

Radix Partitions

Step #2: Compute output
offsets

<— Partition0,CPU 0

<«— Partition 0,CPU 1
<«— Partition1 ,CPU 0

<«— Partition1, CPU 1

hashp(key)
59999999'

==l l—=—-[o
SEEENEEE

Radix Partitions

Step #3: Read input

’ and partition
0 (o} (97| «~— Partitiono,cPU0
6 s 07 |
,;‘ m lg— 0_3 <«— Partition 0, CPU 1
% 6 [o7 18| «— Partition1,CPU 0
5 B ok 19]
.§ 8 11| <«— Partition1, CPU1
0 |5 15
B|p [19]

Radix Partitions

Recursively repeat until target number of

’ partitions have T created
& o7 |
6 1]
2 8l
§£ B (o)
5 @ Jop]
2@l
6 |i5)
Partition 0: 1
m 10 Pthmn" B3

N 4 Phase

Build Phase

] Build Phase
Build Phase

e The threads are then to scan either the tuples (or partitions) of R.

e For each tuple, hash the join key attribute for that tuple and add it to the appropriate
bucket in the hash table.

> The buckets should only be a few cache lines in size.

] Build Phase
Hash Table

e Design Decision 1: Hash Function

> How to map a large key space into a smaller domain.
> Trade-off between being fast vs. collision rate.

e Design Decision 2: Hashing Scheme

> How to handle key collisions after hashing.
> Trade-off between allocating a large hash table vs. additional instructions to find/insert
keys.

N ° ' -
Hashing Schemes

Approach 1: Chained Hashing (Dynamic)

Approach 2: Linear Probe Hashing (Static)
Approach 3: Robin Hood Hashing (Static)
Approach 4: Hopscotch Hashing (Static)
Approach 5: Cuckoo Hashing (Static)

] Build Phase
Chained Hashing

e Maintain a linked list of buckets for each slot in the hash table.
e Resolve collisions by placing all elements with the same hash key into the same bucket.

> To determine whether an element is present, hash to its bucket and scan for it.
> Insertions and deletions are generalizations of lookups.

Chained Hashing

| Buckets

Da >

35/68

Chained Hashing

hash(key)

hash(B)| B

hash(4)| A
hash(C)|C

EEEEEE

Da >

36/68

Chained Hashing

s HyPer

64-bit Bucket Pointers
K 48-bit Pointer

¥ 16-bit Bloom Filter

hash(F) | F

Da >

37/68

) build Phase
Linear Probe Hashing

e Single giant table of slots.
 Resolve collisions by linearly searching for the next free slot in the table.

> To determine whether an element is present, hash to a location in the table and scan for it.
> Must store the key in the table to know when to stop scanning.
> Insertions and deletions are generalizations of lookups.

Y BuildPhase
Linear Probe Hashing

hash(B)| B

hash(A)| A
hash(C)| C
hash(D)| D
hash(E) | E

Do 39/68

) il Prase

Observation

e To reduce the number of wasteful comparisons during the join, it is important to avoid
collisions of hashed keys.

e This requires a chained hash table with 2x the number of slots as the number of
elements in R.

] Build Phase
Robin Hood Hashing

e Variant of linear probe hashing that steals slots from rich keys and give them to poor
keys.
> Each key tracks the number of positions they are from where its optimal position in the
table.
> On insert, a key takes the slot of another key if the first key is farther away from its
optimal position than the second key.

N CuildPhase
Robin Hood Hashing

m“ha”ll’[e]

huh@i”}‘[O]

hash(C)| C [1]

Alo] == E[o]

Cl1l==E[1]
huhﬂ»ll)[ll

D[1]<E[2]

Hao

42 /68

Y BuildPhase
Robin Hood Hashing

hash(A)| A [@]
hash(C)|C [1]
hash(E) | E [2]

hash(D)| D [2]

Alo] ==E[0]
C[1] ==E[1]
D[1] <E[2]

DA 43/ 68

N O Phace
Hopscotch Hashing

e Variant of linear probe hashing where keys can move between positions in a
neighborhood.

> A neighborhood is contiguous range of slots in the table.
> The size of a neighborhood is a configurable constant.

e A key is guaranteed to be in its neighborhood or not exist in the table.

N ©dThese
Hopscotch Hashing
hash(key)

Neighbor hood Size = 3

Neighborhood #1

A Neighborhood 2

B
C]|
Bl
E |
[F |

Neighborhood #3

Da >

45 /68

N ©dThese
Hopscotch Hashing

Neighborhood Size = 3

Neighborhood #3

Da >

46 /68

Hopscotch Hashing

Neighborhood Size = 3
Neighborhood #1

hash(hey)
.
—
[
]
]

DA 47/ 68

N ©dThese
Hopscotch Hashing
hash(key)

Neighborhood Size = 3

EEEREER

Neighborhood #3

Da >

48 /68

N ©dThese
Hopscotch Hashing
hash(key)

Neighborhood Size = 3
0 hash(B)| B
A |
5 —
D | ot
z hash(D)| D
F]

Da >

49 /68

N ©dThese
Hopscotch Hashing

Neighborhood Size = 3

Neighborhood #3

Da >

50/68

N ©dThese
Hopscotch Hashing
hash(key)

hash(B)| B

Neighborhood Size = 3
hash(A)| A

hash(c)lc

EEREREE

hash(D)| D

Da >

51/68

N ©dThese
Hopscotch Hashing
hash(key)

Neighborhood Size = 3

Neighborhood #3

Da >

52/68

) build Phase
Cuckoo Hashing

e Use multiple tables with different hash functions.

> On insert, check every table and pick anyone that has a free slot.
> If no table has a free slot, evict the element from one of them and then re-hash it find a
new location.

e Look-ups are always O(1) because only one location per hash table is checked.

N BcildPrase
Cuckoo Hashing

Hash Table #1

]

I Hash Table #2
Insert X
hash(X) hashy(X)
hash(Y)| Y
InsertY
- hash(Y) A
' A
Insert Z
hash(2)

hash(2)
hash/(Y)
hash,(X)

Da >

54 /68

N o Pace

Probe Phase

N probe Phase
Probe Phase

e For each tuple in S, hash its join key and check to see whether there is a match for each
tuple in corresponding bucket in the hash table constructed for R.

> If inputs were partitioned, then assign each thread a unique partition.
> Otherwise, synchronize their access to the cursor on S.

] Probe Phase
Probe Phase — Bloom Filter

e Create a Bloom Filter during the build phase when the key is likely to not exist in the
hash table.
> Threads check the filter before probing the hash table.
> This will be faster since the filter will fit in CPU caches.
> ak.a., called sideways information passing.

Probe Phase — Bloom Filter

YBloom Filter / \

S\ ‘)""‘

= Dalx 58 /68

Ny ©v2ton

Evaluation

Ny ©v2ton

Hash Join Variants

No-P Shared-P Private-P Radix
Partitioning No Yes Yes Yes
Input scans 0 1 1 2
Sync during partitioning - Spinlock per tuple Barrier Barriers
Hash table Shared Private Private Private
Sync during build phase Yes No No No
Sync during probe phase No No No No

Ny ©v2ton

Benchmarks

Primary key — foreign key join
> Outer Relation (Build): 16 M tuples, 16 bytes each
> Inner Relation (Probe): 256 M tuples, 16 bytes each

Uniform and highly skewed (Zipf; s=1.25)

No output materialization

Reference

https://dl.acm.org/doi/abs/10.1145/1989323.1989328

Hash Join - Uniform Dataset

Intel Xeon CPU X5650 @ 2.66GHz
6 Cores with 2 Threads Per Core

M Partition M Build W Probe

Ml 3.3x cache misses
oo e
No Partitioning

‘ Py 768

60.2

—_
(=3
(=]

Cycles / Output Tuple
5 2 8B

473
No Partitioning Shared Private Radix

Partitioning Partitioning

Do 62 /68

Hash Join - Skewed Dataset

Intel Xeon CPU X5650 @ 2.66GHz

6 Cores with 2 Threads Per Core
M Partition ~ MW Build M Probe

2 160 167.1
§ 120
8 8 565 507
N .

252
,§ 40 252
S |

No Partitioning Shared Private Radix

Partitioning Partitioning

63 /68

I

il
it
S
el
Q

Ny ©v2ton

Observation

e We have ignored a lot of important parameters for all these algorithms so far.
> Whether to use partitioning or not?
> How many partitions to use?
» How many passes to take in partitioning phase?
e In a real DBMS, the optimizer will select what it thinks are good values based on what
it knows about the data (and maybe hardware).

Radix Hash Join - Uniform Dataset

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

W Partition MW Build ® Probe

120
=
[xu
&
§- 'V No Partitioning
§ 40
~N
@
-
S 0
& slglolalglelsle zgz:&g@‘s
S| a8 8|2 |28 S| 5|88 |Z2 |28
- - o o — - ~ o N -
R S =
Radix / 1-Pass Radix / 2-Pass

Do 65/ 68

Radix Hash Join - Uniform Dataset

Intel Xeon CPU X5650 @ 2.66GHz
Varying the # of Partitions

M Partition MW Build W Probe

120

80 -

'V No Partitioning

40

Cycles / Output Tuple

Radix / 2-Pass

Radix / 1-Pass

Do 66/ 68

N ol sion

Conclusion

N ol sion

Conclusion

e Partitioned-based joins outperform no-partitioning algorithms in some settings, but it
is non-trivial to tune it correctly.
o AFAIK, every DBMS vendor picks one hash join implementation and does not try to be
adaptive.
e Next Class
> Parallel Sort-Merge Join Algorithms

	Parallel Hash Join
	Recap
	Background
	Partition Phase
	Build Phase
	Probe Phase
	Evaluation
	Conclusion

