Parallel Sort-Merge Join



Recap

= Dalx 2 /66



|
Parallel Join Algorithms

e Perform a join between two relations on multiple threads simultaneously to speed up
operation.
e Two main approaches:
> Hash Join
> Sort-Merge Join




|
Hash Join

Phase 1: Partition (optional)

> Divide the tuples of R and S into sets using a hash on the join key.
Phase 2: Build

> Scan relation R and create a hash table on join key.
Phase 3: Probe

» For each tuple in S, look up its join key in hash table for R. If a match is found, output
combined tuple.

Reference


https://dl.acm.org/doi/10.1145/2882903.2882917

Y Reaap
Hashing vs. Sorting

1970s — Sorting (External Merge-Sort)

1980s — Hashing (Database Machines)

1990s — Equivalent

2000s — Hashing (For Unsorted Data)

2010s — Hashing (Partitioned vs. Non-Partitioned)
2020s - ???



] Recap
Today’s Agenda

Background
Sort Phase
Merge Phase

Evaluation

Retrospective



Background



N ..
Single Instruction Multiple Data (SIMD)

e A class of CPU instructions that allow the processor to perform the same operation on
multiple data points simultaneously.

e All major ISAs have microarchitecture support SIMD operations.
e We first bring data into SIMD registers and then invoke the appropriate operation.
> x86: MMX, SSE, SSE2, SSE3, SSE4, AVX

> PowerPC: Altivec
» ARM: NEON



SIMD Example

X+Y=2Z
X (Y| [ ZitYa
X[ Y2 2] X2tY2

X | Ya) [%0tYn

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;
¥

EEEEEEEE] EIsnoNe]

SISD
+

9/ 66



SIMD Example

X+Y=2Z
X | I X1+Y1
G ||| Va2 ||| =i

X) Yol [%0tYa

for (i=0; i<n; i++) {
Z[i] = X[i] + Y[il;
}

EEEEEEEE] B[]

A

10/ 66



SIMD Example
X+Y=Z g }128-bit SIMD Register
X | [(Vi] [XtVa 6]
X || Y2 [ [ X2tz X i
M : B Z
X | | X,+Y, 0 SIMD
: - + L denns
e i 128-bit SIMD Register
} Y [1]/ 128-bit SIMD Register
1
1]
1]
1]

= 9Dale 11/ 66



] Background
SIMD Trade-Offs

e Advantages
> Significant performance gains and resource utilization if algorithm can be vectorized
¢ Disadvantages

> Implementing an algorithm in SIMD is still mostly a manual process
> SIMD may have restrictions on data alignment
> Gathering data into SIMD registers and scattering to the correct location is tricky



| g
Sort-Merge Join

e Phase 1: Sort
> Sort the tuples of R and S based on the join key.
e Phase 2: Merge

> Scan the sorted relations and compare tuples.
> The outer relation R only needs to be scanned once.




Background

Sort-Merge Join

Relation R Relation S

J I L



Y =570
Sort-Merge Join

Relation R ME/?GE’ Relation S

i




| g
Parallel Sort-Merge Join

Sorting is the most expensive part.

Warning: We will be using merge sort for sorting the data.

Use hardware correctly to speed up the join algorithm as much as possible.

> Utilize as many CPU cores as possible.
> Be mindful of NUMA boundaries.
> Use SIMD instructions where applicable.

These techniques also apply to the ORDER BY operator.

Reference


https://dl.acm.org/doi/10.14778/2732219.2732227

| g
Parallel Sort-Merge Join

e Phase 1: Partitioning (optional)

> Partition R and assign them to workers / cores.
e Phase 2: Sort

> Sort the tuples of R and S based on the join key.
e Phase 3: Merge

> Scan the sorted relations and compare tuples.
> The outer relation R only needs to be scanned once.




Ny paciground

Partitioning Phase

e Approach 1: Implicit Partitioning

> The data was partitioned on the join key when it was loaded into the database.
> No extra pass over the data is needed.

e Approach 2: Explicit Partitioning

> Divide only the outer relation and redistribute among the different CPU cores.
> Can use the same radix partitioning approach we talked about last time.



Sort Phase



I sort Phase
Sort Phase

e Create runs of sorted chunks of tuples for both input relations.
e It used to be that quick-sort was good enough in disk-centric DBMSs.

e We can explore other methods that try to take advantage of NUMA and parallel
architectures.



N "t Fhase

Cache-Conscious Sorting

e Level 1: In-Register Sorting

> Sort runs that fit into CPU registers.
e Level 2: In-Cache Sorting

> Merge Level 1 output into runs that fit into CPU caches.
> Repeat until sorted runs are 1 cache size.

e Level 3: Out-of-Cache Sorting

> Used when the runs of Level 2 exceed the size of caches.




I T
Cache-Conscious Sorting

A A B B R N
Level #1 - ifs S T N\,
| s e s s e
Level #2 T T T T
[ | ] | | | ] |
Level #3 | T J | T ]
[ | [ |
| [




I sort Phase
Level 1 — Sorting Networks

e Abstract model for sorting keys.

> Fixed wiring paths for lists with the same number of elements.
> Efficient to execute on modern CPUs because of limited data dependencies and no
branches.

e Reference


https://dl.acm.org/doi/10.14778/1687553.1687564

Level 1 — Sorting Networks

Input Output [n Ou Input Output
i Ty 5 O
[5] ] 5 5
é 3 1 H E 3 5 I S G 3 2 Iﬁ_.@
i O Gk G, k L 5]

DA 24/ 66



I sort Phase
Level 1 — Sorting Networks

wires = [9,5,3,6]

wires[1]
wires[2]

wires[0] = min(wires[0], wires[1])
wires[1] = max(wires[0], wires[1])
wires[2] = min(wires[2], wires[3])
wires[3] = max(wires[2], wires[3])
wires[0] = min(wires[0], wires[2])
wires[2] = max(wires[0], wires[2])
wires[1] = min(wires[1], wires[3])
wires[3] = max(wires[1], wires[3])

min(wires[1], wires[2])
max(wires[1], wires[2])



Level 1 — Sorting Networks

<64-bit Join Key, 64-bit Tuple Pointer>

A

26 /66



Level 1 — Sorting Networks

Sort Across

Registers
[12]210 4 [13]
[ols8l6]7]
-[1 1430
[5T11015]10]

Instructions:
— 4 LOAD

il
it
S
el
Q

27/ 66



N So(Frese
Level 1 — Sorting Networks

Sort Across

Registers
[12]21] 4 [13] [11s]l3]e]
'|986|7| [511f4a]7]
[1T]4f3 0] ' [9114] 6 J10]
[5111]15]10] [12]21]15]13]
Instructions: Instructions:
— 4 LOAD — 10 MIN/MAX

I

il
it
S
el
Q

28 /66



Level 1 — Sorting Networks

Sort Across Transpose
Registers Registers
Tsl3]0] El
ﬂﬂﬂ - sil4]7] - ﬂ -
[1[14]3]e] [9]14] 6 [10]
[12]21J15]13] ﬂ
Instructions: Instructions: Instructions:
— 4 LOAD — 10 MIN/MAX — 8 SHUFFLE

— 4 STORE

it
S
el
Q

29 / 66



I sort Phase
Level 2 — Bitonic Merge Network

e Like a Sorting Network but it can merge two locally-sorted lists into a globally-sorted
list.
e Can expand network to merge progressively larger lists up to  LLC size.
> 2.25-3.5x speed-up over SISD implementation.



Level 2 — Bitonic Merge Network

Input Output

Sorted Run

3

> Sorted Run

Reverse | [b
Sorted Run \

=] ] BB B ] [

1




] sort Phase
Level 3 — Multi-Way Merging

e Use the Bitonic Merge Networks but split the process up into tasks.

> Still one worker thread per core.
> Link together tasks with a cache-sized FIFO queue.

e A task blocks when either its input queue is empty, or its output queue is full.

e A thread jumps around whenever work is available at an operator in the pipeline.



] sort Phase
Level 3 — Multi-Way Merging

Sorted Runs Cache.-Sized




Merge Phase



N ' 7>
Merge Phase

e Jterate through the outer table and inner table in lockstep and compare join keys.
e May need to backtrack if there are duplicates.
e Done in parallel at the different cores.



Sort-Merge Join Variants

e Multi-Way Sort-Merge (M-WAY)
e Multi-Pass Sort-Merge (M-PASS)
e Massively Parallel Sort-Merge (MPSM)



N ' 7>
Multi-Way Sort-Merge

Outer Table

> Each core sorts in parallel on local data (levels 1/2).
> Redistribute sorted runs across cores using the multi-way merge (level 3).

Inner Table
> Same as outer table.

Merge phase is between matching pairs of chunks of outer/inner tables at each core.
Reference


https://dl.acm.org/doi/10.14778/2732219.2732227

N |(<:c- Phase
Multi-Way Sort-Merge

Local-NUMA Multi-Way
Partitioning ~ Sort Merge

GoE _—= -
O=
0=

G




N crae Phase

Multi-Way Sort-Merge

Local-NUMA
Partitioning  Sort

oo
o

i g
g




N ' 7>
Multi-Way Sort-Merge

Local-NUMA Multi-Way Local Merge Same steps as
Partitioning  Sort Merge Join Outer Table

=l d %&i.: DllxllD«I
Bom E:o

i hd
hd




N crae Phase
Multi-Pass Sort-Merge

Outer Table

> Same level 1/2 sorting as Multi-Way.
> But instead of redistributing, it uses a multi-pass naive merge on sorted runs.

Inner Table
> Same as outer table.

Merge phase is between matching pairs of chunks of outer table and inner table.

The hardware prefetcher masks the latency penalty of going over NUMA regions.




N crae Phase
Multi-Pass Sort-Merge

Local-NUMA Global Merge
Partitioning ~ Sort Join

P>




] Merge Phase
Massively Parallel Sort-Merge

Outer Table

> Range-partition outer table and redistribute to cores.
> Each core sorts in parallel on their partitions.

Inner Table

> Not redistributed like outer table.
» Each core sorts its local data.

Merge phase is between entire sorted run of outer table and a segment of inner table.

Reference


https://dl.acm.org/doi/abs/10.14778/2336664.2336678

] Merge Phase
Massively Parallel Sort-Merge

Globally Sorted

——




] Merge Phase
Massively Parallel Sort-Merge

Cross-NUMA Cross-Partition
Partitioning Sort Merge Join

==[] el
== Eef
L =t
—Rde =«




] Merge Phase
Massively Parallel Sort-Merge

Cross-Partition
Merge Join




Rules for Parallelization

e Rule 1: No random writes to non-local memory

» Chunk the data, redistribute, and then each core sorts/works on local data.
* Rule 2: Only perform sequential reads on non-local memory

> This allows the hardware prefetcher to hide remote access latency.
e Rule 3: No core should ever wait for another

> Avoid fine-grained latching or sync barriers.



Ny  ©v2ton

Evaluation



Ny  ©v2ton

Evaluation

e Compare the different join algorithms using a synthetic data set.
> Sort-Merge: M-WAY, M-PASS, MPSM
> Hash: Radix Partitioning

e Hardware:
> 4 Socket Intel Xeon E4640 @ 2.4GHz

» 8 Cores with 2 Threads Per Core
> 512 GB of DRAM



Raw Sorting Performance

Single-threaded sorting performance

«=C++ STL Sort @-SIMD Sort

2.5-3x Faster

w
(=Y

15
~

L 4
L 4

e
o= ¢ $ 6
\ g o 4

Nl
|

1 2 4 8 16 32 64 128 256
Number of Tuples (in 2%0)

Throughput (M Tuples/sec)
o &

Do 50/ 66



Ny  ©v2ton

Raw Sorting Performance

e STL’s sort is a hybrid algorithm
¢ Quicksort in the beginning, and then switches over to Heapsort.



R
Comparison of Sort-Merge Joins

Workload: 1.6B 24 128 M (8-byte tuples)

Partition MSort WES-Merge MJ-Merge <=#*Throughput

25 22.9 400
2 8
=Y N
20 3008
§§15 . I
- 200 S

S 1o 7.6 i
$ - 100§
S 5
0 0 B

\
M-WAY M-PASS MPSM



Ny  ©v2ton

Comparison of Sort-Merge Joins

e Multi-way performs the best.
e Does more work to redistribute data.

e But it enables better cache locality = higher number instructions per cycle.



M-way Join vs. MPSM Join

Workload: 1.6B #4128 M (8-byte tuples)
“=Multi-Way “®-Massively Parallel

N
(=
o

W
[=3
S

—_
(=3
(=

(=

Throughput (M Tuples/sec)
[ S
(=}
(=}

Number of Threads

DA 54 /66



N . =
M-way Join vs MPSM Join

e M-WAY: Extra instructions used for the multi-way sort in Level 3 pays off.
e MPSM: Overhead of reading data across NUMA regions hurts performance
e Hardware prefetcher is unable to help in this case.



Sort-Merge Join vs. Hash Join

Cycles / Output Tuple

oo

(=)}

IS

LS}

(=)

Workload: Different Table Sizes (8-byte tuples)

Partition M Sort M S-Merge M ]J-Merge M Build+Probe

[ ]

SORT | HASH | SORT | HASH | SORT | HASH | SORT | HASH
128MD<(128M 1.6B><(1.6B 128MD<512M 1.6B<(6.4B

= Dalx 56 / 66



N . =
Sort-Merge Join vs. Hash Join

e Hash join works well in all settings.
e Radix partitioning overhead is high since the tables are large.

e No partitioning scheme should do even better.



N cclvaton
Sort-Merge Join vs. Hash Join

Varying the size of the input relations
=¢=Multi-Way Sort-Merge Join ~ “@~Radix Hash Join

~
w
o

(o))

(=

o
|

N

w

(=)
1

e

—

W

o
|

(=}

Throughput (M Tuples/sec)
g
Y 3

T T T T T T T T 1
128 256 384 512 768 1024 1280 1536 1792 1920
Millions of Tuples

= Dalx 58 / 66



N . =
Sort-Merge Join vs. Hash Join

e Radix hash needs more passes with larger tables.
e Performance gap shrinks due to partitioning overhead.

e No partitioning scheme should do even better.



Ny  ©v2ton

Summary

e Both join algorithms are equally important.
e Every serious OLAP DBMS supports both.
e Sort-merge join is useful when the output needs to be sorted.



Retrospective



Y Retrospecive
What did we learn

e You are tired of systems programming
* You are exhausted

e Let’s take a step back and think about what happened



Lessons learned

e Systems programming is hard
e Become a better programmer through the study of database systems internals

e Going forth, you should have a good understanding how systems work



N 27
Big Ideas

Database systems are awesome — but are not magic.

Elegant abstractions are magic.

Declarativity enables usability and performance.

Building systems software is more than hacking

There are recurring motifs in systems programming.

CS has an intellectual history and you can contribute.



Y Retrospecive
What Next?

e We have barely scratched the surface. Follow-on course: CS 8803 (DBMS
Implementation - Part II)
> Query Compilation + Vectorization
> Query Optimization
> Concurrency Control
> Logging and Recovery Methods
e Stay in touch

> Tell me when this course helps you out with future courses (or jobs!)
> Ask me cool DBMS questions



Y Retrospecive
Parting Thoughts

* You have surmounted several challenges in this course.
e You make it all worthwhile.

e Please share your feedback via CIOS.



	Parallel Sort-Merge Join
	Recap
	Background
	Sort Phase
	Merge Phase
	Evaluation
	Retrospective

