
1 / 66

Parallel Sort-Merge Join

Parallel Sort-Merge Join



2 / 66

Recap

Recap



3 / 66

Recap

Parallel Join Algorithms

• Perform a join between two relations on multiple threads simultaneously to speed up
operation.

• Two main approaches:
▶ Hash Join
▶ Sort-Merge Join



4 / 66

Recap

Hash Join

• Phase 1: Partition (optional)
▶ Divide the tuples of R and S into sets using a hash on the join key.

• Phase 2: Build
▶ Scan relation R and create a hash table on join key.

• Phase 3: Probe
▶ For each tuple in S, look up its join key in hash table for R. If a match is found, output

combined tuple.

• Reference

https://dl.acm.org/doi/10.1145/2882903.2882917


5 / 66

Recap

Hashing vs. Sorting

• 1970s – Sorting (External Merge-Sort)
• 1980s – Hashing (Database Machines)
• 1990s – Equivalent
• 2000s – Hashing (For Unsorted Data)
• 2010s – Hashing (Partitioned vs. Non-Partitioned)
• 2020s – ???



6 / 66

Recap

Today’s Agenda

• Background
• Sort Phase
• Merge Phase
• Evaluation
• Retrospective



7 / 66

Background

Background



8 / 66

Background

Single Instruction Multiple Data (SIMD)

• A class of CPU instructions that allow the processor to perform the same operation on
multiple data points simultaneously.

• All major ISAs have microarchitecture support SIMD operations.
• We first bring data into SIMD registers and then invoke the appropriate operation.

▶ x86: MMX, SSE, SSE2, SSE3, SSE4, AVX
▶ PowerPC: Altivec
▶ ARM: NEON



9 / 66

Background

SIMD Example



10 / 66

Background

SIMD Example



11 / 66

Background

SIMD Example



12 / 66

Background

SIMD Trade-Offs

• Advantages
▶ Significant performance gains and resource utilization if algorithm can be vectorized

• Disadvantages
▶ Implementing an algorithm in SIMD is still mostly a manual process
▶ SIMD may have restrictions on data alignment
▶ Gathering data into SIMD registers and scattering to the correct location is tricky



13 / 66

Background

Sort-Merge Join

• Phase 1: Sort
▶ Sort the tuples of R and S based on the join key.

• Phase 2: Merge
▶ Scan the sorted relations and compare tuples.
▶ The outer relation R only needs to be scanned once.



14 / 66

Background

Sort-Merge Join



15 / 66

Background

Sort-Merge Join



16 / 66

Background

Parallel Sort-Merge Join

• Sorting is the most expensive part.
• Warning: We will be using merge sort for sorting the data.
• Use hardware correctly to speed up the join algorithm as much as possible.

▶ Utilize as many CPU cores as possible.
▶ Be mindful of NUMA boundaries.
▶ Use SIMD instructions where applicable.

• These techniques also apply to the ORDER BY operator.
• Reference

https://dl.acm.org/doi/10.14778/2732219.2732227


17 / 66

Background

Parallel Sort-Merge Join

• Phase 1: Partitioning (optional)
▶ Partition R and assign them to workers / cores.

• Phase 2: Sort
▶ Sort the tuples of R and S based on the join key.

• Phase 3: Merge
▶ Scan the sorted relations and compare tuples.
▶ The outer relation R only needs to be scanned once.



18 / 66

Background

Partitioning Phase

• Approach 1: Implicit Partitioning
▶ The data was partitioned on the join key when it was loaded into the database.
▶ No extra pass over the data is needed.

• Approach 2: Explicit Partitioning
▶ Divide only the outer relation and redistribute among the different CPU cores.
▶ Can use the same radix partitioning approach we talked about last time.



19 / 66

Sort Phase

Sort Phase



20 / 66

Sort Phase

Sort Phase

• Create runs of sorted chunks of tuples for both input relations.
• It used to be that quick-sortwas good enough in disk-centric DBMSs.
• We can explore other methods that try to take advantage of NUMA and parallel

architectures.



21 / 66

Sort Phase

Cache-Conscious Sorting

• Level 1: In-Register Sorting
▶ Sort runs that fit into CPU registers.

• Level 2: In-Cache Sorting
▶ Merge Level 1 output into runs that fit into CPU caches.
▶ Repeat until sorted runs are 1

2 cache size.
• Level 3: Out-of-Cache Sorting

▶ Used when the runs of Level 2 exceed the size of caches.



22 / 66

Sort Phase

Cache-Conscious Sorting



23 / 66

Sort Phase

Level 1 – Sorting Networks

• Abstract model for sorting keys.
▶ Fixed wiring paths for lists with the same number of elements.
▶ Efficient to execute on modern CPUs because of limited data dependencies and no

branches.

• Reference

https://dl.acm.org/doi/10.14778/1687553.1687564


24 / 66

Sort Phase

Level 1 – Sorting Networks



25 / 66

Sort Phase

Level 1 – Sorting Networks

wires = [9,5,3,6]
wires[0] = min(wires[0], wires[1])
wires[1] = max(wires[0], wires[1])
wires[2] = min(wires[2], wires[3])
wires[3] = max(wires[2], wires[3])
wires[0] = min(wires[0], wires[2])
wires[2] = max(wires[0], wires[2])
wires[1] = min(wires[1], wires[3])
wires[3] = max(wires[1], wires[3])
wires[1] = min(wires[1], wires[2])
wires[2] = max(wires[1], wires[2])



26 / 66

Sort Phase

Level 1 – Sorting Networks



27 / 66

Sort Phase

Level 1 – Sorting Networks



28 / 66

Sort Phase

Level 1 – Sorting Networks



29 / 66

Sort Phase

Level 1 – Sorting Networks



30 / 66

Sort Phase

Level 2 – Bitonic Merge Network

• Like a Sorting Network but it can merge two locally-sorted lists into a globally-sorted
list.

• Can expand network to merge progressively larger lists up to 1
2 LLC size.

▶ 2.25–3.5× speed-up over SISD implementation.



31 / 66

Sort Phase

Level 2 – Bitonic Merge Network



32 / 66

Sort Phase

Level 3 – Multi-Way Merging

• Use the Bitonic Merge Networks but split the process up into tasks.
▶ Still one worker thread per core.
▶ Link together tasks with a cache-sized FIFO queue.

• A task blocks when either its input queue is empty, or its output queue is full.
• A thread jumps around whenever work is available at an operator in the pipeline.



33 / 66

Sort Phase

Level 3 – Multi-Way Merging



34 / 66

Merge Phase

Merge Phase



35 / 66

Merge Phase

Merge Phase

• Iterate through the outer table and inner table in lockstep and compare join keys.
• May need to backtrack if there are duplicates.
• Done in parallel at the different cores.



36 / 66

Merge Phase

Sort-Merge Join Variants

• Multi-Way Sort-Merge (M-WAY)
• Multi-Pass Sort-Merge (M-PASS)
• Massively Parallel Sort-Merge (MPSM)



37 / 66

Merge Phase

Multi-Way Sort-Merge

• Outer Table
▶ Each core sorts in parallel on local data (levels 1/2).
▶ Redistribute sorted runs across cores using the multi-way merge (level 3).

• Inner Table
▶ Same as outer table.

• Merge phase is between matching pairs of chunks of outer/inner tables at each core.
• Reference

https://dl.acm.org/doi/10.14778/2732219.2732227


38 / 66

Merge Phase

Multi-Way Sort-Merge



39 / 66

Merge Phase

Multi-Way Sort-Merge



40 / 66

Merge Phase

Multi-Way Sort-Merge



41 / 66

Merge Phase

Multi-Pass Sort-Merge

• Outer Table
▶ Same level 1/2 sorting as Multi-Way.
▶ But instead of redistributing, it uses a multi-pass naïve merge on sorted runs.

• Inner Table
▶ Same as outer table.

• Merge phase is between matching pairs of chunks of outer table and inner table.
• The hardware prefetcher masks the latency penalty of going over NUMA regions.



42 / 66

Merge Phase

Multi-Pass Sort-Merge



43 / 66

Merge Phase

Massively Parallel Sort-Merge

• Outer Table
▶ Range-partition outer table and redistribute to cores.
▶ Each core sorts in parallel on their partitions.

• Inner Table
▶ Not redistributed like outer table.
▶ Each core sorts its local data.

• Merge phase is between entire sorted run of outer table and a segment of inner table.
• Reference

https://dl.acm.org/doi/abs/10.14778/2336664.2336678


44 / 66

Merge Phase

Massively Parallel Sort-Merge



45 / 66

Merge Phase

Massively Parallel Sort-Merge



46 / 66

Merge Phase

Massively Parallel Sort-Merge



47 / 66

Merge Phase

Rules for Parallelization

• Rule 1: No random writes to non-local memory
▶ Chunk the data, redistribute, and then each core sorts/works on local data.

• Rule 2: Only perform sequential reads on non-local memory
▶ This allows the hardware prefetcher to hide remote access latency.

• Rule 3: No core should ever wait for another
▶ Avoid fine-grained latching or sync barriers.



48 / 66

Evaluation

Evaluation



49 / 66

Evaluation

Evaluation

• Compare the different join algorithms using a synthetic data set.
▶ Sort-Merge: M-WAY, M-PASS, MPSM
▶ Hash: Radix Partitioning

• Hardware:
▶ 4 Socket Intel Xeon E4640 @ 2.4GHz
▶ 8 Cores with 2 Threads Per Core
▶ 512 GB of DRAM



50 / 66

Evaluation

Raw Sorting Performance



51 / 66

Evaluation

Raw Sorting Performance

• STL’s sort is a hybrid algorithm
• Quicksort in the beginning, and then switches over to Heapsort.



52 / 66

Evaluation

Comparison of Sort-Merge Joins



53 / 66

Evaluation

Comparison of Sort-Merge Joins

• Multi-way performs the best.
• Does more work to redistribute data.
• But it enables better cache locality =⇒ higher number instructions per cycle.



54 / 66

Evaluation

M-way Join vs. MPSM Join



55 / 66

Evaluation

M-way Join vs MPSM Join

• M-WAY: Extra instructions used for the multi-way sort in Level 3 pays off.
• MPSM: Overhead of reading data across NUMA regions hurts performance
• Hardware prefetcher is unable to help in this case.



56 / 66

Evaluation

Sort-Merge Join vs. Hash Join



57 / 66

Evaluation

Sort-Merge Join vs. Hash Join

• Hash join works well in all settings.
• Radix partitioning overhead is high since the tables are large.
• No partitioning scheme should do even better.



58 / 66

Evaluation

Sort-Merge Join vs. Hash Join



59 / 66

Evaluation

Sort-Merge Join vs. Hash Join

• Radix hash needs more passes with larger tables.
• Performance gap shrinks due to partitioning overhead.
• No partitioning scheme should do even better.



60 / 66

Evaluation

Summary

• Both join algorithms are equally important.
• Every serious OLAP DBMS supports both.
• Sort-merge join is useful when the output needs to be sorted.



61 / 66

Retrospective

Retrospective



62 / 66

Retrospective

What did we learn

• You are tired of systems programming
• You are exhausted
• Let’s take a step back and think about what happened



63 / 66

Retrospective

Lessons learned

• Systems programming is hard
• Become a better programmer through the study of database systems internals
• Going forth, you should have a good understanding how systems work



64 / 66

Retrospective

Big Ideas

• Database systems are awesome – but are not magic.
• Elegant abstractions are magic.
• Declarativity enables usability and performance.
• Building systems software is more than hacking
• There are recurring motifs in systems programming.
• CS has an intellectual history and you can contribute.



65 / 66

Retrospective

What Next?

• We have barely scratched the surface. Follow-on course: CS 8803 (DBMS
Implementation - Part II)
▶ Query Compilation + Vectorization
▶ Query Optimization
▶ Concurrency Control
▶ Logging and Recovery Methods

• Stay in touch
▶ Tell me when this course helps you out with future courses (or jobs!)
▶ Ask me cool DBMS questions



66 / 66

Retrospective

Parting Thoughts

• You have surmounted several challenges in this course.
• You make it all worthwhile.
• Please share your feedback via CIOS.


	Parallel Sort-Merge Join
	Recap
	Background
	Sort Phase
	Merge Phase
	Evaluation
	Retrospective

