
1 / 53

Relational Model

Lecture 2: Relational Model



2 / 53

Relational Model

Today’s Agenda

Relational Model
1.1 Recap
1.2 External Sorting
1.3 Relational Model: Motivation
1.4 Relational Model
1.5 Relational Algebra



3 / 53

Relational Model Recap

Recap



4 / 53

Relational Model Recap

Motivational Example

Designing a robust, scalable algorithm is hard:
• must cope with very large instances
• hard even when the database fits in main memory
• billions of data items
• rules out the possibility of using O(n2) algorithms
• external algorithms (i.e., database does not fit in memory) are even harder

This is why a DBMS is a complex software system.



5 / 53

Relational Model Recap

Hardware Trends

This affects the design of a DBMS
• CPU costs are now more important
• I/O operations are eliminated or greatly reduced
• the classical architecture (disk-oriented database systems) has become suboptimal

But this is more of an evolution as opposed to a revolution. Many of the old techniques are
still relevant for scalability.



6 / 53

Relational Model Recap

Problem Statement

• Sorting an arbitrary amount of data, stored on disk
• Accessing data on disk is slow – so we do not want to access each value individually
• Sorting in main memory is fast – but main memory size is limited



7 / 53

Relational Model Recap

Solution

• Partition the list into a set of smaller-sized chunks that fit in main memory
• and sort all the chunks
• Use std::sort as the internal sorting algorithm.
• With m values fitting into main memory and n values that should be sorted:
• number of runs (k) =

⌈
n
m

⌉
runs

https://en.cppreference.com/w/cpp/algorithm/sort


8 / 53

Relational Model Recap

Iterative 2-Way Merge

• Iteratively merging the first run with the second, the third with the fourth, and so on.
• As number of runs (k) is halved in each iteration, there are only Θ(log2 k) iterations.
• In each iteration every element is moved exactly once.
• So in each iteration, we read and write out all the input data.
• The running time per iteration is therefore in Θ(n).
• The total I/O cost is therefore in Θ(n log2 k).



9 / 53

Relational Model External Sorting

External Sorting



10 / 53

Relational Model External Sorting

K-Way Merge (1)

Memory – – –

Disk 1 5 8 3 4 7 2 6 9

– – – – – – – – –



11 / 53

Relational Model External Sorting

K-Way Merge (2)

Memory 1 3 2

Disk 1 5 8 3 4 7 2 6 9

– – – – – – – – –



12 / 53

Relational Model External Sorting

K-Way Merge (3)

Memory – 3 2

Disk 1 5 8 3 4 7 2 6 9

1 – – – – – – – –



13 / 53

Relational Model External Sorting

K-Way Merge (4)

Memory 5 3 2

Disk 1 5 8 3 4 7 2 6 9

1 – – – – – – – –



14 / 53

Relational Model External Sorting

K-Way Merge (5)

Memory 5 3 –

Disk 1 5 8 3 4 7 2 6 9

1 2 – – – – – – –



15 / 53

Relational Model External Sorting

K-Way Merge (6)

Memory 5 3 6

Disk 1 5 8 3 4 7 2 6 9

1 2 – – – – – – –



16 / 53

Relational Model External Sorting

K-Way Merge (7)

Memory – – –

Disk 1 5 8 3 4 7 2 6 9

1 2 3 4 5 6 7 8 9



17 / 53

Relational Model External Sorting

K-Way Merge (8)

Fewer disk reads
• A straightforward implementation would scan all k runs to determine the minimum.
• This implementation results in a running time of Θ(kn).
• Although it would work, it is not efficient.

We can improve upon this by computing the smallest element faster.
• By using a heap, the smallest element can be determined in O(log k) time.
• Use std::priority_queue (implemented as a heap)
• The resulting running times are therefore in O(n log k).

K-way merge might not fit in memory
• Fall back to regular 2-way merge for a few iterations

https://en.cppreference.com/w/cpp/container/priority_queue


18 / 53

Relational Model Relational Model: Motivation

Relational Model: Motivation



19 / 53

Relational Model Relational Model: Motivation

Digital Music Store Application

Consider an application that models a digital music store to keep track of artists and
albums.

Things we need store:
• Information about Artists
• What Albums those Artists released



20 / 53

Relational Model Relational Model: Motivation

Flat File Strawman (1)

Store our database as comma-separated value (CSV) files that we manage in our own code.

• Use a separate file per entity
• The application has to parse the files each time they want to read/update records



21 / 53

Relational Model Relational Model: Motivation

Flat File Strawman (2)

Artists.csv

Artist Year City

Mozart 1756 Salzburg
Beethoven 1770 Bonn
Chopin 1810 Warsaw

Albums.csv

Album Artist Year

The Marriage of Figaro Mozart 1786
Requiem Mass In D minor Mozart 1791
Für Elise Beethoven 1867



22 / 53

Relational Model Relational Model: Motivation

Flat File Strawman (3)

Example: Get the Albums composed by Beethoven.

for line in file:
record = parse(line)
if "Beethoven" == record[1]:
print record[0]

Albums.csv

Album Artist Year

The Marriage of Figaro Mozart 1786
Requiem Mass In D minor Mozart 1791
Für Elise Beethoven 1867



23 / 53

Relational Model Relational Model: Motivation

Flat File Strawman (4)

Data Integrity
• How do we ensure that the artist is the same for each album entry?
• What if somebody overwrites the album year with an invalid string?
• How do we store that there are multiple artists on an album?

Implementation
• How do you find a particular record?
• What if we now want to create a new application that uses the same database?
• What if two threads try to write to the same file at the same time?

Durability
• What if the machine crashes while our program is updating a record?
• What if we want to replicate the database on multiple machines for high availability?



24 / 53

Relational Model Relational Model: Motivation

Early DBMSs

Limitations of early DBMSs (e.g., IBM IMS FastPath in 1966)
• Database applications were difficult to build and maintain.
• Tight coupling between logical and physical layers.
• You have to (roughly) know what queries your app would execute before you

deployed the database.



25 / 53

Relational Model Relational Model

Relational Model



26 / 53

Relational Model Relational Model

Relational Model

Proposed in 1970 by Ted Codd (IBM Almaden).
Data model to avoid this maintenance.

• Store database in simple data structures
• Access data through high-level language
• Physical storage left up to implementation



27 / 53

Relational Model Relational Model

Data Models

A data model is collection of concepts for describing the data in a database.
A schema is a description of a particular collection of data, using a given data model.

List of data models
• Relational (SQL-based, most DBMSs, focus of this course)
• Non-Relational (a.k.a., NoSQL) models

▶ Key/Value
▶ Graph
▶ Document
▶ Column-family

• Array/Matrix (Machine learning)
• Obsolete models

▶ Hierarchical/Tree



28 / 53

Relational Model Relational Model

Relation

A relation is an unordered set of tuples. Each tuple represents an entity.
A tuple is a set of attribute values.
Values are (normally) atomic/scalar.

Artist Year City

Mozart 1756 Salzburg
Beethoven 1770 Bonn
Chopin 1810 Warsaw



29 / 53

Relational Model Relational Model

Jargon

• Relations are also referred to as tables.
• Tuples are also referred to as records or rows.
• Attributes are also referred to as columns.



30 / 53

Relational Model Relational Model

Relational Model: Definition



31 / 53

Relational Model Relational Model

Relational Model

• Structure: The definition of relations and their contents.
• Integrity: Ensure the database’s contents satisfy constraints.
• Manipulation: How to access and modify a database’s contents.



32 / 53

Relational Model Relational Model

Structure: Primary Key

• A relation’s primary key uniquely identifies a single tuple.
• Some DBMSs automatically create an internal primary key if you don’t define one.
• Auto-generation of unique integer primary keys (SEQUENCE in SQL:2003)

Schema: Artists (ID, Artist, Year, City)

ID Artist Year City

1 1756 Salzburg
2 1770 Bonn
3 1810 Warsaw



33 / 53

Relational Model Relational Model

Structure: Foreign Key (1)

• A foreign key specifies that an tuple from one relation must map to a tuple in another
relation.

• Mapping artists to albums?



34 / 53

Relational Model Relational Model

Structure: Foreign Key (2)

Artists (ID, Artist, Year, City)
Albums (ID, Album, Artist_ID, Year)

Artists

ID Artist Year City

1 Mozart 1756 Salzburg
2 Beethoven 1770 Bonn
3 Chopin 1810 Warsaw

Albums

ID Album Artist_ID Year

1 The Marriage of Figaro 1 1786
2 Requiem Mass In D minor 1 1791
3 Für Elise 2 1867



35 / 53

Relational Model Relational Model

Structure: Foreign Key (3)

What if an album is composed by two artists?
What if an artist composed two albums?

Artists (ID, Artist, Year, City)
Albums (ID, Album, Year)
ArtistAlbum (Artist_ID, Album_ID)

ArtistAlbum

Artist_ID Album_ID

1 1
2 1
2 2



35 / 53

Relational Model Relational Model

Structure: Foreign Key (3)

What if an album is composed by two artists?
What if an artist composed two albums?

Artists (ID, Artist, Year, City)
Albums (ID, Album, Year)
ArtistAlbum (Artist_ID, Album_ID)

ArtistAlbum

Artist_ID Album_ID

1 1
2 1
2 2



36 / 53

Relational Model Relational Model

Data Manipulation Languages

How to store and retrieve information from a database.
• Relational Algebra

▶ The query specifies the (high-level) strategy the DBMS should use to find the desired
result.

▶ Procedural
• Relational Calculus

▶ The query specifies only what data is wanted and not how to find it.
▶ Non-Procedural



37 / 53

Relational Model Relational Algebra

Relational Algebra



38 / 53

Relational Model Relational Algebra

Core Operators

• These operators take in relations (i.e., tables) as input and return a relation as output.
• We can “chain” operators together to create more complex operations.

• Selection (σ)
• Projection (Π)
• Union (∪)
• Intersection (∩)
• Difference (−)
• Product (×)
• Join (1)



39 / 53

Relational Model Relational Algebra

XKCD

Source: https://xkcd.com/327/

https://xkcd.com/327/


40 / 53

Relational Model Relational Algebra

Core Operators: Selection

• Choose a subset of the tuples from a relation that satisfies a selection predicate.
• Predicate acts as a filter to retain only tuples that fulfill its qualifying requirement.
• Can combine multiple predicates using conjunctions / disjunctions.
• Syntax: σpredicate(R)

SELECT * FROM R WHERE a_id = 'a2' AND b_id > 102;

R

a_id b_id

a1 101
a2 102
a2 103
a3 104

σa_id= ′a2 ′∧b_id>102(R) :
a_id b_id

a2 103



41 / 53

Relational Model Relational Algebra

Core Operators: Projection

• Generate a relation with tuples that contains only the specified attributes.
• Can rearrange attributes’ ordering.
• Can manipulate the values.
• Syntax: ΠA1,A2,...,An(R)

SELECT b_id - 100, a_id FROM R WHERE a_id = 'a2';

R

a_id b_id

a1 101
a2 102
a2 103
a3 104

Πb_id−100,a_id(σa_id= ′a2 ′(R)) :

b_id - 100 a_id

2 103
3 103



42 / 53

Relational Model Relational Algebra

Core Operators: Union

• Generate a relation that contains all tuples that appear in either only one or both input
relations.

• Syntax: R ∪ S

(SELECT * FROM R)
UNION ALL

(SELECT * FROM S)

R

a_id b_id

a1 101
a2 102
a3 103

S

a_id b_id

a3 103
a4 104
a5 105

R ∪ S

a_id b_id

a1 101
a2 102
a3 103
a3 103
a4 104
a5 105



43 / 53

Relational Model Relational Algebra

Semantics of Relational Operators

Set semantics: Duplicates tuples are not allowed
Bag semantics: Duplicates tuples are allowed

We will assume bag (a.k.a., multi-set) semantics.



44 / 53

Relational Model Relational Algebra

Core Operators: Intersection

• Generate a relation that contains only the tuples that appear in both of the input
relations.

• Syntax: R ∩ S

(SELECT * FROM R)
INTERSECT

(SELECT * FROM S)

R

a_id b_id

a1 101
a2 102
a3 103

S

a_id b_id

a3 103
a4 104
a5 105

R ∩ S
a_id b_id

a3 103



45 / 53

Relational Model Relational Algebra

Core Operators: Difference

• Generate a relation that contains only the tuples that appear in the first and not the
second of the input relations.

• Syntax: R − S

(SELECT * FROM R)
EXCEPT

(SELECT * FROM S)

R

a_id b_id

a1 101
a2 102
a3 103

S

a_id b_id

a3 103
a4 104
a5 105

R − S
a_id b_id

a1 101
a2 102



46 / 53

Relational Model Relational Algebra

Core Operators: Product

• Generate a relation that contains all possible combinations of tuples from the input
relations.

• Syntax: R× S

SELECT * FROM R CROSS JOIN S

R

a_id b_id

a1 101
a2 102
a3 103

S

a_id b_id

a3 103
a4 104
a5 105

R× S

R.a_id R.b_id S.a_id S.b_id

a1 101 a3 103
a1 101 a4 104
a1 101 a5 105
a2 102 a3 103
a2 102 a4 104
a2 102 a5 105
a3 103 a3 103
a3 103 a4 104
a3 103 a5 105



47 / 53

Relational Model Relational Algebra

Core Operators: Join

• Generate a relation that contains all tuples that are a combination of two tuples (one
from each input relation) with a common value(s) for one or more attributes.

• Syntax: R 1 S

SELECT * FROM R NATURAL JOIN S

R

a_id b_id

a1 101
a2 102
a3 103

S

a_id b_id

a3 103
a4 104
a5 105

R 1 S
a_id b_id

a3 103



48 / 53

Relational Model Relational Algebra

Derived Operators

Additional (derived) operators are often useful:
• Rename (ρ)
• Assignment (R←S)
• Duplicate Elimination (δ)
• Aggregation (γ)
• Sorting (τ)
• Division (R ÷ S)



49 / 53

Relational Model Relational Algebra

Observation

Relational algebra still defines the high-level steps of how to execute a query.
• σbid=102(R 1 S) versus
• (R 1 σbid=102(S))

A better approach is to state the high-level answer that you want the DBMS to compute.
• Retrieve the joined tuples from R and S where b_id equals 102.



50 / 53

Relational Model Relational Algebra

Relational Model

The relational model is independent of any query language implementation.
However, SQL is the de facto standard.
Example: Get the Albums composed by Beethoven.

for line in file:
record = parse(line)
if "Beethoven" == record[1]:
print record[0]

SELECT Year
FROM Artists
WHERE Artist = "Beethoven"



51 / 53

Relational Model Relational Algebra

Set-Oriented Processing

Small applications often loop over their data
• one for loop accesses all item x,
• for each item, another loop access item y,
• then both items are combined.

This kind of code of code feels “natural”, but is bad
• Ω(n2) runtime
• does not scale

Instead: set oriented processing. Perform operations for large batches of data.



52 / 53

Relational Model Relational Algebra

Set-Oriented Processing (2)

Processing whole batches of tuples is more efficient:
• can prepare index structures
• or re-organize the data
• sorting/hashing
• runtime ideally O(nlogn)

Many different algorithms, we will look at them later.



53 / 53

Relational Model Relational Algebra

Conclusion

• External sorting allows us to sort larger-than-memory datasets
• Relational algebra defines the primitives for processing queries on a relational

database.
• We will see relational algebra again when we talk about query execution.
• In the next lecture, we will learn about advanced SQL.


	Relational Model
	Recap
	External Sorting
	Relational Model: Motivation
	Relational Model
	Relational Algebra


