Georgia @‘
Tech

Lecture 3: Advanced SQL

M}““}EE\E INB THE NEXT"*

JA

JA

JA

JA

JA

JA

JA

JA

JA

Today’s Agenda

Advanced SQL
1.1 Recap
1.2 Relational Language
1.3 Aggregates
1.4 Grouping
1.5 String and Date/Time Functions
1.6 Output Control
1.7 Nested Queries
1.8 Window Functions
1.9 Common Table Expressions
1.10 Joins

Georgia
Tech

Advanced SQL ~ Recap

Recap

Relational Model

Proposed in 1970 by Ted Codd (IBM Almaden).
Data model to avoid this maintenance.

e Store database in simple data structures
e Access data through high-level language
e Physical storage left up to implementation

Georgia
Tech

Advanced SQL = Recap

Core Operators

e These operators take in relations (i.e., tables) as input and return a relation as output.

e We can “chain” operators together to create more complex operations.

e Selection (0)

¢ Projection (IT)
e Union (V)

e Intersection (N)

e Difference (—)
. d
i:l(; (I;C)t v Q\?Uﬁ 9\}9—

Q

Georgia
Tech

JA

JA

JA

JA

Advanced SQL ~ Relational Language

Relational Language

Advanced SQL = Relational Language

Relational Language

e User only needs to specify the answer that they want, not how to compute it.
e The DBMS is responsible for efficient evaluation of the query.
Query optimizel: re-orders operations and generates query plan

SaL

Georgia
Tech

JA

JA

JA

JA

JA

Advanced SQL = Relational Language

SQL History

e Originally “SEQUEL" from IBM’s System R prOtotype.

Structured English Query Language
Adopted by Oracle in the 1970s.
IBM releases DB2 in 1983.

ANSI Standard in 1986. ISO in 1987
Structured Query Language

Georgia
Tech

JA

JA

JA

Advanced SQL = Relational Language

SQL History

e Current standard is SQL:2016A SA/ M\

SQL:2016 — JSON, Polymorphic tables

SQL:2011 —"Temporal DBs, Pipelined DML

SQL:2008 — TRUNCATE, Fancy sorting

SQL:2003 — XML, windows, sequences, auto-gen IDs.
SQL:1999 — Regex, triggers, QS

J st DBMSs at least support(SQL-92 a3
e Comparison of different SQL implementations

ceqe X\W;W . /

http://troels.arvin.dk/db/rdbms/
JA

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL = Relational Language

Relational Language

/@ Manipulation Languag

— —
Data Definition Languagg
=S —
ata Control Language (DT
e Also includes:
View definition
Integrity & Referential Constraints
Transactions
e Important: SQL is based on bag semantics (duplicates) not set semantics (no
duplicates).

Georgia
Tech

JA

JA

JA

Advanced SQL = Relational Language

List of SQL Features

Aggregations + Group By
String / Date / Time Operations
Output Control + Redirection

Nested Queries §i \ &.\f MILL

e Join
ommon Table Expressions

.O,Window Functions

Georgia
Tech

JA

JA

JA

Advanced SQL ~ Relational Language

Example Database

sid name lot&ir_l e"l_g_e gpa .ﬂ—d g glgd_e
2 1 Maria maria@cs 19 3.8 . R
students 7 Rahul rahul@cs 22 35 enrolled 7 5 A
e
4 Peter peter@ece 35 3.8 4 2 @
cid name
o
Il 6omputer Architecture
cours€s 2 Machine Learning
3 Database Systems
4 Programming Languages
Georgia

Tech

JA

JA

JA

JA

JA

JA

Advanced SQL = Aggregates

Aggregates

Advanced SQL ~ Aggregates

Aggregates

e Functions that return a single value from a bag of tuples:
AVG(col)— Return the average col value.
MIN(col)— Return minimum col value.
MAX(col)— Return maximum col value.
SUM(col)— Return sum of values in col.
COUNT(col)— Return number of values for col.
/

Georgia
Tech

JA

JA

JA

JA

JA

JA

Advanced SQL = Aggregates

Aggregates

e Agoregate functions can only be used in the SELECT output list.
g81reg y P

e Task: Get number of students with a "@cs" login:
SELECT COUNT(login) AS cnt e

T —— i -
FROM STudents WHERE login LIKE @
= '
SELECT COUNT(*) AS cnt / , c.S
F students WHERE login LIKE '%@cs'
E e

SELECT COUNT(1) AS cnt
;&eﬁ' students WHERE login LIKE '%@cs’

CNT
S

Georgia
Tech

JA

JA

JA

JA

Advanced SQL = Aggregates

Multiple Aggregates

e Task: Get the number of students and their average GPA that have a "@cs" login.

SELECT AVG(gpa), COUNT(sid)
FROM Students WHERE login LIKE '%@cs’

AVG CNT
3.6666 3

Georgia
Tech

JA

Advanced SQL = Aggregates

Distinct Aggregates

7~

e COUNT, SUM, AVG support DISTINCT

e Task: Get the number of unique students that have an "@cs" login.

SELECT COUNT(DISTINCT login)
FROM students WHERE login LIKE '%@cs'

COUNT
&)

Georgia
Tech

JA

Advanced SQL = Aggregates

Aggregates

e Output of columns outside of an aggregate.

e Task: Get the average GPA of students enrolled in each course.

SELECT AVG(s.gpa), e.cid
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid

AVG e.cid
3.5 ?2??

Georgia
Tech

Advanced SQL = Aggregates

Aggregates

e Output of cgfumns outsigle of an aggregate.
e Task: Get fhe average (JPA of students enrolled in each course.
SELECT AYG(s.gpa),| €.cid"

—

FROM enrolTed AS €, students AS s

WHERE e.sid = s.sid
s e b W ey

AVG e.cid

ee7d" must appear in the GROUP BY clause or be used in an aggregate

function

Georgia
Tech

JA

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL = Grouping

Grouping

Advanced SQL = Grouping

Group By

=

e Project tuples into subsets and calculate aggregates of each subset.

e Task: Get the average GPA of students enrolled in each course.

SELECT e.cid, AVG(s.gpa)
FROM enrolled AS e, students AS s 7

/nggﬁg .sid -— sid - QL) 6{)’) 'V\ 1

e.cid AVG 7{

|
3.8
/ 35 2 — G ’E':) i
s 3.8 2

Georgia
Tech

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL = Grouping

Group By

* Non-aggregated values in SELECT output clause must appear in GROUP BY clause.

SELECT e.gfd, AVG(s.gpa), s.name
FROM efirolled AS e, students AS s
WHERE/ e.sid = s.sid

BY e.cid

SELECT e.cid, AVG(s.gpa), s.name
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid

GROUP BY e.cid, s.name
—

Georgia
Tech

JA

JA

Advanced SQL = Grouping

e Filters results based-tn aggregate value. % $/T

SELECT AVG(&.gpa) AS avg_gpa, e.cid

Georgia
Tech

irfed over a w(WHERE clause for a GROUP BY)

FROM epfolled AS e, students AS s (W(L

= s.sid AND avg_gpa > 3.9

SELECN AVG(s.gpa) AS avg_gpd, e.cid
FROM enrolled AS e, udents AS s
ko ;
WHERE e.sid = s.s

GROUP BY e.

HAVING avg_gpa 3.9
amm———
X — M (\&_A/ >

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL = Grouping

Having

e Filters results based on aggregate value.
 Predicate defined over a group (WHERE clause for a GROUP BY)

SELECT AVG(s.gpa) AS avg_gpa, e.cid
FROM enrolled AS e, students AS s
WHERE e.sid = s.sid
GROUP BY e.cid
HAVING AVG(s.gpa) £-3.9

e.cid AVG
1 3.8

2 3.8

Georgia
Tech

JA

JA

Advanced SQL String and Date/Time Functions

String and Date/Time Functions

Advanced SQL String and Date/Time Functions

String Operations

String Case String Quotes
SQL-92 Sensitive Single Only

Postgres Sensitive ~ Single Only
MySQL Single/Double
SQLite onSitive Single/Double

DB2 Sensitive Single Only
Oracle Sensitive Single Only

WHERE UPPER(name) = UPPER('MaRiA') // SQL-92
— —
WHERE name = 'MaRiA' // MySQL

Georgia
Tech

JA

JA

JA

JA

JA

JA

Advanced SQL String and Date/Time Functions

String Operations

e LIKE is used for string matching.
e String-matching operators
% : Matches any substring (including empty strings).
—
_ : Match any one character
SELEET * FROM student AS s
WHERE s.login LIKE '%@%'

SELECT * FROM student AS s
WHERE s.login LIKE '%@c_'

Georgia
Tech

JA

JA

JA

Advanced SQL = String and

String Operations

Date/Time Functions

e SQL-92 defines string functions.

Many DBMSs also have their own unique functions

e These functions can be used in any expression (
SELECT SUBSTRING(name,®,5) AS abbrv_name
FROM Student$ WHERE sid = 1

SELECT * FROM students AS s
WHERE UPPER(e.name) LIKE 'M%'

Georgia
Tech

projection, predicates, e.t.c.)

\

JA

JA

Advanced SQL String and Date/Time Functions

String Operations

» SQL standard says to use || operator to concatenate two or more strings together.

SQL-92 e

SELECT name FROM students WHERE login = LOWER(name) || '@cs'
MSSQL

SELECT name FROM students WHERE login = LOWER(name) + '@cs'
MySQL

SELECT name FROM students WHERE login = CONCAT(LOWER(name), '@cs')

Georgia
Tech

JA

JA

JA

Advanced SQL String and Date/Time Functions

Date/Time Operations

Operations to manipulate and modify DATE/TIME attributes.
Can be used in any expression.

Task: Get the number of days since 2000.
SELECT (now()::date - :date) AS days;
SQL Server

Support/syntax varies wildly!
e Demo Time!
PostgreSQL
[2000-01-01%):
MySQL
SELECT DATEDIFF(CURDATE(), '2000-01-01') AS days;
SELECT DATEDIFF(day, '2000/01/01', GETDATE(Q)) AS days;
—
Georgia
Tech

JA

JA

JA

JA

JA

Advanced SQL ~ Output Control

Output Control

Advanced SQL ~ Output Control

Output Redirection

e Store query results in another table:

Table must not already be defined.
Table will Have the same number of columns with the same types as the input.

—
SQL-92 ———
SELECT DISTINCT cid INTO Courselds
FROM enrolled; —
MySQL

CREATE TABLE Courselds C
SELECT DISTINCT cid FROM enrolled

' =

Georgia
Tech

JA

JA

JA

JA

Advanced SQL ~ Output Control

Output Redirection

QMWW /@\

e Insert tuples from query into another table:

Inner SELECT must generate the same columns as the target table! s % L
DBMSs have different options/syntax on what to do with duplicatey,

SQL-92 = 4
INSERT INTO Coursefds W
= (SELECT DISTINCT cid FROM enrolled); , -

—

Lot ey

Georgia
Tech

JA

JA

JA

JA

JA

JA

JA

Advanced SQL ~ Output Control

Output Control

e ORDER BY <column*> [ASC|DESC]
Order the output tuples by the values in one or more of their columns.
SELECT sid, grade FROM enrolled
WHERE cid = 2
ORDER BY grade
SELECT sid, grade FROM enrolled

WHERE cid = 2
ORDER BY grade DESC, sid ASC

— —
sid grade
A

4 A

Georgia
Tech

JA

JA

Advanced SQL ~ Output Control

Output Control

] o) \
r~ .
NG =
e LIMIT <count> [offset]

Limit the number of tuples returned in output. R fw
Wl &2

Can set an offset to return a "range"

. - '
SELECT sid, name FROM students M
WHERE login LIKE '%@cs' e -‘\9*
LINIT 10 \6&\&\ _
SELECT sid, name FROM students 1 '\
WHERE login LIKE '%@cs'
LIMIT 20 OFFSET 10 e

= —
= —
Wy o
Georgia .\)‘[u/(' ""KL’

Tech

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

Advanced SQL Nested Queries

Nested Queries

* Queries containing other queries.
e They are often difficult to optimize.

* Inner queries can appear (almost) anywhere in query.

LECT name FROM students --- Outer Query
WHERE ‘5id IN
(SELECT sid FROM enrolled) --- Inner Query

Georgia
Tech

JA

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

¢ Task: Get the names of students in course 2

SELECT name FROM students
WHERE ...

Georgia
Tech

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students in course 2

SELECT name FROM students
WHERE ...
SELECT sid FROM enrolled
WHERE cid = 2

Georgia
Tech

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students ir-ecourse 2

{ students

sid FROM enrolled
WHERE cid = 2

name

Maria
Peter

Georgia
Tech

JA

JA

JA

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

AI:L — Must satisfy expression for all rows in sub-query
/ ANY — Must satisfy expression for at least one row in sub-query.
//IT\T — Equivalent to '=ANY()".

XISTS — Returns true if the subquery returns one or more records.

Georgia
Tech

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students in course 2
SELECT name FROM students
WHERE sid = ANY (
SELECT sid FROM enrolled
WHERE cid = 2

—

Georgia
Tech

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students in course 2
SELECT name FROM students AS s

WHERE EXISTS (-=— EXISTS operator
/ SELECT sid FROM enrolled AS e

WHERE cid = 2 and s.sid = e.sid
)

Georgia
Tech

JA

Advanced SQL Nested Queries

Nested Queries

¢ Task: Get the names of students in course 2

SELECT (SELECT s.name --- Inner query in projection expression
FROM students AS s Comm
WHERE s.sid = e.sid) AS sname
FROM enrolled AS e
WHERE cid = 2

o e > O —

Georgia
Tech

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students not in course 2

SELECT name FROM students
WHERE sid ...

Georgia
Tech

Advanced SQL Nested Queries

Nested Queries

e Task: Get the names of students not in course 2
SELECT name FROM students
WHERE sid != ALL (
SELECT sid FROM enrolled
WHERE cid = 2

name

Rahul
Shiyi

Georgia
Tech

JA

Advanced SQL Nested Queries

Nested Queries

(\ Task: Find students record with the highest id that is enrolled in at least one course.

--- Won't work in SQL-92

SELECT MAX(e.sid), s.name
FROM El?oﬁ;d' AS é,_mdents AS s
WHERE e.sid = s.sid;

Georgia
Tech

JA

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Find students record with the highest id that is enrolled ig_aLlsasi_an_course.

. ”%
--- "Is greater than every other sid

SELECT sid, name
FROM students
WHERE ...

--- "Is greater than every other sid"
SELECT sid, name
FROM students
WHERE sid >= ALLL
SEfEhT sid FROM enrolled

)
sid name

4 Peter

Georgia
Tech

JA

JA

JA

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Find students record with the highest id that is enrolled in at least one course.

SELECT sid, name FROM students
FROM students
WHERE sid IN (
SELECT MAX(sid) FROM enrolled
)

SELECT sid, name FROM students
WHERE sid IN (
SELECT sid FROM enrolled
ORDER BY sid DESC LIMIT 1

Georgia
Tech

JA

JA

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Find all courses that has no students enrolled in it.

SELECT * FROM courses
WHERE ...
--- "with no tuples in the 'enrolled' table"

Georgia
Tech

JA

JA

Advanced SQL Nested Queries

Nested Queries

e Task: Find all courses that has no students enrolled in it.

SELECT * FROM courses
WHERE NOT EXISTS(
SELECT * FROM enrolled
WHERE course.cid = enrolled.cid

)
cid name

4 Peter

Georgia
Tech

JA

Advanced SQL Window Functions

Window Functions

Advanced SQL Window Functions

Window Functions

e Performs a “sliding” calculation across a set of related tuples.
e Unlike GROUP BY, tuples do not collapse into a group

* So needed if must refer back to individual tuples

SELECT ... FUNC-NAME(...) --- Special Window ions, Aggregation Functions
OVER(...) --- How to slice up data? Can also sort.
/ FROM tableName

Georgia
Tech

JA

JA

JA

Advanced SQL Window Functions

Window Functions

¢ Special window functions:
ROW_NUMBER() — Number of the current row
ﬁANK() — Order position of the current row.
e Aggregation functions:
All the functions that we discussed earlier (e.g., MIN, MAX, AYE)
-—— —

SELECT *, ROW_NUMBER(Q)
SN sl
OVER () AS row_num
o=
FROM enrolled

sid cid grade row_num

1 1 1

> 0 > O

1 2 2
2 3 3
48 9 4

Georgia
Tech

JA

JA

JA

JA

JA

Advanced SQL Window Functions

Window Functions

e The OVER keyword specifies how to group together tuples when computing the
window function.

e Use PARTITION BY to specify group.

SELECT cid, sid, ROW_NUMBER(Q)
OVER (PARTITION BY cid) --- Note the row numbering
FROM eriroIlTled
ORDER BY cid

cid sid row_number

] e By
=

2
2
3

N

Georgia
Tech

JA

JA

JA

JA

JA

JA

Window Functions

* You can also include an ORDER BY in the window grouping to sort entries in each
group.
SELECT cid, sid, ROW_NUMBERQ)
OVER (ORDER BY cid)
FROM enrolled
ORDER BY cid

cid sid row_number

1

2
2
3

1

1
4
2

Window Functions

--- Note the row numbering

= W N

JA

JA

Advanced SQL Window Functions

Window Functions

e Task: Find the students with the highest grade for each course.
SELECT cid, sid, grade, rank FROM (

SELECT *, RANK() -- Group tuples by cid and then sort by grade
OVER (PARTITION BY cid ORDER BY grade ASC) AS rank
(e)
FROM enrolled =

) AS ranking
WHERE ranking.rank = ¥
———

—

cid sid grade rank

& R |
Db A T

i
3 2 B 1

Georgia
Tech

JA

JA

JA

JA

JA

JA

JA

Advanced SQL Window Functions

Window Functions

e Task: Get the name of the students with the second highest grade for each course.

SELECT cid, sid, grade, rank FROM (
SELECT *, RANK(Q)
OVER (PARTITION BY cid ORDER BY grade ASC) AS rank
FROM enrolled
) AS ranking
WHERE ranking.rank = 2 --- Update rank

cid sid grade ran_k
2 4 € 2

Georgia
Tech

JA

JA

Advanced SQL Window Functions

Window Functions

e Task: Get the name of the students with the second highest grade for each course.

SELECT * FROM (
SELECT C.name, S.name, E.grade, RANK(Q)
OVER (PARTITION BY E.cid ORDER BY E.grade ASC) AS grade_rank
FROM students S, courses C, enrolled E
WHERE S.sid = E.sid AND C.cid = E.cid --- Connect with students
) AS ranking
WHERE ranking.grade_rank = 2

name name grade rank

Machine Learning Peter C 2

Georgia
Tech

JA

JA

Advanced SQL = Common Table Expressions

Common Table Expressions

Advanced SQL. ~ Common Table Expressions

Common Table Expressions

e Provides a way to write auxiliary statements for use in a larger query.
Think of it like a temp table just for one query.

o' Alternative to nested queries and materialized views.
WITH cteName AS (

SELECT 1
)
SELECT * FROM cteName
column

1

Georgia
Tech

JA

JA

JA

JA

JA

JA

JA

Advanced SQL. ~ Common Table Expressions

Common Table Expressions

e You can bind output columns to names before the AS keyword.
WITH cteName (coll, col2) AS (

Sguacr i, 2
)
SELECT coll + col2 FROM cteName
column
3

Georgia
Tech

JA

JA

JA

Advanced SQL. ~ Common Table Expressions

Common Table Expressions

¢ Task: Find students record with the highest id that is enrolled in at least one course.
WITH cteSource (maxId) AS (
SELECT MAX(sid) FROM enrolled

)
SELECT name FROM students, cteSource
WHERE students.sid = cteSource.maxId

l
e

Georgia
Tech

JA

JA

JA

JA

Advanced SQL. ~ Common Table Expressions

Common Table Expressions — Recursion

e Task: Print the sequence of numbers from}tklo.
WITH RECURSIVE cteSource (counter) AS (
(SELECT 1)
/ UNION ALL
(SELECT counter + 1 FROM cteSource WHERE counter < 10)
r—

ECT * FROM cteSource

Georgia
Tech

JA

JA

JA

Advanced SQL Joins

Joins

Advanced SQL Joins

Types of Join

e Types of Join

/(INNER) JOIN (M) — Returns records that have matching values in both tables

/ LEFT OUTER JOIN (3x) — Returns all records from the left table, and the matched
records from the right table

/ RIGHT OUTER JOIN (<€) — Returns all records from the right table, and the matched

ecords from the left table

FULL OUTER JOIN (2x) — Returns all records when there is a match in either left or
right table

Georgia
Tech

JA

JA

JA

Example Database

Advanced SQL Joins

of Link
sid name
1 Maria
students o Rahyl hobbies
3 Shiyi
4 Peter
Georgia

Tech

sid hobby

1 Stars

1 Climbing
2 Coding

5 Rugby

https://bit.ly/3aRfMYg
JA

JA

Advanced SQL Joins

Types of Join: Inner Join

e Task: List the hobbies of students.

SELECT name, hobby
FROM students JOIN hobbies
ON students.id = hobbies.user_id;

name

grade

Maria
Maria
Rahul

Stars
Climbing
Coding

Georgia
Tech

JA

Types of Join: Left Outer Join

e Task: List the hobbies of all students.

SELECT name, hobby

FROM students LEFT OUTER JOIN hobbies
ON students.id = hobbies.user_id;

Georgia
Tech

name

h |

ras

Maria
Maria
Rahul
Peter
Shiyi

Stars
Climbing
Coding
NULL
NULL

JA

JA

Advanced SQL Joins

Types of Join: Right Outer Join

e Task: List all the hobbies of students.

SELECT name, hobby
FROM students RIGHT OUTER JOIN hobbies
ON students.id = hobbies.user_id;

name grade
Maria Stars
Maria Climbing
Rahul Coding
NULL Rugby

Georgia
Tech

JA

JA

Advanced SQL Joins

Types of Join: Full Outer Join

e Task: List all the hobbies of all students.

SELECT name, hobby
FROM students FULL OUTER JOIN hobbies
ON students.id = hobbies.user_id;

name grade
Maria Stars
Maria Climbing
Rahul Coding
NULL Rugby
Peter NULL
Shinyi = INEIET

Georgia
Tech

JA

Advanced SQL Joins

More Types of Join

¢ SEMI JOIN ()
Returns record from the left table if there is a matching record in the right table
Unlike regular JOIN, only returns columns from the left table and no duplicates.
We do not care about the values of other columns in the right table’s record
Used to execute queries with EXISTS or IN operators
o ANTIJOIN (>)
Opposite of a SEMI JOIN
Returns record from the left table if there is no ma#et e
sed toe queries with NOT EXISTS 4’(/. IN operators
»“LATERAL JOIN (CROSS APPLY)

~~—Subqueries a be preceded by the key word LATERAL
Table functions appearing in FROM clause c3 be preceded by the key word
LATERAL

the right table

Georgia
Tech

JA

JA

JA

JA

JA

JA

Types of Join: Semi Join

Advanced SQL

Joins

e Task: List the names of students with hobbies.
,’-—.
SELECT name

FROM students
WHERE sid IN

Georgia
Tech

(SELECT sid

name

Maria
Rahul

FROM hobbies);

JA

Types of Join: Anti Join

e Task: List the names of students without hobbies.

SELECT name

FROM students
WHERE sid NOT IN

(SELECT sid

name
Shiyi
Peter

FROM hobbies);

JA

JA

Advanced SQL Joins

Types of Join: Lateral Join

e Task: List the names of students with hobbies.

SELECT name
FROM students, LATERAL (SELECT sid FROM hobbies

Georgia
Tech

name

Maria
Maria
Rahul

WHERE students.sid = hobbies.sid) ss;

JA

Advanced SQL Joins

Conclusion

QR L~ 1"

e SQL is not a dead language.
e You should (almost) always strive to compute your answer as a single SQL statement.

Georgia
Tech

JA

Advanced SQL Joins

Next Class

e Storage Management

Georgia
Tech

JA

	Advanced SQL
	Recap
	Relational Language
	Aggregates
	Grouping
	String and Date/Time Functions
	Output Control
	Nested Queries
	Window Functions
	Common Table Expressions
	Joins

