

Lecture 9: Compression

CREATING THE NEXT®

Administrivia

- Please add team details in spreadsheet if not already done.
- Project proposals in class.

Today's Agenda

Recap

Compression Background

Naïve Compression

Columnar Compression

Dictionary Compression

Thread Safety

- A piece of code is <u>thread-safe</u> if it functions correctly during simultaneous execution by multiple threads.
- In particular, it must satisfy the need for multiple threads to access the same shared data (**shared access**), and
- the need for a shared piece of data to be accessed by only one thread at any given time (exclusive access)

2Q Policy

Maintain two queues (FIFO and LRU)

- Some pages are accessed only once (e.g., sequential scan)
- · Some pages are hot and accessed frequently
- · Maintain separate lists for those pages
- Scan resistant policy
- Maintain all pages in FIFO queue
- When a page that is currently in FIFO is referenced again, upgrade it to the LRU queue
- Prefer evicting pages from FIFO queue

Hot pages are in LRU, read-once pages in FIFO.

Observation

- I/O is the main bottleneck if the DBMS has to fetch data from disk
- Database compression will reduce the number of pages
 - ► So, fewer I/O operations (lower disk bandwith consumption)
 - ▶ But, may need to decompress data (CPU overhead)

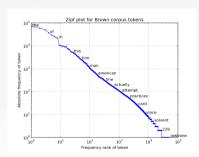
Observation

Key trade-off is decompression speed vs. compression ratio

- Disk-centric DBMS tend to optimize for compression ratio
- In-memory DBMSs tend to optimize for decompression speed. Why?
- Database compression reduces DRAM footprint and bandwidth consumption.

Real-World Data Characteristics

- Data sets tend to have highly <u>skewed</u> distributions for attribute values.
 - Example: Zipfian distribution of the Brown Corpus



Real-World Data Characteristics

- Data sets tend to have high **correlation** between attributes of the same tuple.
 - Example: Zip Code to City, Order Date to Ship Date

Database Compression

- Goal 1: Must produce fixed-length values.
 - Only exception is var-length data stored in separate pool.
- Goal 2: Postpone decompression for as long as possible during query execution.
 - ► Also known as **late materialization**.
- Goal 3: Must be a **lossless** scheme.

- When a DBMS uses compression, it is always <u>lossless</u> because people don't like losing data.
- Any kind of **lossy** compression is has to be performed at the application level.
- Reading less than the entire data set during query execution is sort of like of compression...

- Approach 1: **Approximate Queries** (Lossy)
 - Execute queries on a sampled subset of the entire table to produce approximate results.
 - Examples: BlinkDB, Oracle
- Approach 2: **Zone Maps** (Lossless)
 - Pre-compute columnar aggregations per block that allow the DBMS to check whether queries need to access it.
 - Examples: Oracle, Vertica, MemSQL, Netezza

- Pre-computed aggregates for blocks of data.
- DBMS can check the zone map first to decide whether it wants to access the block.

SELECT *
FROM table
WHERE val > 600;

Observation

- If we want to compress data, the first question is **what data** do want to compress.
- This determines what compression schemes are available to us

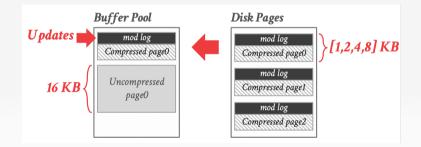
Compression Granularity

- · Choice 1: Block-level
 - Compress a block of tuples of the same table.
- Choice 2: Tuple-level
 - Compress the contents of the entire tuple (NSM-only).
- Choice 3: Value-level
 - Compress a single attribute value within one tuple.
 - Can target multiple attribute values within the same tuple.
- Choice 4: Column-level
 - Compress multiple values for one or more attributes stored for multiple tuples (DSM-only).

- Compress data using a general-purpose algorithm.
- Scope of compression is only based on the **type of data** provided as input.
- · Encoding uses a dictionary of commonly used words
 - LZ4 (2011)
 - ► Brotli (2013)
 - ► Zstd (2015)
- Consideration
 - Compression vs. decompression speed.

- Choice 1: **Entropy** Encoding
 - More common sequences use less bits to encode, less common sequences use more bits to encode.
- Choice 2: **Dictionary** Encoding
 - ▶ Build a data structure that maps data segments to an identifier.
 - ► Replace the segment in the original data with a reference to the segment's position in the dictionary data structure.

Case Study: MySQL InnoDB Compression



- The DBMS must decompress data first before it can be read and (potentially) modified.
 - ▶ This limits the "complexity" of the compression scheme.
- These schemes also do not consider the high-level meaning or semantics of the data.

Observation

- We can perform exact-match comparisons and natural joins on compressed data if predicates and data are compressed the same way.
 - ► Range predicates are trickier...

SELECT *
FROM Artists
WHERE name = $'Mozart'$

	Artist	Year
Original Table	Mozart	1756
	Beethoven	1770

SELECT *	
FROM Artists	
WHERE name $=$]

	Artist	Year
Compressed Table	1	1756
	2	1770

Columnar Compression

Columnar Compression

- Null Suppression
- Run-length Encoding
- Bitmap Encoding
- Delta Encoding
- Incremental Encoding
- Mostly Encoding
- Dictionary Encoding

Null Suppression

- Consecutive zeros or blanks in the data are replaced with a description of how many there were and where they existed.
 - ► Example: Oracle's Byte-Aligned Bitmap Codes (BBC)
- Useful in wide tables with sparse data.
- Reference: Database Compression (SIGMOD Record, 1993)

Run-length Encoding

- Compress runs of the same value in a single column into triplets:
 - ► The value of the attribute.
 - ▶ The start position in the column segment.
 - ► The number of elements in the run.
- Requires the columns to be sorted intelligently to maximize compression opportunities.
- Reference: Database Compression (SIGMOD Record, 1993)

Run-length Encoding

Original Data

Compressed Data

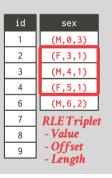
id	sex
1	(M,0,3)
2	(F,3,1)
3	(M, 4, 1)
4	(F,5,1)
6	(M,6,2)
7	RLE Triplet
8	- Value
9	- Offset
	- Length

SELECT sex, COUNT(*)
FROM users
GROUP BY sex

Run-length Encoding

Original Data

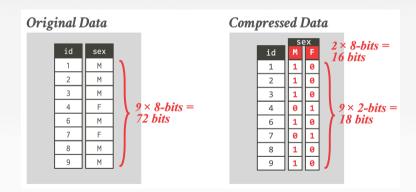
Compressed Data



- Store a separate bitmap for **each unique value** for an attribute where each bit in the bitmap corresponds to the value of the attribute in a tuple.
 - ▶ The i^{th} position in the **bitmap** corresponds to the i^{th} tuple in the table.
 - Typically segmented into chunks to avoid allocating large blocks of contiguous memory.

•

- Only practical if the **cardinality** of the attribute is small.
- Reference: MODEL 204 architecture and performance (HPTS, 1987)



Bitmap Encoding: Analysis

```
CREATE TABLE customer_dim (
id INT PRIMARY KEY,
name VARCHAR(32),
email VARCHAR(64),
address VARCHAR(64),
zip_code INT
);
```

- Assume we have 10 million tuples.
- 43,000 zip codes in the US.
 - $ightharpoonup 10000000 \times 32$ -bits = 40 MB
 - ► 10000000 × 43000 = 53.75 GB
- Every time a txn inserts a new tuple, the DBMS must extend 43,000 different bitmaps.

Bitmap Encoding: Compression

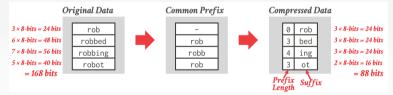
- Approach 1: General Purpose Compression
 - ▶ Use standard compression algorithms (*e.g.*, LZ4, Snappy).
 - ▶ The DBMS must decompress before it can use the data to process a query.
 - ▶ Not useful for in-memory DBMSs.
- Approach 2: Byte-aligned Bitmap Codes
 - Structured run-length encoding compression.

Delta Encoding

- Recording the difference between values that follow each other in the same column.
 - ▶ Store base value **in-line** or in a separate **look-up table**.
 - ► Combine with RLE to get even better compression ratios.

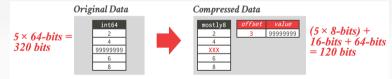
Incremental Encoding

- Variant of delta encoding that avoids duplicating common prefixes/suffixes between consecutive tuples.
- This works best with sorted data.



Mostly Encoding

- When values for an attribute are **mostly** less than the largest possible size for that attribute's data type, store them with a more compact data type.
 - ► The remaining values that cannot be compressed are stored in their raw form.
 - ▶ Reference: Amazon Redshift Documentation



Dictionary Compression

Dictionary Compression

- Probably the most useful compression scheme because it does not require pre-sorting.
- Replace frequent patterns with smaller codes.
- Most pervasive compression scheme in DBMSs.
- Need to support fast encoding and decoding.
- Need to also support range queries.

Dictionary Compression: Design Decisions

- When to construct the dictionary?
- What is the scope of the dictionary?
- What data structure do we use for the dictionary?
- What encoding scheme to use for the dictionary?

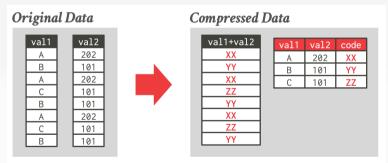
- Choice 1: All-At-Once Construction
 - ► Compute the dictionary for all the tuples at a given point of time.
 - ▶ New tuples must use a separate dictionary, or the all tuples must be recomputed.
- Choice 2: Incremental Construction
 - Merge new tuples in with an existing dictionary.
 - Likely requires re-encoding to existing tuples.

Dictionary Scope

- Choice 1: Block-level
 - Only include a subset of tuples within a single table.
 - ▶ Potentially lower compression ratio but can add new tuples more easily. **Why?**
- · Choice 2: Table-level
 - Construct a dictionary for the entire table.
 - Better compression ratio, but expensive to update.
- Choice 3: Multi-Table
 - Can be either subset or entire tables.
 - Sometimes helps with joins and set operations.

Multi-Attribute Encoding

- Instead of storing a single value per dictionary entry, store entries that span attributes.
 - ▶ I'm not sure any DBMS implements this.



Encoding / Decoding

- A dictionary needs to support two operations:
 - ► Encode: For a given uncompressed value, convert it into its compressed form.
 - ▶ Decode: For a given compressed value, convert it back into its original form.
- No magic hash function will do this for us.

Order-Preserving Encoding

• The encoded values need to support **sorting** in the same order as original values.

SELECT *
FROM Artists

WHERE name LIKE 'M%'

	Artist	Year
Original Table	Mozart	1756
	Max Bruch	1838
	Beethoven	1770

SELECT *
FROM Artists

WHERE name BETWEEN 10 AND 20

	Artist	Year
Compressed Table	10	1756
	20	1838
	30	1770

SELECT Artist FROM Artists

WHERE name LIKE 'M%'

-- Must still perform sequential scan

SELECT DISTINCT Artist

FROM Artists

WHERE name LIKE 'M%' -- ??

Dictionary Data Structures

- Choice 1: Array
 - One array of variable length strings and another array with pointers that maps to string offsets.
 - Expensive to update.
- Choice 2: Hash Table
 - ► Fast and compact.
 - Unable to support range and prefix queries.
- Choice 3: B+Tree
 - ▶ Slower than a hash table and takes more memory.
 - Can support range and prefix queries.

Conclusion

- Dictionary encoding is probably the most useful compression scheme because it does not require pre-sorting.
- The DBMS can combine different approaches for even better compression.
- In the next lecture, we will learn about larger-than-memory databases (advanced lecture).

