Georgia &
Tech

CREATING THE NEXT*

1/52

Motivating Example Shift in Hardware Trends Relational Model: Motivation Relational Model BuzzDB
@0000000000000000 0000000 [e]e]e]o]e} 0000000 [e]e]e]e]e] 0000000000

Gourse Qutline & Logistics

O@000000000000000

Motivation

A Database Management System (DBMS) is a software that allow applications to
store and electronically analyze an organized collection of data.

DBMSs are super important and deployed all over the place
« core component of many applications (e.g., Airlines)
- very large data sets (e.g., [oT data)
- valuable data (e.g., healthcare)

-
“Sech 3/52

0O0@00000000000000

Motivation

Key challenges:
« scalability to huge data sets
« reliability

° concurrency

Results in very complex software.

-
“Toch 4/52

000®0000000000000

Why you should take this course?

+ You want to learn how to make database systems scalable, for example, to
support web or mobile applications with millions of users.

+ You want to make applications that are highly available (i.e., minimizing
downtime) and operationally robust.

* You have a natural curiosity for the way things work and want to know what goes
on inside major websites and online services.

+ You are looking for ways of making systems easier to maintain in the long
run,even as they grow and as requirements and technologies change.

« If you are good enough to write code for a database system, then you can write
code on almost anything else.

-
“Sech)

0O000@000000000000

Why you should take this course?

You will not find a broader set of Computer Science problems inside one piece
of software than by working on a cloud database, especially general-purpose
databases that attempt to solve a lot of different use cases. You get to work on
all kinds of things from memory management, scheduling algorithms, low-level
optimizations like SIMD and efficient operations on compressed data, query op-
timization, etc. And then there’s the whole cloud-native set of challenges. There’s
cloud computing and figuring out how to best use things like blob stores/S3, and
security and all the rest of it. — Adam Prout, CTO of Single-Store

-
“Sech 6/52

0O0000@00000000000

Course Objectives

« Learn about internals of existing DBMSs and how to build a modern DBMS

 Understanding the impact of hardware trends on software design
« Students will become proficient in:

> Writing correct + performant code
> Proper documentation + testing
> Working on a systems programming project

-
“Sech)

0O00000®0000000000

Course Topics

The internals of single node systems for disk-oriented and in-memory databases.

Topics include:
- Relational Databases
» Storage
« Access Methods

 Query Execution

-
“Sech 8/52

0000000 @000000000

Next Course

In a follow-up course offered in the Spring semester (8803-DSI), we will focus on:
- Logging and Recovery
+ Concurrency Control
+ Query Optimization

« Potpourri

This course will be a pre-requisite for the next course.

-
“Sech 9/52

0O0000000e00000000

Textbook

« Silberschatz, Korth, & Sudarshan: Database System Concepts. McGraw Hill, 2020.

+ Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom: Database Systems: The
Complete Book. Prentice-Hall, 2008.

Caveat
« These textbooks mostly focus on traditional disk-oriented database systems

« Not modern in-memory database systems

-
“Sech 10/52

000000000800 00000

Background

* You should have taken an introductory course on database systems (e.g., GT 4400).
« All programming assignments will be in C++ or Python.

> Will train you to develop and test a multi-threaded program.

> Programming Assignment #1 will help get you caught up with C++.

> If you have not encountered C++ before, you will need to put in extra effort! Use

ChatGPT)
> Here a few helpful references: C to C++ Crash Course, Java to C++ Crash Course.
> [will briefly cover relevant parts of C++ in this course.

-
“Sech 11/52

https://github.com/rougier/CPP-Crash-Course
https://web.archive.org/web/20070518010848/https://cs.brown.edu/courses/cs149/handouts/javatoc.shtml

00000000000 00000

Course Logistics

+ Course Web Page
» Schedule: https://www.cc.gatech.edu/ jarulraj/courses/4420-f23/
> Links on Canvas
« Discussion Tool: Piazza
> For all technical questions, please use Piazza
> Don’t email me directly
> All non-technical questions should be sent to me
+ Grading Tool: Gradescope
> You will get immediate feedback on your assignment
> You can iteratively improve your score over time

« Hybrid office hours

> Must sign up for an one-on-one slot
> Sign-up sheet link posted on Canvas

-
“Sech 12/52

https://www.cc.gatech.edu/~jarulraj/courses/4420-f23/

00000000000 e00000

Course Rubric

+ BuzzDB Programming Assignments (20%)
> Four assignments based on the BuzzDB academic DBMS.
> You will need to upload the solutions via Gradescope.
+ EvaDB Programming Assignments (25%)
> Two open-ended assignments based on the EvaDB AI-SQL DBMS.
> You will need to share your solutions via Github.
« Exams (40%)
> Two in-person, pen-and-paper exams.
« Class Participation (15%)

> In-class quizzes (two to three questions per lecture) via TurningPoint.
> Goal is to encourage participation and learning in class.

-
“Sech 13/52

https://gatech.service-now.com/home?id=kb_article_view&sysparm_article=KB0026874

000000000000 e0000

Course Rubric

- Emphasis on learning rather than testing you.

« Students enrolled in the 4420 part may skip attending the advanced lectures
(marked with a star) in the schedule.

« They will not be expected to answer questions related to these advanced lectures
in the exam.

-
oeh 14/52

0000000000000 e000

Course Logistics

« Course Policies
> The programming assignments and exercise sheets must be your own work.
> They are not group assignments.
> You may not copy source code from other people or the web.
> Plagiarism will not be tolerated.
» Academic Honesty

> Refer to Georgia Tech Academic Honor Code.
> If you are not sure, ask me.

-
“Sech 15/52

https://policylibrary.gatech.edu/student-life/academic-honor-code

0000000000000 0e00

Late Policy

+ You are allowed four slip days for either programming assignments or exercise
sheets.

* You lose 25% of an assignment’s points for every 24 hrs it is late.

+ Mark on your submission (1) how many days you are late and (2) how many late
days you have left.

-
“Sech 16/52

0000000000000 00e0

Exercise Sheet #1

+ Hand in one page (PDF) with the following information:
» Digital picture (ideally 2x2 inches of face)
> Name, interests, and other details posted on Gradescope
+ The purpose of this sheet is to help me:

> know more about your background for tailoring the course, and
> recognize you in class

-
“Sech 17/52

0000000000000 000e

Teaching Assistants

. > Ishwarya Sivakumar
> Shashank Suman
> Kaushik Ravichandran
> Aryan Rajoria
> Chitti Reddy
> Sayan Sinha

« If you are acing through the structured BuzzDB assignments, you might want to
focus on the open-ended EvaDB assignments.

« Drop me a note if you are interested!

-
“Sech 18/52

https://github.com/georgia-tech-db/eva

Course Outline & Logistics Shift in Hardware Trends Relational Model: Motivation Relational Model BuzzDB
00000000000000000 ©000000 00000 0000000 00000 0000000000

O®@00000

Motivating Example

Why is a DBMS different from most other programs?
+ many difficult requirements (reliability, concurrency, etc.)

« but a key challenge is scalability

Motivating example
Given two lists Ly and L,, find all entries that occur on both lists.

Looks simple...
Iy =il, 2,8, 5
L,=11,5,3,4,7}
LinL,=1{1,3,5}

-
“Sech 20/52

[e]e] le]e]e]e)

Motivating Example

Given two lists Ly and L,, find all entries that occur on both lists.

Simple if both fit in main memory
Don’t need more than a few lines of code

-
“Sech o

[e]e] le]e]e]e)

Motivating Example

Georgia
Tech

Given two lists Ly and L,, find all entries that occur on both lists.

Simple if both fit in main memory

Don’t need more than a few lines of code

sort both lists and intersect L1 = {1, 2, 3,5}, L, = {1, 3,4, 5, 7}

or load one list in an unordered hash table [?] and probe

or load one list in an ordered tree structure [?]

or ...

Note: pairwise comparison is not an option! O(n?)
We will discuss about hash tables and B-+trees later in this course.

21/52

[ele]e] lele]e)

Motivating Example

Given two lists L1 and L,, find all entries that occur on both lists.

Slightly more complex if only one list fits in main memory

-
“Sech 22/52

[ele]e] lele]e)

Motivating Example

Given two lists L1 and L,, find all entries that occur on both lists.

Slightly more complex if only one list fits in main memory

+ load the smaller list into memory
« build tree structure/sort/hash table/...
- scan the larger list one chunk (e.g., 10 numbers) at a time

« search for matches in main memory

Code still similar to the pure main-memory case.

-
“Sech 22/52

O000@00

Motivating Example

Given two lists Ly and L,, find all entries that occur on both lists.

Difficult if neither list fits into main memory

-
“Sech 23/52

O000@00

Motivating Example

Given two lists Ly and L,, find all entries that occur on both lists.

Difficult if neither list fits into main memory

- no direct interaction possible
+ Option 1: Sorting works, but already a difficult problem
» external merge sort (i.e., database does not fit in memory))
« Option 2: Partitioning scheme (e.g., numbers in [1, 100], [101, 200],...)

> break the problem into smaller problems
> ensure that each partition fits in memory

Code significantly more involved.

-
“Sech 23/52

0000000

Motivating Example

Given two lists L1 and L,, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L.

-
oeh 24/ 52

0000000

Motivating Example

Given two lists L1 and L,, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L.

« tons of corner cases

- alist can contain duplicates

- asingle duplicate value might exceed the size of main memory!

« breaks “simple” external memory logic

 multiple ways to solve this, but all of them are somewhat involved

- and a DBMS must not make assumptions about its data!

Code complexity is very high.

-
oeh 24/ 52

O00000e

Motivating Example

Designing a robust, scalable algorithm is hard
- must cope with very large instances
+ hard even when the database fits in main memory
- billions of data items
- rules out the possibility of using O(n?) algorithms

- external algorithms (i.e., database does not fit in memory) are even harder

This is why a DBMS is a complex software system.

-
“Sech 25/52

Course Outline & Logistics Motivating Example Relational Model: Motivation Relational Model BuzzDB
00000000000000000 0000000 0000 0000000 00000 0000000000

Shift in Hardware Trends

O@000

Traditional Assumptions

Historically, a DBMS is designed based on these assumptions:
« database is much larger than main memory

« I/O cost dominates everything with Hard Disk Drives (HDD)

- random I/O operations to “mechanical” HDD are very expensive

This led to a very conservative, but also very scalable design.

-
“Sech 27/52

[e]e] lole}

Hardware Trends

Hardware has evolved over the decades (invalidating these assumptions):
* main memory size is increasing
« servers with 1 TB main memory are affordable

« “electromagnetic” Solid State Drives (SSD) have lower random I/O cost

-
“Sech 28/52

[e]e]e] le}

Hardware Trends

This affects the design of a DBMS
» CPU costs are now more important
+ 1/O operations are eliminated or greatly reduced

« the classical architecture (disk-oriented database systems) has become
sub-optimal

But this is more of an evolution as opposed to a revolution. Many of the old
techniques are still relevant for scalability.

-
“Sech 29/52

[e]e]e]e]]

Goals

Ideally, a DBMS
- efliciently handles arbitrarily-large databases
- never loses data
- offers a high-level API to manipulate and retrieve data
« this API is the declarative Structured Query Language (SQL)

« shields the application from the complexity of data management

- offers excellent performance for all kinds of queries and all kinds of data

This is a very ambitious goal!
This has been accomplished, but comes with inherent complexity.

-
“Sech 30/52

Course Outline & Logistics Motivating Example Shift in Hardware Trends Relational Model BuzzDB
00000000000000000 0000000 00000 ©000000 00000 0000000000

O®@00000

Digital Music Store Application

Consider an application that models a digital music store to keep track of artists and
albums.

Things we need store:
« Information about Artists
« What Albums those Artists released

-
“Sech 32/52

[e]e] lele]ele}

Flat File Strawman (1)

Store our database as comma-separated value (CSV) files that we manage in our own
code.

« Use a separate file per entity

« The application has to parse the files each time they want to read/update records

-
“Sech 33/52

[e]e]e] le]ele}

Flat File Strawman (2)

Artist Year City

Artists.csy Mozart 1756 Salzburg
Beethoven 1770 Bonn
Chopin 1810 Warsaw

Album Artist Year
Albums.csy 1he Marriage of Figaro Mozart 1786
Requiem Mass In D minor Mozart 1791
Fir Elise Beethoven 1867
Gogein

34/52

[e]e]o]e] Jole}

Flat File Strawman (3)

Example: Get the Albums composed by Beethoven.

for line in file:
record = parse(line)
if "Beethoven” == record[1]:
print record[0]

Album Artist Year

Albums.csy 1he Marriage of Figaro Mozart 1786
Requiem Mass In D minor Mozart 1791
Fir Elise Beethoven 1867

-
“Sech 35/52

O00000e0

Flat File Strawman (4)

Data Integrity
« How do we ensure that the artist is the same for each album entry?
+ What if somebody overwrites the album year with an invalid string?
« How do we store that there are multiple artists on an album?

Implementation

« How do you find a particular record?
« What if we now want to create a new application that uses the same database?
« What if two threads try to write to the same file at the same time?

Durability
« What if the machine crashes while our program is updating a record?
« What if we want to replicate the database on multiple machines for high
availability?

-
“Sech 36/52

0O00000e

Early DBMSs

Limitations of early DBMSs (e.g., IBM IMS FastPath in 1966)
+ Database applications were difficult to build and maintain.

- Tight coupling between logical and physical layers.

+ You have to (roughly) know what queries your app would execute before you
deployed the database.

-
“Sech 37/52

Course Outline & Logistics Motivating Example Shift in Hardware Trends Relational Model: Motivation BuzzDB
00000000000000000 0000000 00000 0000000 [Jelelole) 0000000000

[e] lele]e}

Relational Model

Proposed in 1970 by Ted Codd (IBM Almaden).
Data model to avoid this maintenance.

« Store database in simple data structures
« Access data through high-level language

- Physical storage left up to implementation

-
“Sech 39/52

[e]e] lele}

Data Models

A data model is collection of concepts for describing the data in a database.
A schema is a description of a particular collection of data, using a given data model.

List of data models
+ Relational (SQL-based, most DBMSs, focus of this course)

« Non-Relational (a.k.a., NoSQL) models

» Key/Value, Graph, Document
> Column-family

+ Array/Matrix (Machine learning)
» Hierarchical/Tree

-
“Toch 40/52

[e]ele] o}

Relation

A relation is an unordered set of tuples. Each tuple represents an entity.
A tuple is a set of attribute values.
Values are (normally) atomic/scalar.

Artist Year City

Mozart 1756 Salzburg
Beethoven 1770 Bonn
Chopin 1810 Warsaw

-
“Toch 41/52

[e]e]ele] }

Jargon

« Relations are also referred to as tables.

« Tuples are also referred to as records or rows.

« Attributes are also referred to as columns.

-
“Toch 42/52

Course Outline & Logistics Motivating Example Shift in Hardware Trends Relational Model: Motivation Relational Model
00000000000000000 0000000 00000 0000000 00000 9000000000

O®00000000

BuzzDB

» BuzzDB - version 1
» BuzzDB - version 2

» BuzzDB - version 3

-
oeh 44/ 52

https://github.com/jarulraj/buzzdb/blob/main/01-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/02-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/03-buzzdb.cpp

O0@0000000

Machine Setup

+ Instructions

+ Operating System (OS): Ubuntu 22.04 (Linux Distribution)
¢ Build System: cmake

« Testing Library: Google Testing Library (gtest)

- Continuous Integration (CI) System: Gradescope

« Memory Error Detector: valgrind memcheck

-
“Toch 45/52

https://buzzdb-docs.readthedocs.io/part1/setup.html
https://cmake.org/overview/
https://github.com/google/googletest/blob/master/googletest/docs/primer.md
https://www.valgrind.org/docs/manual/mc-manual.html

0O00@000000

C++: Tuple

#include <iostream>
#include <map>
#include <vector>

// A 7class” in C++ is a user-defined data type.
// It is a blueprint for creating objects of a particular type,
// providing initial values for state (member variables or fields),
// and implementations of behavior (member functions or methods)
class Tuple {
public:
int key;
int value;

¥

-
“Toch 46/52

O000@00000

C++: Database

class BuzzDB {

private:
// a map is an ordered key-value container
std::map<int, std::vector<int>> index;

public:

// a vector of Tuple structs acting as a table
std::vector<Tuple> table;

-

-
“Sech 47/52

[e]e]e]e]e] lelelele)

C++: Loading into Database

BuzzDB db;

db.insert(1, 100);
db.insert(1, 200);
db.insert(2, 50);
db.insert(3, 200);
db.insert(3, 200);
()i
()

db.insert (3, 100
db.insert (4, 500

9

)

db.select GroupBySum();

-
“Toch 48/52

O00000@000

C++: Inserting into Database

class BuzzDB {

public:
// insert function
void insert(int key, int value) {
Tuple newTuple = {key, value};
table.push__back(newTuple);
index[key].push_ back(value);

-
“Toch 49/52

O000000e00

C++: Aggregation Query

class BuzzDB {

public:
// perform a SELECT ... GROUP BY ... SUM query
void selectGroupBySum() {
for (auto const& pair : index) { // for each unique key
int sum = 0;
for (auto const& value : pair.second) {
sum += value; // sum all values for the key
}

std::cout << key: 7 << pairfirst << 7, sum: 7 << sum << '\n';
}
}

I5

-
“Sech 50/52

0000000080

C++ Topics

« File I/O
« Threading (later assignments)

+ Smart Pointers (later assignments)

-
“Sech 51/52

https://www.learncpp.com/cpp-tutorial/186-basic-file-io/
https://en.cppreference.com/w/cpp/thread/thread
https://www.learncpp.com/cpp-tutorial/15-5-stdunique_ptr/

000000000 e

Conclusion

- Complexity of a database system arises from the need for robust, scalable
algorithms, better hardware resource management, supporting for different data
types, e.t.c.

+ A database system must satisfy many requirements: reliability, scalability,
concurrency e.t.c.

« Enroll in Piazza, Gradescope, and TurningPoint.

« In the next lecture, we will learn about relational database systems.

-
“Sech 52/52

	Course Introduction
	Course Outline & Logistics
	Motivating Example
	Shift in Hardware Trends
	Relational Model: Motivation
	Relational Model
	BuzzDB

