
Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Lecture 2: Relational Model &
Basic SQL

1 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Today's Agenda

Recap

BuzzDB

Relational Algebra

Relational Language

Aggregates

Grouping

2 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Administrivia

• Office hours
• Visual Code setup, ZSH shell
• Development Environment Setup Instructions

3 / 54

https://buzzdb-docs.readthedocs.io/part1/setup.html


Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Recap

4 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Complexity of Database Systems

Designing a robust, scalable algorithm is hard:
• must cope with very large instances
• hard even when the database fits in main memory
• billions of data items
• rules out the possibility of usingO(n2) algorithms
• external algorithms (i.e., database does not fit in memory) are even harder

This is why a DBMS is a complex software system.

5 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Hardware Trends

This affects the design of a DBMS
• CPU costs are now more important
• I/O operations are eliminated or greatly reduced
• the classical architecture (disk-oriented database systems) has become

suboptimal

But this is more of an evolution as opposed to a revolution. Many of the old
techniques are still relevant for scalability.

6 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Tuple

#include <iostream>
#include <map>
#include <vector>

// A ”class” in C++ is a user-defined data type.
// It is a blueprint for creating objects of a particular type,
// providing initial values for state (member variables or fields),
// and implementations of behavior (member functions or methods)
class Tuple {
public:

int key;
int value;

};

7 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

BuzzDB

8 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

BuzzDB

• BuzzDB – version 1
• BuzzDB – version 2
• BuzzDB – version 3

9 / 54

https://github.com/jarulraj/buzzdb/blob/main/01-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/02-buzzdb.cpp
https://github.com/jarulraj/buzzdb/blob/main/03-buzzdb.cpp


Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Machine Setup

• Instructions
• Operating System (OS): Ubuntu 22.04 (Linux Distribution)
• Build System: cmake
• Testing Library: Google Testing Library (gtest)
• Continuous Integration (CI) System: Gradescope
• Memory Error Detector: valgrind memcheck

10 / 54

https://buzzdb-docs.readthedocs.io/part1/setup.html
https://cmake.org/overview/
https://github.com/google/googletest/blob/master/googletest/docs/primer.md
https://www.valgrind.org/docs/manual/mc-manual.html


Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Tuple

#include <iostream>
#include <map>
#include <vector>

// A ”class” in C++ is a user-defined data type.
// It is a blueprint for creating objects of a particular type,
// providing initial values for state (member variables or fields),
// and implementations of behavior (member functions or methods)
class Tuple {
public:

int key;
int value;

};

11 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Database

class BuzzDB {
private:

// a map is an ordered key-value container
std::map<int, std::vector<int>> index;

public:
// a vector of Tuple structs acting as a table
std::vector<Tuple> table;
...

};

12 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Loading into Database

BuzzDB db;

db.insert(1, 100);
db.insert(1, 200);
db.insert(2, 50);
db.insert(3, 200);
db.insert(3, 200);
db.insert(3, 100);
db.insert(4, 500);

db.selectGroupBySum();

13 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Inserting into Database

class BuzzDB {

public:
// insert function
void insert(int key, int value) {

Tuple newTuple = {key, value};
table.push_back(newTuple);
index[key].push_back(value);

}

};

14 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Aggregation Query

class BuzzDB {

public:
// perform a SELECT ... GROUP BY ... SUM query
void selectGroupBySum() {

for (auto const& pair : index) { // for each unique key
int sum = 0;
for (auto const& value : pair.second) {

sum += value; // sum all values for the key
}
std::cout << ”key: ” << pair.first << ”, sum: ” << sum << '\n';

}
}

};

15 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

C++: Loading Data From File

int main() {
BuzzDB db;
std::ifstream inputFile(”output.txt”);
if (!inputFile) {

std::cerr << ”Unable to open file” << std::endl;
return 1;

}

int field1, field2;
while (inputFile >> field1 >> field2) {

db.insert(field1, field2);
}

db.selectGroupBySum();
return 0;

}

16 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Model: Definition

17 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Model

• Structure: The definition of relations and their contents.
• Integrity: Ensure the database’s contents satisfy constraints.
• Manipulation: How to access and modify a database’s contents.

18 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Structure: Primary Key

• A relation’s primary key uniquely identifies a single tuple.
• Some DBMSs automatically create an internal primary key if you don’t define

one.
• Auto-generation of unique integer primary keys (SEQUENCE in SQL:2003)

Schema: Artists (ID, Artist, Year, City)

ID Artist Year City

1 1756 Salzburg
2 1770 Bonn
3 1810 Warsaw

19 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Structure: Foreign Key (1)

• A foreign key specifies that an tuple from one relation must map to a tuple in
another relation.

• Mapping artists to albums?

20 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Structure: Foreign Key (2)

Artists (ID, Artist, Year, City)
Albums (ID, Album, Artist_ID, Year)

Artists

ID Artist Year City

1 Mozart 1756 Salzburg
2 Beethoven 1770 Bonn
3 Chopin 1810 Warsaw

Albums

ID Album Artist_ID Year

1 The Marriage of Figaro 1 1786
2 Requiem Mass In D minor 1 1791
3 Für Elise 2 1867

21 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Structure: Foreign Key (3)

What if an album is composed by two artists?

Artists (ID, Artist, Year, City)
Albums (ID, Album, Year)
ArtistAlbum (Artist_ID, Album_ID)

ArtistAlbum

Artist_ID Album_ID

1 1
2 1
2 2

22 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Structure: Foreign Key (3)

What if an album is composed by two artists?

Artists (ID, Artist, Year, City)
Albums (ID, Album, Year)
ArtistAlbum (Artist_ID, Album_ID)

ArtistAlbum

Artist_ID Album_ID

1 1
2 1
2 2

22 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Data Manipulation Languages

How to store and retrieve information from a database.
• Relational Algebra

▶ The query specifies the (high-level) strategy the DBMS should use to find the
desired result.

▶ Procedural
• Relational Calculus

▶ The query specifies only what data is wanted and not how to find it.
▶ Non-Procedural

23 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Algebra

24 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators

• These operators take in relations (i.e., tables) as input and return a relation as
output.

• We can “chain” operators together to create more complex operations.

• Selection (𝜎 )
• Projection (Π)
• Union (∪)
• Intersection (∩)
• Difference (−)
• Product (×)
• Join (Z)

25 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Selection

• Choose a subset of the tuples from a relation that satisfies a selection predicate.
• Predicate acts as a filter to retain only tuples that fulfill its qualifying requirement.
• Can combine multiple predicates using conjunctions / disjunctions.
• Syntax: 𝜎predicate(R)

SELECT * FROM R WHERE a_id = 'a2' AND b_id > 102;
R
a_id b_id

a1 101
a2 102
a2 103
a3 104

𝜎a_id=′a2′∧b_id>102(R) :
a_id b_id

a2 103

26 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Projection

• Generate a relation with tuples that contains only the specified attributes.
• Can rearrange attributes’ ordering.
• Can manipulate the values.
• Syntax: ΠA1,A2,...,An(R)

SELECT b_id - 100, a_id FROM R WHERE a_id = 'a2';
R
a_id b_id

a1 101
a2 102
a2 103
a3 104

Πb_id−100,a_id(𝜎a_id=′a2′ (R)) :
b_id - 100 a_id

2 a2
3 a2

27 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Union

• Generate a relation that contains all tuples that appear in either only one or both
input relations.

• Syntax: R ∪ S

(SELECT * FROM R)
UNION ALL

(SELECT * FROM S)

R
a_id b_id

a1 101
a2 102
a3 103

S
c_id d_id

a2 102
a4 205

R ∪ S

a_id b_id

a1 101
a2 102
a3 103
a2 102
a4 205

28 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Semantics of Relational Operators

Set semantics: Duplicates tuples are not allowed
Bag semantics: Duplicates tuples are allowed

We will assume bag (a.k.a., multi-set) semantics.

29 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Intersection

• Generate a relation that contains only the tuples that appear in both of the input
relations.

• Syntax: R ∩ S

(SELECT * FROM R)
INTERSECT

(SELECT * FROM S)
R
a_id b_id

a1 101
a2 102
a3 103

S
c_id d_id

a2 102
a4 205

R ∩ S
a_id b_id

a2 102

30 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Difference

• Generate a relation that contains only the tuples that appear in the first and not
the second of the input relations.

• Syntax: R − S

(SELECT * FROM R)
EXCEPT

(SELECT * FROM S)
R
a_id b_id

a1 101
a2 102
a3 103

S
c_id d_id

a2 102
a4 205

R − S
a_id b_id

a1 101
a3 103

31 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Product

• Generate a relation that contains all possible combinations of tuples from the
input relations.

• Syntax: R × S

SELECT * FROM R CROSS JOIN S

R
a_id b_id

a1 101
a2 102
a3 103

S
c_id d_id

a2 102
a4 205

R × S

a_id b_id c_id d_id

a1 101 a2 102
a1 101 a4 205
a2 102 a2 102
a2 102 a4 205
a3 103 a2 102
a3 103 a4 205

32 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Core Operators: Join

• Generate a relation that contains all tuples that are a combination of two tuples
(one from each input relation) with a common value(s) for one or more attributes.

• Syntax: R Z S

SELECT * FROM R, S
WHERE R.a_id = S.c_id

R
a_id b_id

a1 101
a2 102
a3 103

S
c_id d_id

a2 102
a4 205

R Z S
a_id b_id c_id d_id

a2 102 a2 102

33 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Derived Operators

Additional (derived) operators are often useful:
• Rename (𝜌)
• Assignment (R←S)
• Duplicate Elimination (𝛿 )
• Aggregation (𝛾)
• Sorting (𝜏)
• Division (R ÷ S)

34 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Observation

Relational algebra still defines the high-level steps of how to execute a query.
• 𝜎S.c_id=102(R Za_id=c_id S) versus
• (R Za_id=c_id (𝜎c_id=102(S)))

A better approach is to state the high-level answer that you want the DBMS to
compute.

• Retrieve the joined tuples from R and Swhere a_id = c_id and c_id equals 102.

35 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Model

The relational model is independent of any query language implementation.
However, SQL is the de facto standard.
Example: Get the Albums composed by Beethoven.
for line in file:
record = parse(line)
if ”Beethoven” == record[1]:
print record[0]

SELECT Year
FROM Artists
WHERE Artist = ”Beethoven”

36 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Language

37 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Language

• User only needs to specify the answer that they want, not how to compute it.
• The DBMS is responsible for efficient evaluation of the query.

▶ Query optimizer: re-orders operations and generates query plan

38 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

SQL History

• Originally “SEQUEL” from IBM’s System R prototype.
▶ Structured EnglishQuery Language
▶ Adopted by Oracle in the 1970s.
▶ IBM releases DB2 in 1983.
▶ ANSI Standard in 1986. ISO in 1987
▶ Structured Query Language

39 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

SQL History

• Current standard is SQL:2016
▶ SQL:2016 −→ JSON, Polymorphic tables
▶ SQL:2011 −→ Temporal DBs, Pipelined DML
▶ SQL:2008 −→ TRUNCATE, Fancy sorting
▶ SQL:2003 −→ XML, windows, sequences, auto-gen IDs.
▶ SQL:1999 −→ Regex, triggers, OO

• Most DBMSs at least support SQL-92
• Comparison of different SQL implementations

40 / 54

http://troels.arvin.dk/db/rdbms/


Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Relational Language

• Data Manipulation Language (DML)
• Data Definition Language (DDL)
• Data Control Language (DCL)
• Also includes:

▶ View definition
▶ Integrity & Referential Constraints
▶ Transactions

• Important: SQL is based on bag semantics (duplicates) not set semantics (no
duplicates).

41 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

List of SQL Features

• Aggregations + Group By
• String / Date / Time Operations
• Output Control + Redirection
• Nested Queries
• Join
• Common Table Expressions
• Window Functions

42 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Example Database

students

sid name login age

1 Maria maria@cs 19
2 Rahul rahul@cs 22
3 Shiyi shiyi@cs 26
4 Peter peter@ece 35

enrolled

sid cid grade

1 1 3.5
1 2 4
2 3 3
4 2 2

courses

cid name

1 Computer Architecture
2 Machine Learning
3 Database Systems
4 Programming Languages

43 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Aggregates

44 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Aggregates

• Functions that return a single value from a bag of tuples:
▶ COUNT(col)−→ Return number of values for col.
▶ AVG(col)−→ Return the average col value.
▶ MIN(col)−→ Return minimum col value.
▶ MAX(col)−→ Return maximum col value.
▶ SUM(col)−→ Return sum of values in col.

45 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Aggregates

• Aggregate functions can only be used in the SELECT output list.
• Task: Get number of students with a ”@cs” login:
SELECT COUNT(login) AS cnt
FROM students WHERE login LIKE '%@cs'

CNT

3

46 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Multiple Aggregates

• Task: Get the average age and the the number of students and that have a ”@cs”
login.

SELECT AVG(age), COUNT(sid)
FROM students WHERE login LIKE '%@cs'

AVG COUNT

23.33 3

47 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Distinct Aggregates

• COUNT, SUM, AVG support DISTINCT
• Task: Get the number of unique students that have an ”@cs” login.
SELECT COUNT(DISTINCT login)
FROM students WHERE login LIKE '%@cs'

COUNT

3

48 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Aggregates

• Output of columns outside of an aggregate.
• Task: Get the average grade of students enrolled in each course.
SELECT e.cid, AVG(e.grade)
FROM enrolled AS e;

AVG e.cid

?? 3

• column ”e.cid” must appear in the GROUP BY clause or be used in an aggregate
function

49 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Aggregates

• Output of columns outside of an aggregate.
• Task: Get the average grade of students enrolled in each course.
SELECT e.cid, AVG(e.grade)
FROM enrolled AS e;

AVG e.cid

?? 3

• column ”e.cid” must appear in the GROUP BY clause or be used in an aggregate
function

49 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Grouping

50 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Group By

• Project tuples into subsets and calculate aggregates of each subset.
• Task: Get the average grade of students enrolled in each course.
SELECT e.cid, AVG(e.grade)
FROM enrolled AS e
GROUP BY e.cid;

e.cid AVG

1 3.5
2 3
3 3

51 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Having

• Filters results based on aggregate value.
• Predicate defined over a group (WHERE clause for a GROUP BY)
• Task: Get courses where is the average grade is >= 3.5.
SELECT e.cid, AVG(e.grade) AS avg_grade
FROM enrolled AS e
WHERE avg_grade >= 3.5
GROUP BY e.cid;

52 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Having

• Filters results based on aggregate value.
• Predicate defined over a group (WHERE clause for a GROUP BY)
• Task: Get courses where is the average grade is >= 3.5.
SELECT e.cid, AVG(e.grade) AS avg_grade
FROM enrolled AS e
GROUP BY e.cid
HAVING avg_grade >= 3.5

e.cid avg_grade

1 3.5

53 / 54



Recap BuzzDB Relational Algebra Relational Language Aggregates Grouping

Conclusion

• Relational algebra defines the primitives for processing queries on a relational
database.

• We will see relational algebra again when we talk about query execution.
• We covered basic SQL in this lecture
• In the next lecture, we will learn about advanced SQL.

54 / 54


	Relational Model
	Recap
	BuzzDB
	Relational Algebra
	Relational Language
	Aggregates
	Grouping


