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Administrivia

• Deadline for project proposal pushed to Sep 28.
• Exam on next Thursday in class.
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Naïve Compression

• Choice 1: Entropy Encoding
▶ More common sequences use less bits to encode, less common sequences use more

bits to encode.
• Choice 2: Dictionary Encoding

▶ Build a data structure that maps data segments to an identifier.
▶ Replace the segment in the original data with a reference to the segment’s position

in the dictionary data structure.
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Columnar Compression

• Null Suppression
• Run-length Encoding
• Bitmap Encoding
• Delta Encoding
• Incremental Encoding
• Mostly Encoding
• Dictionary Encoding
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Disk-oriented vs In-Memory
DBMSs
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Background

• Much of the development history of DBMSs is about dealing with the limitations
of hardware.

• Hardware was much different when the original DBMSs were designed in 1970s:
▶ Uniprocessor (single-core CPU)
▶ DRAM capacity was very limited.
▶ The database had to be stored on disk.
▶ Disks were even slower than they are now.
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Background

• But now DRAM capacities are large enough that most databases can fit in
memory.

▶ Structured data sets are smaller.

• We need to understand why we can’t always use a ”traditional” disk-oriented
DBMS with a large cache to get the best performance.
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Disk-Oriented DBMS

• The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

• The database is organized as a set of fixed-length pages (aka blocks).
• The system uses an in-memory buffer pool to cache pages fetched from disk.

▶ Its job is to manage the movement of those pages back and forth between disk and
memory.
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Buffer Pool

• When a query accesses a page, the DBMS checks to see if that page is already in
memory:

▶ If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its
buffer pool.

▶ If there are no free frames, then find a page to evict.
▶ If the page being evicted is dirty, then the DBMS must write it back to disk.

• Once the page is in memory, the DBMS translates any on-disk addresses to
their in-memory addresses.
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Disk-oriented DBMS: Data Organization
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Buffer Pool

• Every tuple access goes through the buffer pool manager regardless of whether
that data will always be in memory.

▶ Always translate a tuple’s record id to its memory location.
▶ Worker thread must pin pages that it needs to make sure that they are not
swapped to disk.
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Disk-Oriented DBMS Overhead

Reference
18 / 68

https://dl.acm.org/doi/10.1145/1376616.1376713
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In-memory DBMS

• Assume that the primary storage location of the database is permanently in
memory.

• Early ideas proposed in the 1980s but it is now feasible because DRAM prices are
low and capacities are high.

• First commercial in-memory DBMSs were released in the 1990s.
▶ Examples: TimesTen, DataBlitz, Altibase
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https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/
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Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20 ns 60 ns 25,000 ns 10,000,000 ns
Write Latency 20 ns 60 ns 300,000 ns 10,000,000 ns

Reference
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https://dl.acm.org/doi/10.1145/2723372.2749441
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In-Memory DBMS: Data Organization

• An in-memory DBMS does not need to store the database in slotted pages but it
will still organize tuples in pages:

▶ Direct memory pointers vs. record ids
▶ Fixed-length vs. variable-length datamemory pools
▶ Use checksums to detect software errors from trashing the database.

• The OS organizes memory in pages too. We already covered this.
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In-Memory DBMS: Data Organization

22 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies
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Larger-than-Memory Databases
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Observation

• DRAM is expensive (roughly $? per GB)
▶ Expensive to buy.
▶ Expensive to maintain (e.g., energy associated with refreshing DRAM state).

• SSD is $? times cheaper than DRAM (roughly $? per GB)
• It would be nice if an in-memory DBMS could use cheaper storage without

having to bring in the entire baggage of a disk-oriented DBMS.
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Larger-than-Memory Databases

• Allow an in-memory DBMS to store/access data on diskwithout bringing back
all the slow parts of a disk-oriented DBMS.

▶ Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.

▶ It is better to have only the buffer manager deal with moving data around
▶ Rest of the DBMS can assume that data is in DRAM.

• Need to be aware of hardware access methods
▶ In-memory Access = Tuple-Oriented. Why?
▶ Disk Access = Block-Oriented.
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OLAP

• OLAP queries generally access the
entire table.

• Thus, an in-memory DBMS may
handle OLAP queries in the same a
disk-oriented DBMS does.

• All the optimizations in a
disk-oriented DBMS apply here (e.g.,
scan sharing, buffer pool bypass).
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OLTP

• OLTP workloads almost always have hot and cold portions of the database.
▶ We can assume txns will almost always access hot tuples.

• Goal:The DBMS needs a mechanism to move cold data out to disk and then
retrieve it if it is ever needed again.
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Larger-than-Memory Databases

SELECT *
FROM table
WHERE id = <Tuple 01>
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Design Decisions

• Run-time Operation
▶ Cold Data Identification: When the DBMS runs out of DRAM space, what data

should we evict?
• Eviction Policies

▶ Timing: When to evict data?
▶ Evicted Tuple Metadata: During eviction, what meta-data should we keep in

DRAM to track disk-resident data and avoid false negatives?
• Data Retrieval Policies

▶ Granularity: When we need data, how much should we bring in?
▶ Merging: Where to put the retrieved data?

Reference
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https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf
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Cold Data Identification

• Choice 1: On-line
▶ The DBMS monitors txn access patterns and tracks how often tuples/pages are

used.
▶ Embed the tracking meta-data directly in tuples/pages.

• Choice 2: Off-line
▶ Maintain a tuple access log during txn execution.
▶ Process in background to compute frequencies.
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Eviction Timing

• Choice 1: Threshold
▶ The DBMS monitors memory usage and begins evicting tuples when it reaches a

threshold.
▶ The DBMS must manually move data.

• Choice 2: On Demand
▶ The DBMS/OS runs a replacement policy to decide when to evict data to free space

for new data that is needed.
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Evicted Tuple Metadata

• Choice 1: Tuple Tombstones
▶ Leave a marker that points to the on-disk tuple.
▶ Update indexes to point to the tombstone tuples.

• Choice 2: Bloom Filters
▶ Use an in-memory, approximate data structure for each index.
▶ Only tells us whether tuple exists or not (with potential false positives)
▶ Check on-disk index to find actual location

• Choice 3: DBMSManaged Pages
▶ DBMS tracks what data is in memory vs. on disk.

• Choice 4: OS Virtual Memory
▶ OS tracks what data is on in memory vs. on disk.
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Evicted Tuple Metadata
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Evicted Tuple Metadata
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Evicted Tuple Metadata
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Evicted Tuple Metadata
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Data Retrieval Granularity

• Choice 1: All Tuples in Block
▶ Merge all the tuples retrieved from a block regardless of whether they are needed.
▶ More CPU overhead to update indexes.
▶ Tuples are likely to be evicted again.

• Choice 2: Only Tuples Needed
▶ Only merge the tuples that were accessed by a query back into the in-memory table

heap.
▶ Requires additional bookkeeping to track holes.
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MergingThreshold

• Choice 1: Always Merge
▶ Retrieved tuples are always put into table heap.

• Choice 2: Merge Only on Update
▶ Retrieved tuples are only merged into table heap if they are used in an UPDATE

statement.
▶ All other tuples are put in a temporary buffer.

• Choice 3: Selective Merge
▶ Keep track of how often each block is retrieved.
▶ If a block’s access frequency is above some threshold, merge it back into the table

heap.
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Retrieval Mechanism

• Choice 1: Abort-and-Restart
▶ Abort the txn that accessed the evicted tuple.
▶ Retrieve the data from disk and merge it into memory with a separate background

thread.
▶ Restart the txn when the data is ready.
▶ Requires MVCC to guarantee consistency for large txns that access data that does

not fit in memory.
• Choice 2: Synchronous Retrieval

▶ Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.
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Case Studies

• Tuple-Oriented Systems
▶ H-Store – Anti-Caching
▶ Hekaton – Project Siberia
▶ EPFL’s VoltDB Prototype

• Block-Oriented Systems
▶ LeanStore – Hierarchical Buffer Pool
▶ Umbra – Variable-length Buffer Pool
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H-Store – Anti-Caching

• Cold Tuple Identification:On-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Tombstones
• Retrieval Mechanism: Abort-and-restart Retrieval
• Retrieval Granularity: Block-level Granularity
• MergingThreshold: Always Merge
• Reference
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https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf
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HEKATON – PROJECT SIBERIA

• Cold Tuple Identification:Off-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Bloom Filters
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Tuple-level Granularity
• MergingThreshold: Always Merge
• Reference
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https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf
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EPFL VOLTDB

• Cold Tuple Identification:Off-line Identification
• Eviction Timing:OS Virtual Memory
• Evicted Tuple Metadata:N/A
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Page-level Granularity
• MergingThreshold: Always Merge
• Reference
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https://dl.acm.org/doi/10.1145/2485278.2485285
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EPFL VOLTDB
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EPFL VOLTDB
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Observation

• The systems that we have discussed so far are tuple-oriented.
▶ The DBMS must track meta-data about individual tuples.
▶ Does not reduce storage overhead of indexes.
▶ Indexes may occupy up to 60% of DRAM in an OLTP database.

• Goal:Need an unified way to evict cold data from both tables and indexes with
low overhead…
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LeanStore

• In-memory storage manager from TUM that supports larger-than-memory
databases.

▶ Handles both tuples + indexes
▶ Not part of the HyPer project.

• Hierarchical + Randomized Block Eviction
▶ Use pointer swizzling to determine whether a block is evicted or not.
▶ Instead of tracking when pages are accessed, randomly evict pages and then track

whether they ended up getting used.
▶ If yes, put it back in the hot space.
▶ If not, then evict it.

• Reference
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https://db.in.tum.de/~leis/papers/leanstore.pdf
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Pointer Swizzling

• Switch the contents of pointers based on whether the target object resides in
memory or on disk.

• Decentralizedway to track whether a page is in memory or not.
• We track everything with 64-bit pointers, but currently only use 48-bits.

▶ Use first bit in address to tell what kind of address it is.
▶ Only works if there is only one pointer to the object.
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Pointer Swizzling
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Pointer Swizzling
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Replacement Strategy

• Randomly select blocks for eviction.
▶ Don’t have to maintain meta-data every time a txn accesses a hot block.
▶ Only track accesses for cold data, which should be rare if it is cold.

• Unswizzle their pointer but leave in memory.
▶ Add to a FIFO queue of blocks staged for eviction.
▶ If page is accessed again, remove from queue.
▶ Otherwise, evict pages when reaching front of queue.
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Block Hierarchy

• Blocks are organized in a tree hierarchy.
▶ Each page has only one parent, which means that there is only a single pointer.
▶ No centralized page table (as is the case in a disk-oriented DBMS).

• The DBMS can only evict a block if its children are also evicted.
▶ This avoids the problem of evicting blocks that contain swizzled pointers
▶ Otherwise, these pointers are invalid because they will point to old locations in

memory.
▶ If a block is selected but it has in-memory children, then it automatically switches

to select one of its children.
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Block Hierarchy
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Block Hierarchy
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Umbra

• New DBMS from HyPer team at TUM.
▶ Low overhead buffer pool with variable-sized pages.
▶ Employs the same hierarchical organization and randomized block eviction

algorithm from LeanStore.
▶ Uses virtual memory to allocate storage but the DBMS manages block eviction on

its own.

• DBMS stores relations as index-organized tables, so there is no separate
management needed to handle index blocks.

• Reference
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http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
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Variable-Sized Buffer Pool
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Variable-Sized Buffer Pool
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Conclusion

• We focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.
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