
Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Lecture 10: Larger-than-Memory
Databases

1 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Administrivia

• Deadline for project proposal pushed to Sep 28.
• Exam on next Thursday in class.

2 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Today's Agenda

Recap

Disk-oriented vs In-Memory DBMSs

Larger-than-Memory Databases

Design Decisions

Case Studies

3 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Recap

4 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Naïve Compression

• Choice 1: Entropy Encoding
▶ More common sequences use less bits to encode, less common sequences use more

bits to encode.
• Choice 2: Dictionary Encoding

▶ Build a data structure that maps data segments to an identifier.
▶ Replace the segment in the original data with a reference to the segment’s position

in the dictionary data structure.

5 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Columnar Compression

• Null Suppression
• Run-length Encoding
• Bitmap Encoding
• Delta Encoding
• Incremental Encoding
• Mostly Encoding
• Dictionary Encoding

6 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-oriented vs In-Memory
DBMSs

7 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Background

• Much of the development history of DBMSs is about dealing with the limitations
of hardware.

• Hardware was much different when the original DBMSs were designed in 1970s:
▶ Uniprocessor (single-core CPU)
▶ DRAM capacity was very limited.
▶ The database had to be stored on disk.
▶ Disks were even slower than they are now.

8 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Background

• But now DRAM capacities are large enough that most databases can fit in
memory.

▶ Structured data sets are smaller.

• We need to understand why we can’t always use a ”traditional” disk-oriented
DBMS with a large cache to get the best performance.

9 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-Oriented DBMS

• The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

• The database is organized as a set of fixed-length pages (aka blocks).
• The system uses an in-memory buffer pool to cache pages fetched from disk.

▶ Its job is to manage the movement of those pages back and forth between disk and
memory.

10 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Buffer Pool

• When a query accesses a page, the DBMS checks to see if that page is already in
memory:

▶ If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its
buffer pool.

▶ If there are no free frames, then find a page to evict.
▶ If the page being evicted is dirty, then the DBMS must write it back to disk.

• Once the page is in memory, the DBMS translates any on-disk addresses to
their in-memory addresses.

11 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-oriented DBMS: Data Organization

12 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-oriented DBMS: Data Organization

13 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-oriented DBMS: Data Organization

14 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-oriented DBMS: Data Organization

15 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-oriented DBMS: Data Organization

16 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Buffer Pool

• Every tuple access goes through the buffer pool manager regardless of whether
that data will always be in memory.

▶ Always translate a tuple’s record id to its memory location.
▶ Worker thread must pin pages that it needs to make sure that they are not
swapped to disk.

17 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Disk-Oriented DBMS Overhead

Reference
18 / 68

https://dl.acm.org/doi/10.1145/1376616.1376713


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

In-memory DBMS

• Assume that the primary storage location of the database is permanently in
memory.

• Early ideas proposed in the 1980s but it is now feasible because DRAM prices are
low and capacities are high.

• First commercial in-memory DBMSs were released in the 1990s.
▶ Examples: TimesTen, DataBlitz, Altibase

19 / 68

https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20 ns 60 ns 25,000 ns 10,000,000 ns
Write Latency 20 ns 60 ns 300,000 ns 10,000,000 ns

Reference

20 / 68

https://dl.acm.org/doi/10.1145/2723372.2749441


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

In-Memory DBMS: Data Organization

• An in-memory DBMS does not need to store the database in slotted pages but it
will still organize tuples in pages:

▶ Direct memory pointers vs. record ids
▶ Fixed-length vs. variable-length datamemory pools
▶ Use checksums to detect software errors from trashing the database.

• The OS organizes memory in pages too. We already covered this.

21 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

In-Memory DBMS: Data Organization

22 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

In-Memory DBMS: Data Organization

23 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Larger-than-Memory Databases

24 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Observation

• DRAM is expensive (roughly $? per GB)
▶ Expensive to buy.
▶ Expensive to maintain (e.g., energy associated with refreshing DRAM state).

• SSD is $? times cheaper than DRAM (roughly $? per GB)
• It would be nice if an in-memory DBMS could use cheaper storage without

having to bring in the entire baggage of a disk-oriented DBMS.

25 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Larger-than-Memory Databases

• Allow an in-memory DBMS to store/access data on diskwithout bringing back
all the slow parts of a disk-oriented DBMS.

▶ Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.

▶ It is better to have only the buffer manager deal with moving data around
▶ Rest of the DBMS can assume that data is in DRAM.

• Need to be aware of hardware access methods
▶ In-memory Access = Tuple-Oriented. Why?
▶ Disk Access = Block-Oriented.

26 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

OLAP

• OLAP queries generally access the
entire table.

• Thus, an in-memory DBMS may
handle OLAP queries in the same a
disk-oriented DBMS does.

• All the optimizations in a
disk-oriented DBMS apply here (e.g.,
scan sharing, buffer pool bypass).

27 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

OLTP

• OLTP workloads almost always have hot and cold portions of the database.
▶ We can assume txns will almost always access hot tuples.

• Goal:The DBMS needs a mechanism to move cold data out to disk and then
retrieve it if it is ever needed again.

28 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Larger-than-Memory Databases

29 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Larger-than-Memory Databases

30 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Larger-than-Memory Databases

31 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Larger-than-Memory Databases

SELECT *
FROM table
WHERE id = <Tuple 01>

32 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Design Decisions

33 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Design Decisions

• Run-time Operation
▶ Cold Data Identification: When the DBMS runs out of DRAM space, what data

should we evict?
• Eviction Policies

▶ Timing: When to evict data?
▶ Evicted Tuple Metadata: During eviction, what meta-data should we keep in

DRAM to track disk-resident data and avoid false negatives?
• Data Retrieval Policies

▶ Granularity: When we need data, how much should we bring in?
▶ Merging: Where to put the retrieved data?

Reference

34 / 68

https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Cold Data Identification

• Choice 1: On-line
▶ The DBMS monitors txn access patterns and tracks how often tuples/pages are

used.
▶ Embed the tracking meta-data directly in tuples/pages.

• Choice 2: Off-line
▶ Maintain a tuple access log during txn execution.
▶ Process in background to compute frequencies.

35 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Eviction Timing

• Choice 1: Threshold
▶ The DBMS monitors memory usage and begins evicting tuples when it reaches a

threshold.
▶ The DBMS must manually move data.

• Choice 2: On Demand
▶ The DBMS/OS runs a replacement policy to decide when to evict data to free space

for new data that is needed.

36 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Evicted Tuple Metadata

• Choice 1: Tuple Tombstones
▶ Leave a marker that points to the on-disk tuple.
▶ Update indexes to point to the tombstone tuples.

• Choice 2: Bloom Filters
▶ Use an in-memory, approximate data structure for each index.
▶ Only tells us whether tuple exists or not (with potential false positives)
▶ Check on-disk index to find actual location

• Choice 3: DBMSManaged Pages
▶ DBMS tracks what data is in memory vs. on disk.

• Choice 4: OS Virtual Memory
▶ OS tracks what data is on in memory vs. on disk.

37 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Evicted Tuple Metadata

38 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Evicted Tuple Metadata

39 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Evicted Tuple Metadata

40 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Evicted Tuple Metadata

41 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Data Retrieval Granularity

• Choice 1: All Tuples in Block
▶ Merge all the tuples retrieved from a block regardless of whether they are needed.
▶ More CPU overhead to update indexes.
▶ Tuples are likely to be evicted again.

• Choice 2: Only Tuples Needed
▶ Only merge the tuples that were accessed by a query back into the in-memory table

heap.
▶ Requires additional bookkeeping to track holes.

42 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

MergingThreshold

• Choice 1: Always Merge
▶ Retrieved tuples are always put into table heap.

• Choice 2: Merge Only on Update
▶ Retrieved tuples are only merged into table heap if they are used in an UPDATE

statement.
▶ All other tuples are put in a temporary buffer.

• Choice 3: Selective Merge
▶ Keep track of how often each block is retrieved.
▶ If a block’s access frequency is above some threshold, merge it back into the table

heap.

43 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Retrieval Mechanism

• Choice 1: Abort-and-Restart
▶ Abort the txn that accessed the evicted tuple.
▶ Retrieve the data from disk and merge it into memory with a separate background

thread.
▶ Restart the txn when the data is ready.
▶ Requires MVCC to guarantee consistency for large txns that access data that does

not fit in memory.
• Choice 2: Synchronous Retrieval

▶ Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.

44 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Case Studies

45 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Case Studies

• Tuple-Oriented Systems
▶ H-Store – Anti-Caching
▶ Hekaton – Project Siberia
▶ EPFL’s VoltDB Prototype

• Block-Oriented Systems
▶ LeanStore – Hierarchical Buffer Pool
▶ Umbra – Variable-length Buffer Pool

46 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

H-Store – Anti-Caching

• Cold Tuple Identification:On-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Tombstones
• Retrieval Mechanism: Abort-and-restart Retrieval
• Retrieval Granularity: Block-level Granularity
• MergingThreshold: Always Merge
• Reference

47 / 68

https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

HEKATON – PROJECT SIBERIA

• Cold Tuple Identification:Off-line Identification
• Eviction Timing: Administrator-defined Threshold
• Evicted Tuple Metadata: Bloom Filters
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Tuple-level Granularity
• MergingThreshold: Always Merge
• Reference

48 / 68

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

EPFL VOLTDB

• Cold Tuple Identification:Off-line Identification
• Eviction Timing:OS Virtual Memory
• Evicted Tuple Metadata:N/A
• Retrieval Mechanism: Synchronous Retrieval
• Retrieval Granularity: Page-level Granularity
• MergingThreshold: Always Merge
• Reference

49 / 68

https://dl.acm.org/doi/10.1145/2485278.2485285


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

EPFL VOLTDB

50 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

EPFL VOLTDB

51 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

EPFL VOLTDB

52 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

EPFL VOLTDB

53 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

EPFL VOLTDB

54 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Observation

• The systems that we have discussed so far are tuple-oriented.
▶ The DBMS must track meta-data about individual tuples.
▶ Does not reduce storage overhead of indexes.
▶ Indexes may occupy up to 60% of DRAM in an OLTP database.

• Goal:Need an unified way to evict cold data from both tables and indexes with
low overhead…

55 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

LeanStore

• In-memory storage manager from TUM that supports larger-than-memory
databases.

▶ Handles both tuples + indexes
▶ Not part of the HyPer project.

• Hierarchical + Randomized Block Eviction
▶ Use pointer swizzling to determine whether a block is evicted or not.
▶ Instead of tracking when pages are accessed, randomly evict pages and then track

whether they ended up getting used.
▶ If yes, put it back in the hot space.
▶ If not, then evict it.

• Reference

56 / 68

https://db.in.tum.de/~leis/papers/leanstore.pdf


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Pointer Swizzling

• Switch the contents of pointers based on whether the target object resides in
memory or on disk.

• Decentralizedway to track whether a page is in memory or not.
• We track everything with 64-bit pointers, but currently only use 48-bits.

▶ Use first bit in address to tell what kind of address it is.
▶ Only works if there is only one pointer to the object.

57 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Pointer Swizzling

58 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Pointer Swizzling

59 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Replacement Strategy

• Randomly select blocks for eviction.
▶ Don’t have to maintain meta-data every time a txn accesses a hot block.
▶ Only track accesses for cold data, which should be rare if it is cold.

• Unswizzle their pointer but leave in memory.
▶ Add to a FIFO queue of blocks staged for eviction.
▶ If page is accessed again, remove from queue.
▶ Otherwise, evict pages when reaching front of queue.

60 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Block Hierarchy

• Blocks are organized in a tree hierarchy.
▶ Each page has only one parent, which means that there is only a single pointer.
▶ No centralized page table (as is the case in a disk-oriented DBMS).

• The DBMS can only evict a block if its children are also evicted.
▶ This avoids the problem of evicting blocks that contain swizzled pointers
▶ Otherwise, these pointers are invalid because they will point to old locations in

memory.
▶ If a block is selected but it has in-memory children, then it automatically switches

to select one of its children.

61 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Block Hierarchy

62 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Block Hierarchy

63 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Block Hierarchy

64 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Umbra

• New DBMS from HyPer team at TUM.
▶ Low overhead buffer pool with variable-sized pages.
▶ Employs the same hierarchical organization and randomized block eviction

algorithm from LeanStore.
▶ Uses virtual memory to allocate storage but the DBMS manages block eviction on

its own.

• DBMS stores relations as index-organized tables, so there is no separate
management needed to handle index blocks.

• Reference

65 / 68

http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf


Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Variable-Sized Buffer Pool

66 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Variable-Sized Buffer Pool

67 / 68



Recap Disk-oriented vs In-Memory DBMSs Larger-than-Memory Databases Design Decisions Case Studies

Conclusion

• We focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.

68 / 68


	Larger-than-Memory Databases
	Recap
	Disk-oriented vs In-Memory DBMSs
	Larger-than-Memory Databases
	Design Decisions
	Case Studies


