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Administrivia

+ Deadline for project proposal pushed to Sep 28.

- Exam on next Thursday in class.
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Today's Agenda

Recap

Disk-oriented vs In-Memory DBMSs
Larger-than-Memory Databases
Design Decisions

Case Studies
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Naive Compression

+ Choice 1: Entropy Encoding

» More common sequences use less bits to encode, less common sequences use more
bits to encode.

+ Choice 2: Dictionary Encoding

> Build a data structure that maps data segments to an identifier.
> Replace the segment in the original data with a reference to the segment’s position
in the dictionary data structure.
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Columnar Compression

 Null Suppression

+ Run-length Encoding
- Bitmap Encoding

+ Delta Encoding
 Incremental Encoding
* Mostly Encoding

« Dictionary Encoding
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Disk-oriented vs In-Memory
DBMSs
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Background

¢ Much of the development history of DBMSs is about dealing with the limitations
of hardware.

« Hardware was much different when the original DBMSs were designed in 1970s:
» Uniprocessor (single-core CPU)
> DRAM capacity was very limited.
> The database had to be stored on disk.
> Disks were even slower than they are now.
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Background

« But now DRAM capacities are large enough that most databases can fit in
memory.

» Structured data sets are smaller.

+ We need to understand why we can’t always use a "traditional” disk-oriented
DBMS with a large cache to get the best performance.
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Disk-Oriented DBMS

+ The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

« The database is organized as a set of fixed-length pages (aka blocks).

« The system uses an in-memory buffer pool to cache pages fetched from disk.

> Itsjob is to manage the movement of those pages back and forth between disk and
memory.
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Buffer Pool

« When a query accesses a page, the DBMS checks to see if that page is already in
memory:
» If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its
buffer pool.
> If there are no free frames, then find a page to evict.
> If the page being evicted is dirty, then the DBMS must write it back to disk.

« Once the page is in memory, the DBMS translates any on-disk addresses to
their in-memory addresses.
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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¥ ¥ ¥ ¥ pageZ / pagel

Pageld+ __\Page Table paged / pagez

Slot #
8 —m

Georgia
Tooh 12/68



O00000@0000000000

Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Buffer Pool

« Every tuple access goes through the buffer pool manager regardless of whether
that data will always be in memory.
> Always translate a tuple’s record id to its memory location.
> Worker thread must pin pages that it needs to make sure that they are not
swapped to disk.
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Disk-Oriented DBMS Overhead

Measured CPU Instructions

EBUFFER POOL
BLATCHING
BLOCKING
BLOGGING
OB-TREE KEYS
B REAL WORK

Reference
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https://dl.acm.org/doi/10.1145/1376616.1376713
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In-memory DBMS

« Assume that the primary storage location of the database is permanently in
memory.

« Early ideas proposed in the 1980s but it is now feasible because DRAM prices are
low and capacities are high.

« First commercial in-memory DBMSs were released in the 1990s.
» Examples: TimesTen, DataBlitz, Altibase
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https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/
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Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20ns 60 ns 25,000 ns 10,000,000 ns
Write Latency 20ns 60 ns 300,000 ns 10,000,000 ns

Reference
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https://dl.acm.org/doi/10.1145/2723372.2749441
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In-Memory DBMS: Data Organization

« An in-memory DBMS does not need to store the database in slotted pages but it
will still organize tuples in pages:
> Direct memory pointers vs. record ids
> Fixed-length vs. variable-length data memory pools
» Use checksums to detect software errors from trashing the database.

« The OS organizes memory in pages too. We already covered this.
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In-Memory DBMS: Data Organization

Fixed-Length Variable-Length
Index Data Blocks Data Blocks
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In-Memory DBMS: Data Organization
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Larger-than-Memory Databases
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Observation

- DRAM is expensive (roughly $? per GB)
> Expensive to buy.
> Expensive to maintain (e.g., energy associated with refreshing DRAM state).

- SSD is $? times cheaper than DRAM (roughly $? per GB)

« It would be nice if an in-memory DBMS could use cheaper storage without
having to bring in the entire baggage of a disk-oriented DBMS.
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Larger-than-Memory Databases

+ Allow an in-memory DBMS to store/access data on disk without bringing back
all the slow parts of a disk-oriented DBMS.
> Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.
» It is better to have only the buffer manager deal with moving data around
> Rest of the DBMS can assume that data is in DRAM.

+ Need to be aware of hardware access methods

> In-memory Access = Tuple-Oriented. Why?
» Disk Access = Block-Oriented.
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OLAP

« OLAP queries generally access the
entire table.

In-Memory Disk Data
« Thus, an in-memory DBMS may Zone Map (A)
A N MIN=##  COUNT=##
handle OLAP queries in the same a WA AV

SUM=##  STDEV=###

disk-oriented DBMS does.

« All the optimizations in a
disk-oriented DBMS apply here (e.g.,
scan sharing, buffer pool bypass).
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OLTP

+ OLTP workloads almost always have hot and cold portions of the database.
> We can assume txns will almost always access hot tuples.

« Goal: The DBMS needs a mechanism to move cold data out to disk and then
retrieve it if it is ever needed again.
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Larger-than-Memory Databases

In-Memory In-Memory Cold-Data
Index Table Heap Storage

Tuple #00
[ﬂ

Tuple #02

Tuple #03
Tuple #04

-
“Sech 29/68



0O00000e00

Larger-than-Memory Databases

In-Memory In-Memory Cold-Data
Index Table Heap Storage

g
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Larger-than-Memory Databases

In-Memory In-Memory Cold-Data
Index Table Heap Storage -
7?
e S Tuple #03 -§_
Tuple #02 Tuple #04 %
Nz ) :
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Larger-than-Memory Databases

In-Memory In-Memory Cold-Data
Index Table Heap Storage .
r&rdrd { &
I Tuple #00 e o header %
0 C??? 3
P S « Tuple #03 '\i
L)
Tuple #02 Tuple #04 g
&
SELECT *
FROM table
WHERE id = <Tuple 01>
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Design Decisions

+ Run-time Operation

> Cold Data Identification: When the DBMS runs out of DRAM space, what data
should we evict?

- Eviction Policies

> Timing: When to evict data?
> Evicted Tuple Metadata: During eviction, what meta-data should we keep in
DRAM to track disk-resident data and avoid false negatives?

- Data Retrieval Policies

> Granularity: When we need data, how much should we bring in?
» Merging: Where to put the retrieved data?

Reference
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https://hstore.cs.brown.edu/slides/hstore-damon16-ltm.pdf
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Cold Data Identification

- Choice 1: On-line
» The DBMS monitors txn access patterns and tracks how often tuples/pages are
used.
» Embed the tracking meta-data directly in tuples/pages.
+ Choice 2: Off-line

> Maintain a tuple access log during txn execution.
> Process in background to compute frequencies.

-
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Eviction Timing

« Choice 1: Threshold

> The DBMS monitors memory usage and begins evicting tuples when it reaches a
threshold.
> The DBMS must manually move data.

« Choice 2: On Demand

» The DBMS/OS runs a replacement policy to decide when to evict data to free space
for new data that is needed.
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Evicted Tuple Metadata

+ Choice 1: Tuple Tombstones

> Leave a marker that points to the on-disk tuple.
> Update indexes to point to the tombstone tuples.

» Choice 2: Bloom Filters

> Use an in-memory, approximate data structure for each index.
> Only tells us whether tuple exists or not (with potential false positives)
> Check on-disk index to find actual location

+ Choice 3: DBMS Managed Pages
> DBMS tracks what data is in memory vs. on disk.
+ Choice 4: OS Virtual Memory

> OS tracks what data is on in memory vs. on disk.
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Evicted Tuple Metadata

In-Memory In-Memory Cold-Data
Index Table Heap Storage
Tuple #00
4—'—+ 4—'—+ » Tuple #03
Tuple #02 Tuple #04

Tuple #00

z uj éZe #01
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Tuple #03
Tuple #04
Tuple #05
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Evicted Tuple Metadata

In-Memory In-Memory Cold-Data
Index Table Heap Storage
Tuple #00
- (I i
— » Tuple #03
Tuple #02 Tuple #04
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Tuple #02 | NN
Tuple #05 | I
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Evicted Tuple Metadata

In-Memory In-Memory Cold-Data
Index Table Heap Storage
Tuple #00
< Tuple #01
— S T—— < Tuple #03
Tuple #02 I Tuple #04

»| [] <Block,0ffset+
-| [=] <Bzock,0ffset>}
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Evicted Tuple Metadata

In-Memory In-Memory Cold-Data
Index Table Heap Storage
Tuple #00
Tuple #01
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Data Retrieval Granularity

- Choice 1: All Tuples in Block

> Merge all the tuples retrieved from a block regardless of whether they are needed.
» More CPU overhead to update indexes.
> Tuples are likely to be evicted again.

+ Choice 2: Only Tuples Needed
> Only merge the tuples that were accessed by a query back into the in-memory table

heap.
> Requires additional bookkeeping to track holes.
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Merging Threshold

+ Choice 1: Always Merge

> Retrieved tuples are always put into table heap.

+ Choice 2: Merge Only on Update

> Retrieved tuples are only merged into table heap if they are used in an UPDATE
statement.
> All other tuples are put in a temporary buffer.

+ Choice 3: Selective Merge

> Keep track of how often each block is retrieved.
» If ablock’s access frequency is above some threshold, merge it back into the table
heap.
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Retrieval Mechanism

« Choice 1: Abort-and-Restart

> Abort the txn that accessed the evicted tuple.

> Retrieve the data from disk and merge it into memory with a separate background
thread.

> Restart the txn when the data is ready.

> Requires MVCC to guarantee consistency for large txns that access data that does
not fit in memory.

+ Choice 2: Synchronous Retrieval

> Stall the txn when it accesses an evicted tuple while the DBMS fetches the data and
merges it back into memory.

-
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Case Studies

+ Tuple-Oriented Systems

> H-Store - Anti-Caching
> Hekaton - Project Siberia
> EPFL’s VoltDB Prototype

+ Block-Oriented Systems

» LeanStore — Hierarchical Buffer Pool
> Umbra - Variable-length Buffer Pool

-
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H-Store — Anti-Caching

+ Cold Tuple Identification: On-line Identification

+ Eviction Timing: Administrator-defined Threshold

+ Evicted Tuple Metadata: Tombstones

« Retrieval Mechanism: Abort-and-restart Retrieval

 Retrieval Granularity: Block-level Granularity

« Merging Threshold: Always Merge

« Reference
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https://www.vldb.org/pvldb/vol6/p1942-debrabant.pdf
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HEKATON - PROJECT SIBERIA

+ Cold Tuple Identification: Off-line Identification

+ Eviction Timing: Administrator-defined Threshold
+ Evicted Tuple Metadata: Bloom Filters

 Retrieval Mechanism: Synchronous Retrieval

- Retrieval Granularity: Tuple-level Granularity

« Merging Threshold: Always Merge

« Reference
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https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/p1016-eldawy.pdf
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EPFL VOLTDB

+ Cold Tuple Identification: Off-line Identification

+ Eviction Timing: OS Virtual Memory
- Evicted Tuple Metadata: N/A

 Retrieval Mechanism: Synchronous Retrieval

- Retrieval Granularity: Page-level Granularity

« Merging Threshold: Always Merge

« Reference
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https://dl.acm.org/doi/10.1145/2485278.2485285
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EPFL VOLTDB
In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
% HorTuples
Tuple #02
Cold Tuples
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EPFL VOLTDB
In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
x Hot Tuples
Tuple #02
Cold Tuples Tuple #01
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EPFL VOLTDB
In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
x Hot Tuples Tuple #03
Tuple #02
Cold Tuples » Tuple #01
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EPFL VOLTDB
In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
x Hot Tuples Tuple #03
Tuple #02

Cold Tuples i »
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EPFL VOLTDB
In-Memory Cold-Data
Table Heap Storage
mlock Tuple #00
x Hot Tuples Tuple #03
Tuple #02

Cold Tuples » Tuy:c o
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Observation

+ The systems that we have discussed so far are tuple-oriented.

> The DBMS must track meta-data about individual tuples.
> Does not reduce storage overhead of indexes.
> Indexes may occupy up to 60% of DRAM in an OLTP database.

+ Goal: Need an unified way to evict cold data from both tables and indexes with
low overhead...
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LeanStore

 In-memory storage manager from TUM that supports larger-than-memory
databases.
> Handles both tuples + indexes
> Not part of the HyPer project.

» Hierarchical + Randomized Block Eviction

> Use pointer swizzling to determine whether a block is evicted or not.

> Instead of tracking when pages are accessed, randomly evict pages and then track
whether they ended up getting used.

> If yes, put it back in the hot space.

» If not, then evict it.

+ Reference
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https://db.in.tum.de/~leis/papers/leanstore.pdf
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Pointer Swizzling

+ Switch the contents of pointers based on whether the target object resides in
memory or on disk.

+ Decentralized way to track whether a page is in memory or not.

« We track everything with 64-bit pointers, but currently only use 48-bits.

> Use first bit in address to tell what kind of address it is.
> Only works if there is only one pointer to the object.
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Pointer Swizzling

B1
A.)d’ageld, Offset>

& 64-bits
-
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Pointer Swizzling

% Bl —— B2
(0)<MemoryAddr>
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Replacement Strategy

- Randomly select blocks for eviction.
> Don't have to maintain meta-data every time a txn accesses a hot block.
> Only track accesses for cold data, which should be rare if it is cold.

« Unswizzle their pointer but leave in memory.

> Add to a FIFO queue of blocks staged for eviction.
> If page is accessed again, remove from queue.
> Otherwise, evict pages when reaching front of queue.
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Block Hierarchy

« Blocks are organized in a tree hierarchy.

> Each page has only one parent, which means that there is only a single pointer.
> No centralized page table (as is the case in a disk-oriented DBMS).
« The DBMS can only evict a block if its children are also evicted.
> This avoids the problem of evicting blocks that contain swizzled pointers
> Otherwise, these pointers are invalid because they will point to old locations in
memory.

» If a block is selected but it has in-memory children, then it automatically switches
to select one of its children.
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Block Hierarchy
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i
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Block Hierarchy
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Umbra

+ New DBMS from HyPer team at TUM.

> Low overhead buffer pool with variable-sized pages.

> Employs the same hierarchical organization and randomized block eviction
algorithm from LeanStore.

> Uses virtual memory to allocate storage but the DBMS manages block eviction on
its own.

- DBMS stores relations as index-organized tables, so there is no separate
management needed to handle index blocks.

« Reference
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http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
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Variable-Sized Buffer Pool

Buffer Frames Blocks

wwll,@-l@l
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Variable-Sized Buffer Pool

Buffer Frames Blocks
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Conclusion

« We focused on working around the block-oriented access granularity and lower
bandwidth of secondary storage.
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