
Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Lecture 15: Trees (Part 2)

1 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Administrivia

• Project presentations in class next week
• Assignment 3 due on Oct 24

2 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Today's Agenda

Recap

More B+Trees

Additional Index Magic

Tries / Radix Trees

Inverted Index

Conclusion

3 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Recap

4 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

B+Tree

• A B+Tree is a self-balancing tree data structure that keeps data sorted and allows
searches, sequential access, insertions, and deletions inO(log n).

▶ Generalization of a binary search tree in that a node can have more than two
children.

▶ Optimized for disk storage (i.e., read and write at page-granularity).

5 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

B+Tree Properties

• A B+Tree is an M-way search tree with the following properties:
▶ It is perfectly balanced (i.e., every leaf node is at the same depth).
▶ Every node other than the root, is at least half-full: M/2-1 <= keys <=M-1
▶ Every inner node with k keys has k+1 non-null children (node pointers)

6 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Today’s Agenda

• More B+Trees
• Additional Index Magic
• Tries / Radix Trees
• Inverted Indexes

7 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

More B+Trees

8 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Duplicate Keys

• Approach 1: Append Record Id
▶ Add the tuple’s unique record id as part of the key to ensure that all keys are unique.
▶ The DBMS can still use partial keys to find tuples.

• Approach 2: Overflow Leaf Nodes
▶ Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
▶ This is more complex to maintain and modify.

9 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Append Record Id

10 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Append Record Id

11 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Append Record Id

12 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Append Record Id

13 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Duplicate Keys

• Approach 1: Append Record Id
▶ Add the tuple’s unique record id as part of the key to ensure that all keys are unique.
▶ The DBMS can still use partial keys to find tuples.

• Approach 2: Overflow Leaf Nodes
▶ Allow leaf nodes to spill into overflow nodes that contain the duplicate keys.
▶ This is more complex to maintain and modify.

14 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Overflow Leaf Nodes

15 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Overflow Leaf Nodes

16 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Partitioned B-Tree

Bulk operations are fine if they are rare, but they are disruptive
• usually the B-tree has to be take offline
• the new cannot be queries easily
• existing queries must be halted

17 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Partitioned B-Tree

Basic idea: partition the B-tree
• add an artificial column in front
• creates separate partitions with the B-tree

Partition no. 0 3 4

18 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Partitioned B-Tree

Benefits:
• partitions are largely independent of each other
• one can append to the “rightmost” partition without disrupting the rest
• the index stays always online
• partitions can be merged lazily
• merge only when beneficial

Drawbacks:
• no “global” order any more
• lookups have to access all partitions

19 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Prefix B+-tree

A B+-tree can contain separators that do not occur in the data

We can use this to save space:

aaaa bbbb eeee ffff

bbbb

aaaa bbbb eeee ffff

c

• choose the smallest possible separator
• no change to the lookup logic is required

20 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Prefix B+-tree
We can do even better by factoring out a common prefix:

http://www. google.com sigmod.org

• only one prefix per page
• the change to the lookup logic is minor
• the lookup key itself is adjusted
• sometimes only inner nodes, to keep scans cheap

21 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Prefix B+-tree

The lexicographic sort order makes prefix compression attractive:
• neighboring entries tend to differ only at the end
• a common prefix occurs very frequently
• not only for strings, also for compound keys etc.
• in particular important if partitioned B-trees
• with big-endian ordering any value might get compressed

22 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Additional Index Magic

23 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Implicit Indexes

• Most DBMSs automatically create an index to enforce integrity constraints.
▶ Primary Keys
▶ Unique Constraints

CREATE TABLE foo (
id SERIAL PRIMARY KEY,
val1 INT NOT NULL,
val2 VARCHAR(32) UNIQUE

);
CREATE UNIQUE INDEX foo_pkey ON foo (id);
CREATE UNIQUE INDEX foo_val2_key ON foo (val2);

24 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Implicit Indexes

• But, this is not done for referential integrity constraints (i.e., foreign keys).
CREATE TABLE bar (

id INT REFERENCES foo (val1),
val VARCHAR(32)

);
CREATE INDEX foo_val1_key ON foo (val1); -- Not automatically done

25 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Partial Indexes

• Create an index on a subset of the entire table.
• This potentially reduces its size and the amount of overhead to maintain it.
• One common use case is to partition indexes by date ranges.

▶ Create a separate index per month, year.
CREATE INDEX idx_foo ON foo (a, b)

WHERE c = 'October';
SELECT b FROM foo WHERE a = 123 AND c = 'October';

26 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Covering Indexes

• If all the fields needed to process the query are available in an index, then the
DBMS does not need to retrieve the tuple from the heap.

• This reduces contention on the DBMS’s buffer pool resources.
CREATE INDEX idx_foo ON foo (a, b);
SELECT b FROM foo WHERE a = 123;

27 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Index Include Columns

• Embed additional columns in indexes to support index-only queries.
• These extra columns are only stored in the leaf nodes and are not part of the

search key.
CREATE INDEX idx_foo ON foo (a, b) INCLUDE (c);
SELECT b FROM foo WHERE a = 123 AND c = 'October';

28 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Functional/Expression Indexes

• An index does not need to store keys in the same way that they appear in their
base table.

• You can use functions/expressions when declaring an index.
SELECT * FROM users
WHERE EXTRACT(dow FROM login) = 2;

CREATE INDEX idx_user_login ON users (login);

29 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Functional/Expression Indexes

• An index does not need to store keys in the same way that they appear in their
base table.

• You can use functions/expressions when declaring an index.
CREATE INDEX idx_user_login ON users (EXTRACT(dow FROM login));
CREATE INDEX idx_user_login ON foo (login) WHERE EXTRACT(dow FROM login) = 2;

30 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Tries / Radix Trees

31 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Observation

• The inner node keys in a B+Tree cannot tell you whether a key exists in the index.
• You must always traverse to the leaf node.
• This means that you could have (at least) one buffer pool page miss per level in the

tree just to find out a key does not exist.

32 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Trie Index

• Use a digital representation of
keys to examine prefixes
one-by-one instead of comparing
entire key.

▶ a.k.a., Digital Search Tree, Prefix
Tree.

33 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Properties

• Shape only depends on key space and lengths.
▶ Does not depend on existing keys or insertion order.
▶ Does not require rebalancing operations.

• All operations haveO(k) complexity where k is the length of the key.
▶ The path to a leaf node represents the key of the leaf
▶ Keys are stored implicitly and can be reconstructed from paths.

34 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

• The span of a trie level is the number of bits that each partial key / digit
represents.

▶ If the digit exists in the corpus, then store a pointer to the next level in the trie
branch.

▶ Otherwise, store null.

• This determines the fan-out of each node and the physical height of the tree.

35 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

36 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

37 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

38 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

39 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

40 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

41 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Key Span

42 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree

• Omit all nodes with only a single
child.

▶ a.k.a., Patricia Tree.
• Can produce false positives
• So the DBMS always checks the

original tuple to see whether a key
matches.

43 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Modifications

44 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Modifications

45 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Modifications

46 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Modifications

47 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Modifications

48 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Modifications

49 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Binary Comparable Keys

• Not all attribute types can be decomposed into binary comparable digits for a
radix tree.

▶ Unsigned Integers: Byte order must be flipped for little endian machines.
▶ Signed Integers: Flip two’s-complement so that negative numbers are smaller than

positive.
▶ Floats: Classify into group (neg vs. pos, normalized vs. denormalized), then store

as unsigned integer.
▶ Compound: Transform each attribute separately.

50 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Binary Comparable Keys

51 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Radix Tree: Binary Comparable Keys

52 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Inverted Index

53 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Observation

• The tree indexes that we’ve discussed so far are useful for ”point” and ”range”
queries:

▶ Find all customers in the 30308 zip code.
▶ Find all orders between June 2020 and September 2020.

• They are not good at keyword searches:
▶ Find all Wikipedia articles that contain the word ”Trie”

54 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Wikipedia Example
CREATE TABLE pages (
userID INT PRIMARY KEY,
userName VARCHAR UNIQUE,
);
CREATE TABLE pages (
pageID INT PRIMARY KEY,
title VARCHAR UNIQUE,
latest INT REFERENCES revisions (revID),
);
CREATE TABLE revisions (
revID INT PRIMARY KEY,
userID INT REFERENCES useracct (userID),
pageID INT REFERENCES pages (pageID),
content TEXT, -- Text Search
updated DATETIME
);

55 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Wikipedia Example

• If we create an index on the content attribute, what does that do?
• This doesn’t help our query.
• Our query is also not correct since it will return any occurrence (not only exact

matches)
CREATE INDEX idx_rev_content ON revisions (content);
SELECT pageID FROM revisions WHERE content LIKE '%Trie%';

56 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Inverted Index

• An inverted index stores a mapping of words to records that contain those words
in the target attribute.

▶ Sometimes called a full-text search index.
▶ Also called a concordance in old (like really old) times.

• Major DBMSs support these natively (e.g., PostgreSQL Generalized Inverted
Index (GIN))

• There are also specialized DBMSs (e.g., Lucene, Elasticsearch)

57 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Query Types

• Phrase Searches
▶ Find records that contain a list of words in the given order.

• Proximity Searches
▶ Find records where two words occurwithin n words of each other.

• Wildcard Searches
▶ Find records that contain words that match some pattern (e.g., regular expression).

58 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Design Decisions

• Decision 1: What To Store
▶ The index needs to store at least the words contained in each record (separated by

punctuation characters).
▶ Can also store frequency, position, and other meta-data.

• Decision 2: When To Update
▶ Maintain auxiliary data structures to ”stage” updates and then update the index in

batches.

59 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Conclusion

60 / 61



Recap More B+Trees Additional Index Magic Tries / Radix Trees Inverted Index Conclusion

Conclusion

• B+Trees are still the way to go for tree indexes.
• Next Class

▶ How to make indexes thread-safe!

61 / 61


	Trees (Part 2)
	Recap
	More B+Trees
	Additional Index Magic
	Tries / Radix Trees
	Inverted Index
	Conclusion


