
Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Lecture 16: Index Concurrency
Control

1 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Administrivia

• Project 2 Proposal due on Nov 2
• Assignment 4 due on Nov 14

2 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Today's Agenda

Recap

Latches Overview

Hash Table Latching

B+Tree Concurrency Control

Leaf Node Scans

Blink-Tree

Conclusion

3 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Recap

4 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Index Data Structures

• List of Data Structures: Hash Tables, B+Trees, Radix Trees
• Most DBMSs automatically create an index to enforce integrity constraints.
• B+Trees are the way to go for indexing data.

5 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Observation

• We assumed that all the data structures that we have discussed so far are
single-threaded.

• But we need to allow multiple threads to safely access our data structures to take
advantage of additional CPU cores and hide disk I/O stalls.

6 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Concurrency Control

• A concurrency control protocol is the method that the DBMS uses to ensure
”correct” results for concurrent operations on a shared object.

• A protocol’s correctness criteria can vary:
▶ Logical Correctness: Am I reading the data that I am supposed to read?
▶ Physical Correctness: Is the internal representation of the object sound?

7 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latches Overview

8 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Locks vs. Latches

• Locks
▶ Protects the database’s logical contents from other txns.
▶ Held for the duration of the transaction.
▶ Need to be able to rollback changes.

• Latches
▶ Protects the critical parts of the DBMS’s internal physical data structures from

other threads.
▶ Held for the duration of the operation.
▶ Do not need to be able to rollback changes.

9 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Locks vs. Latches

Locks Latches

Separate… User transactions Threads
Protect… Database Contents In-Memory Data Structures
During… Entire Transactions Critical Sections
Modes… Shared, Exclusive, Update, Intention Read, Write (a.k.a., Shared, Exclusive)
Deadlock Detection & Resolution Avoidance
…by… Waits-for, Timeout, Aborts Coding Discipline
Kept in… Lock Manager Protected Data Structure

Reference

10 / 129

https://dl.acm.org/doi/10.1145/1806907.1806908


Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

LatchModes

• ReadMode
▶ Multiple threads can read the same object at the same time.
▶ A thread can acquire the read latch if another thread has it in read mode.

• Write Mode
▶ Only one thread can access the object.
▶ A thread cannot acquire a write latch if another thread holds the latch in any mode.

Read Write

Read ✓ X
Write X X

11 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Implementations

• Blocking OS Mutex
• Test-and-Set Spin Latch
• Reader-Writer Latch

12 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Implementations

• Approach 1: Blocking OSMutex
▶ Simple to use
▶ Non-scalable (about 25 ns per lock/unlock invocation)
▶ Example: std::mutex

std::mutex m;

m.lock();
// Do something special...
m.unlock();

13 / 129

https://en.cppreference.com/w/cpp/thread/mutex


Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Implementations

• Approach 2: Test-and-Set Spin Latch (TAS)
▶ Very efficient (single instruction to latch/unlatch)
▶ Non-scalable, not cache friendly
▶ Example: std::atomic<T>
▶ Unlike OS mutex, spin latches do not suspend thread execution
▶ Atomic operations are faster if contention between threads is sufficiently low

std::atomic_flag latch; // atomic of boolean type (lock-free)

while (latch.test_and_set(…)) {
^^I// Retry? Yield? Abort?
}

14 / 129

https://en.cppreference.com/w/cpp/atomic/atomic


Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Implementations

• Approach 3: Reader-Writer Latch

▶ Allows for concurrent
readers

▶ Must manage read/write
queues to avoid starvation

▶ Can be implemented on top
of spinlocks

15 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Implementations

• Approach 3: Reader-Writer Latch

▶ Allows for concurrent
readers

▶ Must manage read/write
queues to avoid starvation

▶ Can be implemented on top
of spinlocks

16 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table Latching

17 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table Latching

• Easy to support concurrent access due to the limited ways in which threads
access the data structure.

▶ All threads move in the same direction and only access a
single page/slot at a time.

▶ Deadlocks are not possible.
• To resize the table, take a global latch on the entire table (i.e., in the header page).

18 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table Latching

• Approach 1: Page Latches
▶ Each page has its own reader-write latch that protects its entire contents.
▶ Threads acquire either a read or write latch before they access a page.

• Approach 2: Slot Latches
▶ Each slot has its own latch.
▶ Can use a single mode latch to reduce meta-data and computational overhead.

19 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

20 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

21 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

22 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

23 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

24 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

25 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

26 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

27 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Page Latches

28 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

29 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

30 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

31 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

32 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

33 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

34 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

35 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Hash Table - Slot Latches

36 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control

37 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control

• We want to allow multiple threads to read and update a B+Tree at the same time.
• We need to handle two types of problems:

▶ Threads trying to modify the contents of a node at the same time.
▶ One thread traversing the tree while another thread splits/merges nodes.

38 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

39 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

40 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

41 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

42 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

43 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

44 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

45 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

46 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

47 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

B+Tree Concurrency Control: Example

48 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Crabbing/Coupling

• Protocol to allow multiple threads to access/modify B+Tree at the same time.
• Basic Idea:

▶ Get latch for parent.
▶ Get latch for child
▶ Release latch for parent if “safe”.

• A safe node is one that will not split or mergewhen updated.
▶ Not full (on insertion)
▶ More than half-full (on deletion)

49 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Latch Crabbing/Coupling

• Find: Start at root and go down; repeatedly,
▶ Acquire R latch on child
▶ Then unlatch parent

• Insert/Delete: Start at root and go down, obtaining W latches as needed. Once
child is latched, check if it is safe:

▶ If child is safe, release all latches on ancestors.

50 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

51 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

52 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

53 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

54 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

55 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

56 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

57 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 1 - Find 38

58 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

59 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

60 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

61 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

62 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

63 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

64 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

65 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

66 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

67 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 3 - Insert 45

68 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 3 - Insert 45

69 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 3 - Insert 45

70 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 3 - Insert 45

71 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 3 - Insert 45

72 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 3 - Insert 45

73 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

74 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

75 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

76 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

77 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

78 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

79 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Observation

• What was the first step that all the update examples did on the B+Tree?
• Taking a write latch on the root every time becomes a bottleneck with higher

concurrency.
• Can we do better?

80 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Better Latching Algorithm

• Assume that the leaf node is safe.
• Use read latches and crabbing to reach it, and then verify that it is safe.
• If leaf is not safe, then do previous algorithm using write latches.
• Reference

81 / 129

https://dl.acm.org/doi/10.1007/BF00263762


Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

82 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

83 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

84 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

85 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 2 - Delete 38

86 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

87 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

88 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

89 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Example 4 - Insert 25

90 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Better Latching Algorithm

• Find: Same as before.
• Insert/Delete:

▶ Set latches as if for search, get to leaf, and setW latch on leaf.
▶ If leaf is not safe, release all latches, and restart thread using previous insert/delete

protocol withW latches.

• This approach optimistically assumes that only leaf node will be modified; if
not, R latches set on the first pass to leaf are wasteful.

91 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scans

92 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Observation

• The threads in all the examples so far have acquired latches in a top-down
manner.

▶ A thread can only acquire a latch from a node that is below its current node.
▶ If the desired latch is unavailable, the thread must wait until it becomes available.

• But what if we want to move from one leaf node to another leaf node?
• Leaf nodes can include hint keys to approximate the next key at your sibling.

93 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 1

94 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 1

95 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 1

96 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 1

97 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 1

98 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 1

99 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 2

100 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 2

101 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 2

102 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 2

103 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 2

104 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 3

105 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 3

106 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 3

107 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 3

108 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scan - Example 3

109 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Leaf Node Scans

• Latches do not support deadlock detection or avoidance.
• The only way we can deal with this problem is through coding discipline.
• The leaf node sibling latch acquisition protocol must support a fail-fast no-wait

mode.
• B+Tree implementation must cope with failed latch acquisitions.

110 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree

111 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree

• Every time a leaf node overflows, we must update at least three nodes.
▶ The leaf node being split.
▶ The new leaf node being created.
▶ The parent node.

• Optimization:When a leaf node overflows, delay updating its parent node.
• Reference

112 / 129

https://dl.acm.org/doi/10.1145/319628.319663


Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

113 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

114 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

115 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

116 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

117 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

118 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

119 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

120 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

121 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

122 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

123 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

124 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

125 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

126 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Blink-Tree Example

127 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Conclusion

128 / 129



Recap Latches Overview Hash Table Latching B+Tree Concurrency Control Leaf Node Scans Blink-Tree Conclusion

Conclusion

• Making a data structure thread-safe is notoriously difficult in practice.
• We focused on B+Trees but the same high-level techniques are applicable to other

data structures.
• Next Class

▶ We will learn about modern access methods.

129 / 129


	Index Concurrency Control
	Recap
	Latches Overview
	Hash Table Latching
	B+Tree Concurrency Control
	Leaf Node Scans
	Blink-Tree
	Conclusion


