
Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Query Execution (Part 2)

1 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Today's Agenda

Query Execution (Part 2)

Recap

Overview

Process Model

Execution Parallelism

I/O Parallelism

Conclusion

Retrospective

2 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Recap

3 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Processing Model

• A DBMS’s processing model defines how the system executes a query plan.
▶ Different trade-offs for different workloads.

• Approach 1: Iterator Model
• Approach 2: Materialization Model
• Approach 3: Vectorized / Batch Model

4 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Multi-Index Scan

• If there are multiple indexes that the DBMS can use for a query:
▶ Compute sets of record ids using each matching index.
▶ Combine these sets based on the query’s predicates (union vs. intersect).
▶ Retrieve the records and apply any remaining predicates.

• Postgres calls this Bitmap Scan.

5 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Expression Evaluation

• The DBMS represents a WHERE
clause as an expression tree.

• The nodes in the tree represent
different expression types:

▶ Comparisons (=, <, >, !=)
▶ Conjunction (AND), Disjunction

(OR)
▶ Arithmetic Operators (+, -, *, /, %)
▶ Constant Values
▶ Tuple Attribute References

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

6 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Query Execution

• We discussed last class how to
compose operators together to
execute a query plan.

• We assumed that the queries execute
with a single worker (e.g., thread).

• We now need to talk about how to
execute with multiple workers.

SELECT R.id, S.cdate
FROM R, S
WHERE R.id = S.id AND S.value > 100

7 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Today’s Agenda

• Overview
• Process Models
• Execution Parallelism
• I/O Parallelism

8 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Overview

9 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Why care about Parallel Execution?

• Increased performance.
▶ Throughput
▶ Latency

• Increased responsiveness and availability.
• Potentially lower total cost of ownership (TCO).

10 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Parallel vs. Distributed

• Database is spread out across multiple resources to improve different aspects of
the DBMS.

• Appears as a single database instance to the application.
▶ SQL query for a single-resource DBMS should generate same result on a parallel or

distributed DBMS.

11 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Parallel vs. Distributed

• Parallel DBMSs:
▶ Resources are physically close to each other.
▶ Resources communicate with high-speed interconnect.
▶ Communication is assumed to cheap and reliable.
▶ Typically rely on shared memory.

• Distributed DBMSs:
▶ Resources can be far from each other.
▶ Resources communicate using slow(er) interconnect.
▶ Communication cost and problems cannot be ignored.
▶ Typically rely on message passing.

12 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process Model

13 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process Model

• A DBMS’s process model defines how the system is architected to support
concurrent requests from a multi-user application.

• A worker is the DBMS component running on the server that is responsible for
executing tasks on behalf of the client and returning the results.

14 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process Models

• Approach 1: Process per DBMS Worker
• Approach 2: Process Pool
• Approach 3: Thread per DBMS Worker

15 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process per DBMS Worker

• Each worker is a separate OS process.
▶ Relies on OS scheduler.
▶ Use shared-memory for global data structures.
▶ A process crash does not take down entire system.
▶ Examples: IBM DB2, Postgres, Oracle

16 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process per DBMS Worker

17 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process Pool

• A worker uses any process that is free in a pool
▶ Still relies on OS scheduler and shared memory.
▶ Bad for CPU cache locality.
▶ Examples: IBM DB2, Postgres (2015)

18 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process Pool

19 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Thread per DBMS Worker

• Single process with multiple worker threads.
▶ DBMS manages its own scheduling.
▶ May or may not use a dispatcher thread.
▶ Thread crash (may) kill the entire system.
▶ Examples: IBM DB2, MSSQL, MySQL, Oracle (2014)

20 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Thread per DBMS Worker

21 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Process Models

• Using a multi-threaded architecture has several advantages:
▶ Less overhead per context switch.
▶ Do not have to manage shared memory.

• The thread per worker model does not mean that the DBMS supports
intra-query parallelism.

• Most DBMSs in the last decade use threads (unless they are Postgres forks).

22 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Scheduling

• For each query plan, the DBMS decides where, when, and how to execute it.
▶ How many tasks should it use?
▶ How many CPU cores should it use?
▶ What CPU core should the tasks execute on?
▶ Where should a task store its output?

• The DBMS always knows more than the OS.

23 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Execution Parallelism

24 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Inter- VS. Intra-Query Parallelism

• Inter-Query: Different queries are executed concurrently.
▶ Increases throughput & reduces latency.

• Intra-Query: Execute the operations of a single query in parallel.
▶ Decreases latency for long-running queries.

25 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Inter-Query Parallelism

• Improves overall performance by allowing multiple queries to execute
simultaneously.

• If queries are read-only, then this requires little coordination between queries.
• If multiple queries are updating the database at the same time, then this is hard

to do correctly.
• ACID: Isolation of concurrent workers to ensure correctness.

26 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Query Parallelism

• Improve the performance of a single query by executing its operators in parallel.
• Think of organization of operators in terms of a producer/consumer paradigm.
• There are parallel algorithms for every relational operator.

▶ Can either have multiple threads access centralized data structures in a
synchronized manner or use partitioning to divide work up.

27 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Parallel Grace Hash Join

• Use a separate worker to perform the join for each level of buckets for R and S
after partitioning.

28 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Parallel Grace Hash Join

• Use a separate worker to perform the join for each level of buckets for R and S
after partitioning.

29 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Query Parallelism

• Approach 1: Intra-Operator (Horizontal)
• Approach 2: Inter-Operator (Vertical)
• Approach 3: Bushy

30 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

• Intra-Operator (Horizontal)
▶ Decompose operators into independent fragments that perform the same function

on different subsets of data.

• The DBMS inserts an exchange operator into the query plan to coalesce results
from children operators.

• Exchange operator encapsulates parallelism and data transfer.

31 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

32 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

33 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

34 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Exchange Operator

• Exchange Type 1 – Gather
▶ Combine the results from multiple workers into a single output stream.
▶ Query plan root must always be a gather exchange.
▶ N input pipelines, 1 output pipeline.

• Exchange Type 2 – Repartition
▶ Reorganize multiple input streams across multiple output streams.
▶ N input pipelines, M output pipelines.

• Exchange Type 3 – Distribute
▶ Split a single input stream into multiple output streams.
▶ 1 input pipeline, M output pipelines.

35 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

36 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

37 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Intra-Operator Parallelism

38 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Inter-Operator Parallelism

• Inter-Operator (Vertical)
▶ Operations are overlapped in order to pipeline data from one stage to the next

without materialization.

• Also called pipelined parallelism.

39 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Inter-Operator Parallelism

40 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Inter-Operator Parallelism

41 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Bushy Parallelism

• Bushy Parallelism
▶ Extension of inter-operator

parallelism where workers
execute multiple operators from
different segments of a query plan
at the same time.

▶ Still need exchange operators to
combine intermediate results
from segments.

SELECT *
^^IFROM A JOIN B JOIN C JOIN D

42 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

I/O Parallelism

43 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Observation

• Using additional processes/threads to execute queries in parallel won’t help if the
disk is always the main bottleneck.

▶ Can make things worse if each worker is reading different segments of disk.

44 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

I/O Parallelism

• Split the DBMS installation across multiple storage devices.
▶ Multiple Disks per Database
▶ One Database per Disk
▶ One Relation per Disk
▶ Split Relation across Multiple Disks

45 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Multi-Disk Parallelism

• Configure OS/hardware to store the
DBMS’s files across multiple storage
devices.

▶ Storage Appliances
▶ RAID Configuration

• This is transparent to the DBMS.

46 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Multi-Disk Parallelism

• Configure OS/hardware to store the
DBMS’s files across multiple storage
devices.

▶ Storage Appliances
▶ RAID Configuration

• This is transparent to the DBMS.

47 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Database Partitioning

• Some DBMSs allow you specify the disk location of each individual database.
▶ The buffer pool manager maps a page to a disk location.

• This is also easy to do at the filesystem level if the DBMS stores each database in a
separate directory.

▶ The log file might be shared though

48 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Database Partitioning

• Split single logical table into disjoint physical segments that are stored/managed
separately.

• Ideally partitioning is transparent to the application.
▶ The application accesses logical tables and does not care how things are stored.
▶ Not always true in distributed DBMSs.

49 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Vertical Relation Partitioning

• Store a table’s attributes in a separate location (e.g., file, disk volume).
• Have to store tuple information to reconstruct the original record.
CREATE TABLE foo (
^^Iattr1 INT,
^^Iattr2 INT,
^^Iattr3 INT,
^^Iattr4 TEXT
);

50 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Horizontal Relation Partitioning

• Divide the tuples of a table up into disjoint segments based on some partitioning
key.

▶ Hash Partitioning
▶ Range Partitioning
▶ Predicate Partitioning

CREATE TABLE foo (
^^Iattr1 INT,
^^Iattr2 INT,
^^Iattr3 INT,
^^Iattr4 TEXT
);

51 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Conclusion

52 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Conclusion

• Parallel execution is important.
• (Almost) every DBMS supports this.
• This is really hard to get right.

▶ Coordination Overhead
▶ Scheduling
▶ Concurrency Issues
▶ Resource Contention

• Next Class
▶ Scheduling

53 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Retrospective

54 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

What did we learn

• You are tired of systems programming
• You are exhausted
• Let’s take a step back and think about what happened

55 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Lessons learned

• Systems programming is hard
• Become a better programmer through the study of database systems internals
• Going forth, you should have a good understanding how systems work

56 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Big Ideas

• Database systems are awesome – but are not magic.
• Elegant abstractions are magic.
• Declarativity enables usability and performance.
• Building systems software is more than hacking.
• There are recurring motifs in systems programming.
• CS has an intellectual history and you can contribute.

57 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

What’s Next?

• Follow-on course: CS 8803 (DBMS Implementation - Part II)
▶ Query Optimization
▶ Concurrency Control
▶ Logging and Recovery Methods

58 / 59



Query Execution (Part 2) Recap Overview Process Model Execution Parallelism I/O Parallelism Conclusion Retrospective

Parting Thoughts

• Project presentations next week

59 / 59


	Query Execution (Part 2)
	Recap
	Overview
	Process Model
	Execution Parallelism
	I/O Parallelism
	Conclusion
	Retrospective

