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ABSTRACT
In this paper we experimentally study the performance of
main-memory, parallel, multi-core join algorithms, focusing
on sort-merge and (radix-)hash join. The relative perfor-
mance of these two join approaches have been a topic of
discussion for a long time. With the advent of modern multi-
core architectures, it has been argued that sort-merge join is
now a better choice than radix-hash join. This claim is jus-
tified based on the width of SIMD instructions (sort-merge
outperforms radix-hash join once SIMD is sufficiently wide),
and NUMA awareness (sort-merge is superior to hash join
in NUMA architectures). We conduct extensive experiments
on the original and optimized versions of these algorithms.
The experiments show that, contrary to these claims, radix-
hash join is still clearly superior, and sort-merge approaches
to performance of radix only when very large amounts of
data are involved. The paper also provides the fastest im-
plementations of these algorithms, and covers many aspects
of modern hardware architectures relevant not only for joins
but for any parallel data processing operator.

1. INTRODUCTION
Modern processor architectures introduce many possibili-

ties as well as challenges for the implementation of parallel
data operators. Advanced instruction sets, vector opera-
tions, multi-core architectures, and NUMA constraints cre-
ate a very rich design space where the effects of given design
decisions on the performance of data operators are not al-
ways easy to determine. There is a need for developing a
better understanding of the performance of parallel data op-
erators on new hardware.

In this paper, we explore the relative performance of radix-
hash vs. sort-merge join algorithms in main-memory, multi-
core settings. Our main goal is to analyze the hypothesis
raised by recent work claiming that sort-merge joins over
new hardware are now a better option than radix-hash joins,
the algorithm traditionally considered to be the fastest [2,
15]. Kim et al. [15] have suggested that, once hardware
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provides support for vector instructions that are sufficiently
wide (SIMD with 256-bit AVX and wider), sort-merge joins
would easily outperform radix-hash joins. This claim was
reinforced by recent results by Albutiu et al. [2] who report
that their NUMA-aware implementation of sort-merge join
is already superior to hash joins even without using SIMD
instructions. Furthermore, there are a number of new opti-
mizations for parallel radix join [3, 4, 5] that have not been
considered in these studies, but that should be part of any
analysis of the relative performance of the two options.

In this paper, we approach the question experimentally.
We bring carefully-tuned implementations of all relevant,
state-of-the-art join strategies (including radix join [4, 15,
19], no-partitioning join [5], sort-merge join [15], and mas-
sively parallel sort-merge (MPSM) join [2]) to a common
and up-to-date hardware platform. We then compare the
relative performance of all these algorithms under a wide
range of experimental factors and parameters: algorithm
design, data sizes, relative table sizes, degree of parallelism,
use of SIMD instructions, effect of NUMA, data skew, and
different workloads. Many of these parameters and combi-
nations thereof were not foreseeable in earlier studies, and
our experiments show that they play a crucial role in deter-
mining the overall performance of join algorithms.

Through an extensive experimental analysis, this paper
makes several contributions: (1) we show that radix-hash
join is still superior to sort-merge join in most cases; (2) we
provide several insights on the implementation of data oper-
ators on modern processors; and (3) we present the fastest
algorithms available to date for both sort-merge—2-3 times
faster than available results— and radix-hash join, demon-
strating how to use modern processors to improve the per-
formance of data operators.

In addition, the paper sheds light on a number of relevant
issues involving the processing of “big data” and the factors
that affect the choice of the algorithm. These include:

Input Sizes. Our results show that the relative and ab-
solute input table sizes have a big effect on performance.
Moreover, as the data size grows, the duality between hash-
ing and sorting becomes more pronounced, changing the as-
sumption that only hashing involves several passes over the
data when it is sufficiently large. We show that sort-merge
joins also have to do multiple passes over the data, with
their performance suffering accordingly.

Degree of Parallelism. Existing work has studied algo-
rithms using a small degree of parallelism. As the number
of available hardware contexts increases, contention in large
merge trees for sorting also increases. This contention is not
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visible in the four-core configurations used in earlier studies
but it becomes a dominant factor in larger systems.

Cache Contention. Cache-conscious approaches make
a significant difference in both hash and sort-merge joins.
Cache consciousness becomes the decisive factor in choosing
the best hash join algorithm, favoring the radix join ap-
proach of [4, 15] over the no-partitioning approach of [5].
Similarly, for efficient merging, Kim et al. [15] assume that
entire merge trees can fit into a single last-level cache. As
the degree of parallelism, data sizes, and merge fan-ins in-
crease, this assumption may no longer hold, which calls for a
closer look at the implementation of multi-way merge trees.

SIMD Performance. There are many ways to exploit
SIMD in all algorithms. Our results show, however, that
hardware peculiarities play a big role, and it turns out that
the width of the SIMD registers is not the only relevant
factor. The complex hardware logic and signal propagation
delays inherent to more complex SIMD designs may result
in latencies larger than one cycle, limiting the advantages of
SIMD.

The paper shows that hash joins still have an edge over
sort-merge alternatives unless the amount of data involved
is very large. Some advances in hardware will eventually fa-
vor sort-merge joins, e.g., wider SIMD registers and higher
memory bandwidth, but our results show that exploiting
such advances will also benefit radix join algorithms. Fur-
thermore, new processor features such as memory gather
support in Intel’s upcoming Haswell series may play a big-
ger role in improving hash joins than the factors considered
so far.

2. BACKGROUND AND RELATED WORK

2.1 Sort vs. Hash—Early Work
“Sort or hash” has long been a point of discussion in

databases. Initially, sort-merge join was the preferred op-
tion [20]. Later, the invention of hashing-based techniques
[6, 16] changed the balance. Schneider et al. [23] compared
hash-based with sort-merge joins and concluded that hash-
based joins were superior unless memory was limited. Hash
join was also the main choice in most of the early parallel
database systems [8, 9, 23].

Changes in hardware, memory, and data volumes prompt-
ed researchers to revisit the “sort or hash” question regularly
over the years. Graefe et al. [12] provided an extensive study
of sort- and hash-based query processing algorithms. They
outlined the dualities and similarities among the approaches
and concluded that performance only differs by percentages
rather than factors if both algorithms are implemented in a
careful and equally-optimized manner. Moreover, the study
pointed out that there are cases when one of the algorithms
would be preferable over the other and therefore both algo-
rithms would be needed in a database system. Subsequently,
Graefe et al. [11] used histogram-based partitioning to im-
prove hash-based joins and finally concluded that sort-merge
joins only win in a number of corner cases.

2.2 Sort vs. Hash—Multi-core Era
Multi-core has changed things once again. Kim et al. [15]

compared parallel radix-hash join with a sorting-based join
exploiting both SIMD data parallelism and multiple threads.
They concluded that wider SIMD registers will soon make
sort-merge a better option.

Albutiu et al. [2] presented a “massively parallel sort-
merge join” (MPSM) tailored for modern multi-core and
multi-socket NUMA processors. MPSM is claimed to ob-
serve NUMA-friendly access patterns and avoids full sort-
ing of the outer relation. In their experiments on a 32-
core, four socket machine, they report that sort-merge join
is faster than the “no-partitioning” hash join implementa-
tion of Blanas et al. [5] (see below). Unlike the projections
of Kim et al. [15], the claim is that sort-merge join is faster
than hash join even without using SIMD parallelism.

On the hash join side, cache-aware, partitioning-based al-
gorithms such as “radix join” provide the best performance
[19, 24]. More recently, Blanas et al. [5] introduced the “no-
partitioning” idea and advocated its simplicity, hardware
obliviousness, and efficiency. Recent work has studied these
hash join algorithms and showed that hardware-conscious,
parallel radix join has the best overall performance [3, 4]. As
the code for the no-partitioning and radix join algorithms
is available, we use these algorithms in this study. We also
refer to the literature for detailed descriptions of these algo-
rithms and focus here mainly on sort-merge joins.

2.3 Hardware-Assisted Sorting
Recent work on sorting has explored the use of SIMD data

parallelism [7, 10, 13, 22]. Inoue et al. [13] introduced AA-
Sort which utilized both SIMD and thread-level parallelism.
AA-Sort eliminates unaligned loads for maximum utiliza-
tion of SIMD where unaligned accesses cause performance
bottlenecks in architectures such as PowerPC and Cell pro-
cessors. Gedik et al. [10] also investigated parallel sorting for
the Cell processor and implemented an efficient sorting algo-
rithm with bitonic sorting and merging using SIMD paral-
lelism. Chhugani et al. [7] provided a multi-core SIMD sort-
ing implementation over commodity x86 processors. Their
algorithm, based on merge sort, extensively used bitonic
sort and merge networks for SIMD parallelism, following the
ideas introduced by Inoue et al. [13] for in-register sorting.
However, the machine they used had only four cores and fur-
ther scalability was based on projections. Satish et al. [22]
have analyzed comparison and non-comparison-based sort-
ing algorithms on modern CPU/GPU architectures. Their
study provided some of the fastest sorting implementations
and found that non-comparison-based scalar sorting such
as radix sort is faster with smaller keys. Moreover, they
showed that SIMD-based merge sort is more competitive
with larger keys and will be even more favorable with the
future hardware trends such as larger SIMD width. Kim et
al. [14] implemented distributed in-memory sorting over a
cluster of multi-core machines. While their main solution
focuses on overlapping computation and inter-node commu-
nication, their approach also makes extensive use of parallel
SIMD sorting on each of the machines.

2.4 The Role of NUMA
For better performance in NUMA systems, algorithms

must be hardware conscious by taking the increasingly more
complex NUMA topologies into consideration [2, 18]. Li
et al. [18], for instance, showed that a hardware-conscious
“ring-based” data shuffling approach across NUMA regions
achieves a much better interconnect bandwidth and improves
the performance of sort-merge join algorithm of Albutiu et
al. [2]. Therefore, we followed a similar approach and made
our algorithms NUMA aware.
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3. PARALLELIZING SORT WITH SIMD
The dominant cost in sort-merge joins is sorting the input

relations. We thus now discuss strategies to implement sort-
ing in a hardware-conscious manner. Typically, sort-merge
joins use merge sort—a tribute to the latency/bandwidth
gap in modern system architectures. Both building blocks
of merge sort, (a) initial run generation and (b) the merging
of pre-sorted runs, benefit from SIMD.

3.1 Run Generation
For initial run generation, many chunks with a small num-

ber of tuples need to be sorted. This favors sorting al-
gorithms that can process multiple chunks in parallel over
ones that have a good asymptotic complexity with respect
to the tuple count. Sorting networks provide these char-
acteristics and fit well with the SIMD execution model of
modern CPUs [7, 10, 21].

3.1.1 Sorting Networks
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Figure 1: Even-
odd network for
four inputs.

Figure 1 on the left illustrates, in the
notation of Knuth [17, Section 5.3.4], a
sorting network for four input items. A
set of four items 〈9, 5, 3, 6〉 enters the net-
work on the left and travels toward the
right through a series of comparators .
Every comparator emits the smaller of
its two input values at the top, the larger
on the bottom. After traversing the five
comparators, the data set is sorted.

The beauty of sorting networks is that comparators can be
implemented with help of min/max operators only. Specif-

e = min (a, b)

f = max (a, b)

g = min (c, d)

h = max (c, d)

i = max (e, g)

j = min (f, h)

w = min (e, g)

x = min (i, j)

y = max (i, j)

z = max (f, h)

ically, the five comparators in Figure 1 com-
pile into a sequence of ten min/max operations
as illustrated here on the right (input vari-
ables a, . . . , d and output variables w, . . . , z).
Limited data dependencies and the absence
of branching instructions make such code run
very efficiently on modern hardware.

Sorting networks are also appealing be-
cause they can be accelerated through SIMD
instructions. When all variables in the code
on the right are instantiated with SIMD vec-
tors of κ items and all min/max calls are replaced by SIMD
calls, κ sets of items can be sorted in approximately the
same time that a single set would require in scalar mode
(suggesting a κ-fold speedup through SIMD).

3.1.2 Speedup Through SIMD
However, the strategy illustrated above will sort input

items across SIMD registers. That is, for each vector po-
sition i, the sequence wi, xi, yi, zi will be sorted, but not
the sequence of items within one vector (i.e., wi, . . . , wκ is
in undefined order). Only full SIMD vectors can be read or
written to memory consecutively. Before writing back initial
runs to main-memory, SIMD register contents must thus be
transposed, so items within each vector become sorted (i.e.,
w2 must be swapped with x1, w3 with y1, etc.).

Transposition can be achieved through SIMD shuffle in-
structions that can be used to move individual values within
and across SIMD registers. A common configuration in the
context of join processing is to generate runs of four items
with κ = 4. Eight shuffle instructions are then needed
to transpose registers. That is, generating four runs of
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Figure 2: Bitonic merge network.

four items each requires 10 min/max instructions, 8 shuffles,
4 loads, and 4 stores. Shuffle operations significantly reduce
the effective SIMD speedup for run generation from optimal
κ = 4 to about 2.7.

3.2 Merging Sorted Runs

3.2.1 Bitonic Merge Networks
Although sequential in nature, merging also benefits from

SIMD acceleration. The basic idea comes from Inoue et
al. [13] and has been used for sorting [7] and joins [15].

Looking back to the idea of sorting networks, larger net-
works can be built with help of merging networks that com-
bine two pre-sorted inputs into an overall sorted output.
Figure 2 shows a network that combines two input lists of
size four. The network in Figure 2 is a sequence of three
stages, each consisting of four comparator elements . Each
stage can thus be implemented using one max and one min

SIMD instruction (assuming κ = 4). Shuffle instructions
in-between stages bring vector elements into their proper
positions (for instance, if a and b are provided as one SIMD
register each, b must be reversed using shuffles to prepare
for the first min/max instruction pair).

On current Intel hardware, for κ = 4, implementing a
bitonic merge network for 2× 4 input items requires 6 SIMD
min/max instructions and 7–10 shuffles. The exact number of
shuffles depends on the bit width of the input items and the
instruction set offered by the hardware (SSE, AVX, AVX2).

3.2.2 Merging Larger Lists using Bitonic Merge
For larger input sizes, merge networks scale poorly [21]:

sorting networks for N input items require O
(
N log2N

)
comparators—clearly inferior to alternative algorithms. But
small merge networks can be used as a kernel within a merg-
ing algorithm for larger lists [13]. The resulting merging al-
gorithm (Algorithm 1) uses a working set of 2×k data items
(variables a and b, both implemented as SIMD registers).
In each iteration of the algorithm’s loop body, that working
set is sorted (using the merge kernel bitonic_merge4 () and
knowing that a and b themselves are sorted already) and the
smaller k items are emitted to the merge result.

The emitted SIMD vector is then replaced by fresh data
from the input. As in the classical scalar merge algorithm,
the two head elements of the input runs are used to decide
which new data to load (line 5 in Algorithm 1). Unlike in
the classical algorithm, however, the decision is used to load
an entire vector into the working set. The rationale is that
the resulting working set still contains at least k items that
are smaller than the larger of the two head items, and only
k items will be emitted in the next loop iteration.

In terms of performance, the separation between control
flow and merge kernel operations in Algorithm 1 fits well
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Algorithm 1: Merging larger lists with help of bitonic
merge kernel bitonic_merge4 () (k = 4).

1 a ← fetch4 (in1); b ← fetch4 (in2);
2 repeat
3 〈a, b〉 ← bitonic_merge4 (a, b);
4 emit a to output;
5 if head (in1) < head (in2) then
6 a ← fetch4 (in1);

7 else
8 a ← fetch4 (in2);

9 until eof (in1) or eof (in2);
10 〈a, b〉 ← bitonic_merge4 (a, b);
11 emit4 (a); emit4 (b);
12 if eof (in1) then
13 emit rest of in2 to output;

14 else
15 emit rest of in1 to output;

with the execution model of modern CPUs. In particular,
no values have to be moved between the scalar and vector
execution units of the CPU (a costly operation in many ar-
chitectures). Branch mispredictions will still occur, but their
effect will now be amortized over k input elements. Also, op-
timizations such as predication or conditional moves can be
applied in the same way as in scalar merge implementation.

The vector size used for merging is a configuration param-
eter, typically k = 2p × κ (where κ is the hardware SIMD
width). For the hardware that we used in our experimental
study, we found k = 8 to be a sweet spot that amortizes
branching cost well, while not suffering too much from the
complexity of large merge networks. Each loop iteration re-
quires 36 assembly instructions to produce 8 output items.

4. CACHE CONSCIOUS SORT JOINS

4.1 Sorting and the Memory Hierarchy
The cache hierarchies in modern hardware require sep-

arating the overall sorting into several phases to optimize
cache access: (i) in-register sorting, with runs that fit into
(SIMD) CPU registers; (ii) in-cache sorting, where runs can
still be held in a CPU-local cache; and (iii) out-of-cache
sorting, once runs exceed cache sizes.

In-Register Sorting. Phase (i) corresponds to run-genera-
tion as discussed in Section 3.1.

In-Cache Sorting. In Phase (ii), runs are then merged
until runs can no longer be contained within CPU caches.
In-cache sorting corresponds to Algorithm 1 (bitonic merg-
ing) in Section 3.2.2. It is backed up by a bitonic merge
kernel such as bitonic_merge4 (). Using bitonic merging,
runs are repeatedly combined until runs have reached 1/2
cache size (since in- and output runs must fit into cache).

Out-of-Cache Sorting. Phase (iii) continues merging until
the data is fully sorted. Once runs have exceeded the size
of the cache, however, all memory references will have to be
fetched from off-chip memory.

4.2 Balancing Computation and Bandwidth
Accesses to off-chip memory make out-of-cache sorting

sensitive to the characteristics of the memory interface. As

mentioned in Section 3.2.2, an 8-wide bitonic merge imple-
mentation requires 36 assembly instructions per eight tuples
being merged—or per 64 bytes of input data.

We analyzed the 36-instructions loop of our code using the
Intel Architecture Code Analyzer [1]. The tool considers the
super-scalar instruction pipeline of modern Intel processors
and infers the expected execution time for a given instruc-
tion sequence. For our code, the tool reported a total of
29 CPU cycles per 64 bytes of input data. The tool does
not consider potential pipeline stalls due to memory accesses
(bandwidth and/or latency).

With a clock frequency of 2.4 GHz, this corresponds to a
memory bandwidth of 2× 5.3 GB/s (read+write) or 10.6 GB/s
for a single merging thread. This is more than existing in-
terfaces support, considering also that typical CPUs contain
eight or more cores per chip. Out-of-cache merging is thus
severely bound by the memory bandwidth.

Memory bandwidth demand can be reduced by merging
more than two runs at once. Multi-way merging saves round-
trips to memory and thus precious memory bandwidth.

merge

merge

mergemerge

merge

mergemerge

one thread

Figure 3: Multi-way merging.

To still benefit from
CPU-efficient, SIMD-
optimized bitonic merg-
ing, we implement multi-
way merging using mul-
tiple two-way merge
units, as illustrated
in Figure 3. Two-
way merge units are
connected using FIFO
queues; FIFO queues
are sized such that all queues together still fit into the CPU
cache. Thus, external memory bandwidth is needed only at
the front of the multi-way merging tree.

As indicated in Figure 3, a complete multi-way merging
is realized by a single operating system thread. This thread
will treat two-way merges as individual tasks and switch
between tasks whenever a task is blocked by a FIFO over-
or underrun.

Compute vs. Bandwidth. Task switching will cause new
CPU overhead that is not necessary in an implementation
that merges two runs from memory until completion. This
overhead will increase when the FIFO queues between merg-
ing tasks are small, because more task switches are needed
then to perform a full multi-way merge. Since we size FIFO
buffers such that all buffers in one thread fill a CPU cache,
CPU overhead increases together with the merge fan-in.

This offers us a handle to balance bandwidth and com-
pute. Merging only two runs is bound by memory band-
width, with plenty of stalled CPU cycles that could be spent
on additional CPU instructions. As we increase merge fan-
in, memory pressure becomes reduced until the system be-
comes CPU-bound. At that point, larger fan-in will degrade
performance again because of increasing CPU load.

Impact of NUMA. In practice, at least some merging passes
will inevitably cross NUMA boundaries (if not, NUMA cross-
ing has to be performed in the later join phase, which in this
regard behaves like a two-way merge). As pointed out by
Li et al. [18]—and confirmed by our measurements—multi-
socket systems show an increasing asymmetry, where the
NUMA interconnect bandwidth stays further and further
behind the aggregate memory bandwidth that the individual
memory controllers could provide. With multi-way merging,
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we can combat this problem in an effective and scalable way.
In the experimental part of this work we study how merg-
ing can be tuned to avoid memory bottlenecks even across
NUMA boundaries.

5. HASH-BASED JOINS
Having covered the optimized sort-based join implemen-

tations, we now look at hash-based joins. While efficient,
hashing results in random access to memory, which can lead
to cache misses. Shatdal et al. [24] identified that when the
hash table is larger than the cache size, almost every ac-
cess to the hash table results in a cache miss. As a result,
a partitioning phase to the hash joins is introduced to re-
duce cache misses. The performance of the resulting join is
largely dictated by this partitioning phase.

5.1 Radix Partitioning
Manegold et al. [19] refined the partitioning idea by con-

sidering as well the effects of translation look-aside buffers
(TLBs) during the partitioning phase, leading to the multi-
pass radix partitioning join. Conceptually, radix partitioning
takes all input tuples one-by-one and writes them to their
corresponding destination partition (pos[·] keeps the write
location in each partition):

1 foreach input tuple t do
2 k← hash(t);
3 p[k][pos[k]] = t; // copy t to target partition k
4 pos[k]++;

Generally, partitions are far apart and on separate VM pages.
If the fan-out of a partitioning stage is larger than the num-
ber of TLB entries in the system, copying each input tuple
will cause another TLB miss. The number of TLB entries is
thus treated as an upper bound to the partitioning fan-out.

5.2 Software-Managed Buffers
The TLB miss limitations on maximum fan-out can be re-

duced, when writes are buffered inside the cache first. The
idea is to allocate a set of buffers, one for each output par-
tition and each with room for up to N input tuples. Buffers
are copied to final destinations only when full:

1 foreach input tuple t do
2 k← hash(t);
3 buf[k][pos[k] mod N ] = t; // copy t to buffer
4 pos[k]++;
5 if pos[k] mod N = 0 then
6 copy buf[k] to p[k]; // copy buffer to part. k

Buffering leads to additional copy overhead. However, for
sufficiently small N , all buffers will fit into a single memory
page and into L1 cache. Thus, a single TLB entry will suffice
unless a buffer becomes full and the code enters the copy-
ing routine in line 6. Beyond the TLB entry for the buffer
page, an address translation is required only for every Nth
input tuple, significantly reducing the pressure on the TLB
system. And as soon as TLB misses become infrequent, it
is likely that the CPU can hide their latency through out-
of-order execution mechanisms. This optimization follows
the idea of Satish et al. [22] who used it to reduce the TLB
pressure of radix sort.

In our implementation of radix join we utilize such soft-
ware-managed buffers and configure N such that one buffer

R

local sort local sort local sort local sort

merge

R′

1

2

S

S′

3/4

1 1 1 1 5

Figure 4: m-way : NUMA-aware sort-merge join
with multi-way merge and SIMD.

will exactly fill one cache line (64 bytes). This in turn allows
for another low-level optimization. Since we are now always
writing a full cache line at once to global memory, the CPU
can take advantage of its write combining facilities together
with non-temporal writes, thus avoiding to read the cache
line before writing it back.

In practice, the advantage of software-managed buffers is
two-fold: (i) for many situations, software-managed buffers
offer better absolute performance, since fewer passes can
usually achieve the same overall fan-out; (ii) it is possible
to partition even larger data sizes in a single pass, which has
not been considered previously.

6. JOIN ALGORITHMS ANALYZED

6.1 Sort-Merge Join Algorithm – m-way
The m-way algorithm is a highly parallel sort-merge join

that relies on both data and thread parallelism and is care-
fully optimized toward NUMA. The general idea and the
individual phases of the algorithm are presented in Figure 4
assuming a hypothetical machine with four NUMA regions
and one thread per region.

Initially, input relations R and S are stored such that they
are equally distributed across NUMA regions. In the first
phase, each thread is assigned its NUMA-local chunk and
all the threads range-partition their local chunks in parallel
using the software-managed buffers technique (Section 5.2).
The main intuition behind partitioning in the first place
is allowing threads in the subsequent phases to work inde-
pendently without any synchronization. In this phase, the
partitioning fan-out is usually on the order of the number of
threads (64–128) and can be done efficiently using a single
pass at the speed of total memory bandwidth of the ma-
chine. Then, each local partition is sorted using the AVX
sorting algorithm. In this phase, different threads can sort
different partitions independently, again just reading from
and writing to the NUMA-local memory. Partitioning and
local sorting are indicated in Figure 4 as 1 .

Phase 2 in Figure 4 is the only phase that requires shuf-
fling data between different NUMA regions. Therefore, it
is likely to be limited by the memory/interconnect band-
width. Hence, we employ multi-way merging here as de-
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scribed in Section 4.2. Multi-way merging successfully over-
laps the data transfer and merging and brings computation
and bandwidth into a balance. Outcome of this phase is a
globally sorted copy of R, indicated as R′ in Figure 4.

The same steps are also applied to relation S (indicated
as Phases 3/4 in Figure 4). R′ and S′ are stored in the
NUMA-local memory of each thread. Finally, each thread
concurrently evaluates the join between NUMA-local sorted
runs using a single-pass merge join (Phase 5 ). This join
amounts to an extremely fast linear scan of both sorted runs
where matching pairs constitute the join result.

6.2 Sort-Merge Join Algorithm – m-pass
The second variant for sort-merge join is m-pass. The al-

gorithm differs from m-way only in Phase 2 in Figure 4.
Instead of applying a multi-way merge for merging NUMA-
remote runs, m-pass applies successive two-way bitonic merg-
ing. The first iteration of merging of sorted runs is done as
the data is transferred to the local memory. As a result of
the first iteration, the number of runs reduces to 1/2 of the
initial total number of runs. The rest of the merging contin-
ues in local memory, using the multi-pass merging technique
(cf. Section 3.2.2) in an iterative manner.

6.3 Massively Parallel Sort-Merge Join – mpsm
The mpsm algorithm first globally range-partitions rela-

tion R (again as discussed in Section 5.2). This step ensures
that different ranges of R are assigned to different NUMA-
regions/threads. Next, each thread independently sorts its
partition, resulting in a globally-sorted R′. In contrast, S
is sorted only partially. Each thread sorts its NUMA-local
chunk of S without a prior partitioning. Therefore, during
the last phase, a run of R must be merge-joined with all the
NUMA-remote runs of relation S. For cases where relation
S is substantially larger than R, avoiding the global parti-
tioning/sorting may pay off and the overall join may become
more efficient. For further details, we refer to [2].

6.4 Radix Hash Join – radix
For parallel radix-hash join, we partition both input re-

lations as discussed in Section 5.2. The goal is to break at
least the smaller input into pieces that fit into caches. Then,
we run a cache-local hash join on individual partition pairs.
For a detailed discussion, refer to [4, 5, 15, 19].

6.5 No-Partitioning Hash Join – n-part
The no-partitioning join is a direct parallel version of the

canonical hash join. Both input relations are divided into
equi-sized portions that are assigned to a number of worker
threads. In the build phase, all worker threads populate a
shared hash table with all tuples of R. After synchronization
via a barrier, all worker threads enter the probe phase and
concurrently find matching join partners for their assigned
S portions. For further details, we refer to [4, 5].

Table 1 summarizes the algorithms considered in the ex-
periments and the shorthand notation used in the graphs.

7. EXPERIMENTAL SETUP

7.1 Workloads
To facilitate comparisons with existing results, we use sim-

ilar workloads to those of Kim et al. [15], Albutiu et al. [2]

short notation algorithm

m-way Sort-merge join with multi-way merging

m-pass Sort-merge join with multi-pass näıve merging

mpsm Our impl. of massively parallel sort-merge [2]

radix Parallel radix hash join [15, 4]
n-part No-partitioning hash join [5, 4]

Table 1: Algorithms analyzed.

A (adapted from [2]) B (from [15, 4])

size of key / payload 4 / 4 bytes 4 / 4 bytes
size of R 1600 · 106 tuples 128 · 106 tuples
size of S m · 1600 · 106 tuples, m = 1,..,8 128 · 106 tuples
total size R 11.92 GiB 977 MiB
total size S m · 11.92 GiB 977 MiB

Table 2: Workload characteristics.

and Balkesen et al. [4]. They all assume a column-oriented
storage model and joins are assumed to be evaluated over
narrow (8- or 16-byte) 〈key , payload〉 tuple configurations.
To understand the value of data parallelism using vectorized
instructions, we assume key and payload are four bytes each.
The workloads used are listed in Table 2. All attributes are
integers, but AVX currently only supports floating point;
therefore we treat integer keys as floats when operating with
AVX.1 There is a foreign key relationship from S to R. That
is, every tuple in S is guaranteed to find exactly one join
partner in R. Most experiments (unless noted otherwise)
assume a uniform distribution of key values from R in S.

7.2 System
Experiments are run on an Intel Sandy Bridge with a 256-

bit AVX instruction set. It has a four-socket configuration,
with each CPU socket containing 8 physical cores and 16
thread contexts by the help of the hyper-threading. Cache
sizes are 32 KiB for L1, 256 KiB for L2, and 20 MiB L3 (the
latter shared by the 16 threads within the socket). The cache
line size of the system is 64 bytes. TLB1 contains 64/32
entries when using 4 KiB/2 MiB pages (respectively) and 512
TLB2 entries (page size 4 KiB). Total memory available is
512 GiB (DDR3 at 1600 MHz). The system runs Debian
Linux 7.0, kernel version 3.4.4-U5 compiled with transparent
huge page support and it uses 2 MiB VM pages for memory
allocations transparently. This has been shown to improve
join performance up to ≈ 15% under certain circumstances
[3, 4]. Therefore, we assume the availability of large page
support in the system. The code is compiled with gcc 4.7.2
using -O3. Experiments using Intel’s icc compiler did not
show any notable differences, qualitatively or quantitatively.

8. ANALYSIS OF THE SORT PHASE
In a first set of experiments, we make sure that our single-

thread sorting performs well compared to alternatives.
Figure 5 shows the performance of our SIMD sorting algo-

rithm implemented using AVX instructions. As a baseline,
we include the C++ STL sort algorithm. Overall, AVX sort
runs between 2.5 and 3 times faster than the C++ sort. One
expected result is also visible: whenever the size of the in-
put increases, both algorithms suffer due to the increasing

1AVX2 will support vectorized integer operations, thus there
will be no longer semantical differences for our code.
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Figure 5: Single-threaded sorting performance
where input table size varies from 8 MiB to 2 GiB.

number of trips to the main-memory. AVX sort mainly suf-
fers from the multi-pass, pair-wise merging of cache-sized
sorted runs. As the input size increases, the number of runs
double at each data point. Accordingly, the number of trips
to the memory also increases logarithmically in the input
runs. Whenever used alone, this performance degradation
of single-threaded AVX sort might be acceptable since it still
runs 2.5 times faster than a serial of-the-shelf algorithm.

On the other hand, the excessive memory bandwidth con-
sumption indicates that there will be a problem when multi-
ple threads are active and contend for the same bandwidth.
We look into this problem when discussing the merge phase.

We have also compared our sorting algorithm with those
of Chhugani et al. [7] and Kim et al. [15]. For reasons of
space, we omit the results. In summary, the sort algorithm
behaves well in comparison to existing ones and it does not
affect the relative performance of the join algorithms.

9. ANALYSIS OF THE MERGE PHASE
Increasing input sizes require multiple passes over the en-

tire data if sub-lists are pair-wise merged. Multi-way merg-
ing remedies this problem by doing the merge in single pass.
For efficiency, Kim et al. [15] assume that entire merge trees
fit into a single last-level cache. However, as the degree of
parallelism, data sizes, and merge fan-ins increase, this as-
sumption no longer holds.

9.1 Modeling the Merge Phase
As described in Section 4.1, overall sorting starts with in-

cache sort which generates 1/2-L2-cache-sized sorted runs.
Therefore, the fan-in (F ) of the multi-way merge operation
equals to the number of 1/2-L2-sized sorted runs: Given an
input size of N tuples, F =N×tuple-size/1/2-L2-size. Secondly,
efficient multi-way merging requires the merge tree to reside
in the last level (L3) cache. A multi-way merge tree is es-
sentially a binary tree and the number of total nodes (M)

in a merge tree with fan-in of F equals to M = 2dlog2Fe+1 −
1. Moreover, the shared L3 must be divided by the num-
ber of threads (T ; i.e., T = 16 for our system) in a CPU
socket. Accordingly, in order to be L3 resident, each node
in the merge tree must have at most B tuples as follows
B= L3-size/(M×tuple-size)×T . Finally, and most importantly,
B must be on the order of hundreds of tuples to ensure that
multi-way merge will not degrade to single or a few item-at-
a-time (scalar) merging.
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Figure 6: Impact of fan-in/fan-out on multi-way
merging/partitioning (1-pass and single-thread).

9.2 Performance of the Merge Phase
The model we have outlined essentially suggests that in-

creasing fan-in, and hence input sizes, will deteriorate the
merge performance. To verify this finding, we performed the
following experiment: We increased the number of fixed-size
sorted runs from 4 to 2,048 and ran multi-way merging with
this number as fan-in. To isolate the effect of concurrent
threads, we ran our AVX multi-way merge on a single core
using 1/16 of our 20 MiB L3 cache exclusively assigned to the
merging buffer. The results are shown in Figure 6 denoted
with . The results confirm the model: merge performance
decreases steeply with increasing fan-in. The main reason is
the decreasing size of the L3 buffer per merge node in the
merge tree. For instance, with fan-in of 256, the L3-resident
FIFO buffer of each merge node holds just 321 tuples and
decreases to 160 tuples with fan-in of 512. At higher fan-in
values, multi-way merge becomes less effective as the num-
ber of tuples processed at once drops significantly.

Another reason for performance degradation can be ob-
served through performance counters: The increasing depth
of the merge tree means a logarithmically increasing number
of executed instructions per tuple. At that point, multi-way
merging becomes CPU bound as shown in Table 3. The
instruction count per tuple increases significantly with in-
creasing fan-in along with the instructions-per-cycle (IPC).
On the Intel Sandy Bridge, a maximum of 2 IPC for AVX in-
structions is barely possible. Consequently, the thread is far
from being memory bound (cf. column “Total Bytes/Cycle”).
Other profiling metrics are also in line with the expectations:
each tuple is read and written once where the write also
causes another read for a total of 2 reads and 1 write of the 8-
byte tuple (compare with “Read/Tup.” and “Write/Tup.”).
In terms of the cache efficiency, the expected 1/8 (0.125) L3
misses per tuple is also in line with the measured L3 misses.

The cache contention problem in multi-way merging raises
a question against the assumption that multi-way merge can
be done efficiently. This is possible only for certain data
sizes/fan-ins, however increasing data sizes will require mul-
tiple passes over the data, affecting the overall performance
of the join operator.

10. OPTIMIZING THE MERGE PHASE
The previous results show the importance of the input

size on the performance of sort-merge operations. The same
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Merge IPC Instr. Tot.-Bytes. Read Write L3-Miss
Fan-in /Core /Tup. Cyc. /Tup. /Tup. /Tup.

8 1.04 19.70 1.38 16.53 9.50 0.12
16 1.13 26.74 1.08 16.47 8.96 0.12
32 1.17 34.00 0.87 16.45 8.73 0.12
64 1.23 43.68 0.71 16.47 8.73 0.12
128 1.26 56.81 0.57 16.52 8.92 0.13
256 1.35 79.55 0.44 16.63 9.41 0.13
512 1.46 126.87 0.31 16.83 10.32 0.13
1024 1.64 245.51 0.20 17.32 12.16 0.14

Table 3: Performance counter monitoring results for
multi-way merge with increasing merge fan-in.
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Figure 7: Impact of input size on different multi-
threaded sorting approaches (using 64 threads).

problem occurs for the partitioning phase of hash-based joins.
Interestingly, the solution for that problem can also be used
for sort-merge joins as we show in this section.

10.1 Performance of the Partitioning Phase
Figure 6 shows the performance of partitioning with the

same amount of total data as in the analysis for merging.
This randomly generated data is partitioned with given fan-
out. The results denoted with show that radix partition-
ing is sensitive to the TLB size, which is 32 in our system
for 2 MiB pages. Therefore, partitioning throughput signifi-
cantly decreases after a fan-out of 32 due to TLB misses.
However, the software-managed buffers idea described in
Section 5.2 is much better (cf. ). The robust performance
of the software-managed buffers strategy for high fan-outs is
clearly a big improvement over the normal radix partitioning
previous authors have considered so far.

Partitioning and merging are duals of each other. How-
ever, the cost of these two operations differ as shown in Fig-
ure 6. When compared with the software-managed buffer-
ing technique, multi-way merging is significantly slower than
partitioning. This raises the question of why not using par-
titioning with the software-managed buffers technique for
sorting. If we also use this technique for hash-based joins,
previous assumptions about the number of passes over the
data for the different join approaches no longer hold. With
the optimized technique, a significant amount of data can
be partitioned in a single pass as opposed to the two or more
passes previously assumed by Kim et al. [15]. This in turn
calls for a more careful comparison of join algorithms under
a wider range of data sizes.

10.2 Using Partitioning with Sort
The overall NUMA-aware sorting-based join algorithm,

m-way is described in Section 6.1. The implementation of
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Figure 8: Trade-off between partitioning and merg-
ing (using 64 threads).

the first phase, local sorting, can choose either partitioning
or merging:

Partition-then-Sort approach first range-partitions the
input with efficient software-managed radix partitioning (us-
ing most-significant radix bits). Each of the partitions are
individually sorted using the AVX sort routine, and concate-
nation of these naturally creates a sorted output.

Sort-then-Merge approach, instead, first creates cache-
sized sorted runs using the AVX sort routine. These sorted
runs are then merged to form a complete sorted output using
the AVX multi-way merge routine.

In Figure 7, we compare the performance of the two ap-
proaches. The workload consists of 64 M to 1024 M 8-byte
tuples. First, the Partition-then-Merge approach achieves a
throughput of up to 680 million tuples per second. More
importantly, it shows a stable performance with increasing
input sizes, sorting 8 GB in less than 2 seconds. On the other
hand, the performance of Sort-then-Merge approach drops
significantly beyond table sizes of 256 M; mainly due to in-
creasing fan-in of the multi-way merge. For instance with
table size of 512 M, multi-way merge runs with a fan-in of
512. The main performance difference stems from partition-
ing vs. merging performance. Figure 8 shows the throughput
achieved for merging and partitioning phases in isolation.
Partitioning achieves up to 4 billion tuples per second by ef-
fectively utilizing all the available bandwidth in our machine
(4 billion× 8 bytes× 4≈ 128 GB/s; i.e., 3 reads/1 write for
radix partitioning), whereas merge performance drop signif-
icantly from 1.5 to 0.5 billion tuples per second.

10.3 Alternative Implementations for Merge
The new way of doing the merge seems promising but

needs to be evaluated against alternative proposals from the
literature. Chhugani et al. [7] claim that multi-way merging
accommodates parallelism in a natural way and works well
for multi-core processors. However, as the available degree
of hardware parallelism increases, contention in large merge
trees also increases. This contention is possibly not visible
in four-core configurations considered by Chhugani et al. [7].
But it critically affects performance in modern systems with
a few ten hardware threads. It turns out that the new ap-
proach we propose to merging, also addresses this problem.
We have confirmed this experimentally by implementing the
two different approaches to multi-way merging:

The cooperative m-way approach follows the original idea
by Chhugani et al. [7] where there is a single multi-way
merge tree and multiple threads cooperatively merge the
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Figure 9: Scalability of cooperative multi-way merg-
ing vs. synchronization-free independent sorting.
Using only one CPU socket.

data. Once the children of a node have enough data, the
node becomes available for merging by any of the threads.
This approach has a potential advantage: It increases the
buffer space per merge node as there is a single merge tree
resident in last-level cache (in Section 9 we showed that
buffer space is important for merge performance).

The independent sorting approach follows the Partition-
then-Sort idea discussed in Section 10.2. Each thread locally
partitions its data and then sorts smaller individual parti-
tions. In this case, the thread can independently merge the
sorted runs without further interaction with other threads.

Figure 9 shows the throughput of the two approaches
when sorting an input relation of 256 M tuples. We inten-
tionally restrict to a single socket to ensure that all threads
use the same last-level cache. As the figure shows, coop-
erative multi-way merging does not scale for a variety of
reasons: contention for upper-level nodes in the merge tree,
idle threads due to lack of enough work, and synchronization
overhead. The independent sorting approach, in contrast,
scales linearly up to the physical number of cores as shown
in Figure 9. However, the scalability in the hyper threads re-
gion remains limited. This is the common case for hardware-
conscious algorithms where most of the physical hardware
resources are shared among hyper-threads. As a conclusion,
even though all the threads have a fraction of the last level
cache for their multi-way merge, the synchronization-free
nature of this approach shows its benefit and independent
sorting proves to be better than the originally proposed co-
operative multi-way merging.

11. SORT-MERGE JOINS
After identifying the factors affecting the performance of

the components of a sort-merge join algorithm and choosing
the best-possible implementations for the different phases,
we now compare the performance of the resulting sort-merge
join operator (m-way) with that of mpsm and m-pass.

11.1 Comparison with Different Table Sizes
We run first an experiment for different sizes of table S us-

ing Workload A shown in Figure 10. The results show that
m-way runs significantly faster than the other options and
is robust across different relation size ratios while producing
fully sorted output. Algorithm mpsm draws its true benefit
from only sorting the smaller of the input tables completely
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whereas the larger one is only partially sorted. Yet, mpsm
can match the performance of m-pass only when the S rela-
tion is significantly large (� 12.8 billion tuples (100 GiB)).
Nonetheless, mpsm is a scalar algorithm applicable to wider
keys as well. For reasons of space, we omit the results of
scalar sorting-based joins that are also applicable to wider
keys. In general, the scalar m-way has a good performance
despite not using SIMD and performs better than mpsm
even with 8-byte tuples and large S relations.

Figure 11 shows execution time breakdown and through-
put for the equal-sized table case in Workload A using 64
threads. First, the merge phase in m-way is 3 times faster
than m-pass with bandwidth-aware multi-way merging. Sec-
ond, in contrast to mpsm, the “mjoin” phase is a linear
merge-join operation on NUMA-local sorted runs in the other
algorithms and overhead of that phase becomes negligible.

11.2 Dissecting the Speedup of m-way
In order to understand the efficiency of m-way, we calcu-

lated the speedup ratios of m-way over the other algorithms
(Figure 12). The bars denoted with “speedup from merge”
shows the speedup of m-way attained over m-pass. This
metric reflects the actual benefit of multi-way merging alone.
As seen in the figure, up to 16 threads the speedup from
multi-way merge is ≈ 1.5X in which case there is enough
aggregate memory bandwidth for that number of threads.
However, once the number of threads go beyond 16, mem-
ory bandwidth per thread becomes limited and multi-way
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Figure 13: Scalability of sorting-based joins. Work-
load A, (11.92 GiB1 11.92 GiB). Throughput metric
is output tuples per second, i.e. |S|/execution time.

merge benefit goes up to a factor of 2. The bars denoted
with “speedup from AVX” show the speedup of m-way at-
tained over the same algorithm’s scalar variant. Generally,
speedup from AVX is between 2X and 2.3X. Lastly, the over-
all speedup of m-way over mpsm is ≈ 3X.

11.3 Scalability of Sort-based Join Algorithms
Figure 13 shows the scalability of sorting-based join algo-

rithms with increasing number of threads where both axes
are in logarithmic scale. All the algorithms exhibit linear
scaling behavior up to 16 physical CPU cores. However,
as all of these algorithms are cache- and CPU resource-
sensitive, the scaling with hyper threads is rather limited.

12. SORT OR HASH?
In this section, we present the best sort and hash join

algorithms side-by-side under a wide range of parameters.

12.1 Comparison with Different Workloads
The results of best sorting-based join algorithm m-way

and best hash join algorithm radix in our study are summa-
rized in Figure 14 over various workloads.

In Figure 14 we observe that hash-based join algorithms
still maintain an edge over sort-based counterparts. When
input table sizes are in the hundred millions, radix hash join
is more than 2 times faster than m-way sort-merge join. The
speed difference is maintained even when the outer table
size becomes significantly larger than the primary key table.
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Figure 14: Comparison of best sort vs. best hash
join algorithms with cycles per output tuple metric
under different workloads. Using 64 threads.

Despite all the optimizations discussed in this paper and the
performance boost through 256-bit vector instructions, sort-
merge joins cannot match the performance of hash joins on
existing recent hardware and for these workloads.

For significantly larger workloads (as suggested by Albutiu
et al. [2]) the picture becomes more favorable for sort-merge
joins. Input table sizes in the range of billions of tuples make
m-way more competitive with radix. Since m-way produces
fully sorted output, it could be a good choice for large data
volumes that must be further processed.

12.2 Effect of Input Size
The effect of the input relation size can be better captured

by the following experiment: we vary the size of each equi-
sized R and S tables from 128M tuples (≈ 1 GB) to 1,920M
tuples (≈ 15 GB) and run m-way and radix at each data
point using 64 threads. The results are shown in Figure 15.

The conclusion is clear: sort-merge join approaches the
performance of radix only when the input tables become sig-
nificantly large. Radix join performance degrades with the
increasing input size due to the increasing number of passes
for the partitioning phase. To illustrate, radix configura-
tions vary from 1 pass/12 bits up to 1 billion tuples and from
that point on resorts back to 2 pass/18 bits optimal config-
urations. The optimized radix partitioning with software-
managed buffers is very efficient up to 9-bits/512-way parti-
tioning since the entire partitioning buffer can reside in L1
cache (32 KiB = 512 × 64-bytes-cache-lines). Even higher
radix-bits/fan-outs such as a maximum of 12/4,096 can be
tolerated when backed up by the L2 cache (256 KiB = 4,096×
64-bytes). Consequently, the partitioning performance de-
grades gracefully up to L2 cache size. Once the partition-
ing requirement goes above 16,384, 2-pass partitioning, each
pass with 9-bits, and fully L1-resident buffers become the
best option. Further, sort-merge join demonstrates robust
performance due to the optimizations previously discussed
in this paper. Finally, sorted output in query plans is an
attractive argument to make sort-merge joins even more fa-
vorable in this range of the spectrum of input sizes.

We have also analyzed the potential impact of relative
table sizes (partly shown in Figure 14). The experiments
show that both algorithms are insensitive to the variance in
relation size ratios, being affected only by the size of the
output as the amount of data grows. We omit the graphs
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Figure 15: Sort vs. hash with increasing input table
sizes (|R|= |S|). Throughput metric is total output
tuples per second, i.e. |S|/execution time.

and more detailed discussions for reasons of space.

12.3 Effect of Skew
In this section, we take a look at the effect when the for-

eign key column in table S follows a Zipf distribution.
For handling skew in parallel radix hash join, we previ-

ously proposed a fine-granular task decomposition method.
The key idea is to parallelize the processing of larger parti-
tions through a refined partitioning. We refer to [4, 15] for
details.

The first and second phases in m-way are not vulnerable
to skew since all the threads have an equal share of the data.
Phase 2 in Figure 4, multi-way merging, is prone to skew.

We handle the skew in two steps: 1© When creating a
multi-way merge task for the thread, if the total size of the
merge exceeds an expected average size, we create multiple
merge tasks by finding boundaries within each of the sorted
runs with binary search. These tasks are then inserted into a
NUMA-local task queue shared by the threads in the same
NUMA region. 2© For extremely large tasks, we identify
heavy hitters by computing an equi-depth histogram over
sorted runs (which is a fast operation) in a similar approach
to Albutiu et al. [2]. Then heavy hitters are directly copied
to their output targets without a need for merging.

Figure 16 illustrates the behavior of m-way and radix with
increasing Zipf skew factor. The enhancements to m-way,
explicit skew and heavy-hitter handling mechanisms, result
in a robust performance against skewed distribution of keys
while showing less than 10 % overhead. On the other hand,
radix join is also robust against skew with the fine-granular
task decomposition technique. Overall, the results in Fig-
ure 16 show that the comparison of sort vs. hash joins does
not significantly change due to skew.

12.4 Scalability Comparison
We compare the algorithms in terms of scalability by vary-

ing the number of threads up to the available 64 threads
in our system. Threads are assigned to NUMA regions in
a round-robin fashion. Between 32 and 64 threads, algo-
rithms use SMT (hyper-)threads. Results for two different
workloads are shown in Figure 17.

First, both algorithms show almost linear scalability up to
the physical number of cores. Consequently, radix hash join
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Figure 16: Join performance when foreign key ref-
erences follow a Zipfian distribution. Workload B.

achieves approximately 650 million whereas m-way sort-mer-
ge join achieves approximately 315 million output tuples per
second. As mentioned earlier, performance gap between al-
gorithms closes only with significant input sizes as in Fig-
ure 17(b), where the number of passes for radix partitioning
increases to two. On the other hand, only within the SMT
region, algorithms scale poorly. This is an inevitable, well-
known situation for hardware-conscious algorithms: SMT
provides the illusion of running 2 threads on a single core
where almost all of the resources are shared.

Finally, SMT scalability for radix join are different in the
two workloads mainly because of the optimal partitioning
configuration: In Figure 17(a), radix join runs with single-
pass partitioning with fan-out of 4,096 that fully stresses the
L2 cache. Whenever the other thread starts to contend for
the L2 cache, SMT shows no benefit apart from hiding the
self-caused misses. However, in Figure 17(b), the partition-
ing buffer is L1 resident with a fan-out of 512 in each of
the two passes. Therefore, a limited benefit can be observed
where certain amount of L1 misses are hidden by SMT.

12.5 Sort vs. Hash with All Algorithms
In this section, we bring all of the state-of-the-art join

strategies together for a side-by-side comparison using com-
mon workloads. The results are shown in Figure 18. Radix
hash join comes out as the fastest algorithm in this compar-
ison. Albutiu et al. [2] previously compared their massively-
parallel sort-merge join (mpsm) algorithm to no-partitioning
join (n-part) implementation of Blanas et al. [5] and found
out that sort-merge joins are already faster than hash joins.
However, in our recent work [4], we have optimized the no-
partitioning join idea further (nevertheless it is still not fully
NUMA-aware as the hash table is spread over NUMA re-
gions). Therefore, we extend the comparison of Albutiu
et al. [2] with our optimized implementations of the algo-
rithms. The results in Figure 18 indicate that mpsm and
n-part algorithms in fact achieve similar performance. Op-
timized n-part is only faster by ≈ 10-15 % while lacking the
partially sorted output benefit of mpsm. Nevertheless, all
the results clearly indicate that hash joins are still faster
than sort-merge join counterparts.

13. CONCLUSIONS
As hardware changes, the “Sort vs. Hash” question needs

to be revisited regularly over time. In this paper, we look
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Figure 17: Scalability of sort vs. hash join. Throughput is in output tuples per second, i.e. |S|/execution time.
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Figure 18: Sort vs. hash join comparison with ex-
tended set of algorithms. All using 64 threads.

at it in the context of in-memory data processing for re-
cent multi-core machines. Our results provide the fastest in-
memory join processing algorithms using sorting (2–3 times
faster than available results) and hashing. Moreover, we
show that hash-based join algorithms still have an edge over
sort-merge joins despite the advances on the hardware side
such as 256-bit SIMD. Finally, sort-merge join turns out to
be more comparable in performance to radix-hash join with
very large input sizes.

All the code used to obtain results in this paper is available
at http://www.systems.ethz.ch/projects/paralleljoins.
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