
DATABASE SYSTEM IMPLEMENTATION

GT 4420/6422 // SPRING 2019 // @JOY_ARULRAJ

LECTURE #2: IN-MEMORY DATABASES

TODAY’S AGENDA

Background
In-Memory DBMS Architectures
Early Notable In-Memory DBMSs

2

LAST CLASS

History of DBMSs
→ In a way though, it really was a history of data models

Data Models
→ Hierarchical data model (tree) (IMS)
→ Network data model (graph) (CODASYL)
→ Relational data model (tables) (System R, INGRES)

Overarching theme about all these systems
→ They were all disk-based DBMSs

3

BACKGROUND

Much of the history of DBMSs is about dealing
with the limitations of hardware.

Hardware was much different when the original
DBMSs were designed:
→ Uniprocessor (single-core CPU)
→ RAM was severely limited (few MB).
→ The database had to be stored on disk.
→ Disk is slow. No seriously, I mean really slow.

4

BACKGROUND

But now DRAM capacities are large enough that
most databases can fit in memory.
→ Structured data sets are smaller (e.g., tables with schema).
→ Unstructured or semi-structured data sets are larger (e.g.,
videos, log files).

So why not just use a "traditional" disk-oriented
DBMS with a really large cache?

5

DISK-ORIENTED DBMS

The primary storage location of the database is on
non-volatile storage (e.g., HDD, SSD).
→ The database is stored in a file as a collection of fixed-

length blocks called slotted pages on disk.

The system uses an in-memory (volatile) buffer
pool to cache blocks fetched from disk.
→ Its job is to manage the movement of those blocks back

and forth between disk and memory.

6

BUFFER POOL

When a query accesses a page, the DBMS checks
to see if that page is already in memory:
→ If it’s not, then the DBMS has to retrieve it from disk and

copy it into a free frame in the buffer pool.
→ If there are no free frames, then find a page to evict

guided by the page replacement policy.
→ If the page being evicted is dirty, then the DBMS has to

write it back to disk to ensure the durability (ACID) of
data.

7

PAGE REPLACEMENT POLICY

Page replacement policy is a differentiating factor
between open-source and commercial DBMSs.
→ What kind of data does it contain?
→ Is the page dirty?
→ How likely is the page to be accessed in the near future?
→ Examples: LRU, LFU, CLOCK, ARC (Adaptive

Replacement Cache)

More Information on Page Replacement Policies: Wikipedia

8

https://en.wikipedia.org/wiki/Page_replacement_algorithm

BUFFER POOL

Once the page is in memory, the DBMS translates
any on-disk addresses to their in-memory
addresses.

(Page Identifier) (Page Pointer)
[#100] [0x5050]

9

DATA ORGANIZATION

10

Buffer Pool

page6

page4

Index Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

11

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

12

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

13

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

14

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

15

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

16

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page2

DATA ORGANIZATION

17

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

DATA ORGANIZATION

18

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page1

DATA ORGANIZATION

19

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page1

DATA ORGANIZATION

20

Buffer Pool

page6

page4

Index

Page Id +
Slot #

Database (On-Disk)

Slotted Pages

Page Table

page0

page1

page2

page1

BUFFER POOL

Every tuple access has to go through the buffer
pool manager regardless of whether that data will
always be in memory.
→ Always have to translate a tuple’s record id to its memory

location.
→ Worker thread has to pin pages that it needs to make

sure that they are not swapped to disk.

21

CONCURRENCY CONTROL

In a disk-oriented DBMS, the systems assumes
that a txn could stall at any time when it tries to
access data that is not in memory.
Execute other txns at the same time so that if one
txn stalls then others can keep running.
→ This is not because the DBMS is trying to use all cores in

the CPU. We are still focusing on single-core CPUs.
→ We do this to let the system make forward progress by

executing another txn while the current txn is waiting for
data to be fetched from disk

22

CONCURRENCY CONTROL

Concurrency control policy
→ Responsible for deciding how to interleave the

operations of concurrency transactions in such a way that
it appears as if they are running one after each other

→ This property is referred to as serializability of
transactions

→ Has to set locks and latches to ensure the highest level of
isolation (ACID) between transactions

→ Locks are stored in a separate data structure (lock table)
to avoid being swapped to disk.

23

LOCKS VS. LATCHES

Locks
→ Protects the database's logical contents (e.g., tuple, table)

from other txns.
→ Held for txn duration.
→ Need to be able to rollback changes.
Latches
→ Protects the DBMS's internal physical data structures

(e.g., page table) from other threads.
→ Held for operation duration.
→ Do not need to be able to rollback changes.

24

A SURVEY OF B-TREE LOCKING TECHNIQUES
TODS 2010

LOCKS VS. LATCHES

25

Locks Latches
Separate… User transactions Threads
Protect… Database Contents In-Memory Data Structures
During… Entire Transactions Critical Sections
Modes… Shared, Exclusive, Update,

Intention
Read, Write

Deadlock Detection & Resolution Avoidance
…by… Waits-for, Timeout, Aborts Coding Discipline

Kept in… Lock Manager Protected Data Structure
Source: Goetz Graefe

http://15721.courses.cs.cmu.edu/spring2017/papers/06-latching/a16-graefe.pdf

LOGGING & RECOVERY

This protocol is adopted by the DBMS to ensure
the atomicity and durability properties (ACID)
→ Durability: Changes made by committed transactions

must be present in the database after recovering from a
power failure.

→ Atomicity: Changes made by uncommitted (in-
progress/aborted) transactions must not be present in
the database after recovering from a power failure.

26

LOGGING & RECOVERY

Most DBMSs use STEAL + NO-FORCE buffer
pool policies.
→ STEAL: DBMS can flush pages dirtied by uncommitted

transactions to disk.
→ NO-FORCE: DBMS is not required to flush all pages

dirtied by committed transactions to disk.
→ So all page modifications have to be flushed to the

write-ahead log (WAL) before a txn can commit

27

LOGGING & RECOVERY

Each log entry contains the before and after images
of modified tuples.
→ STEAL: Modifications made by uncommitted

transactions that are flushed to disk have to rolled back.
→ NO-FORCE: Modifications made by committed

transactions might not have been flushed to disk.
→ Recording the before and after images in the log is critical

to ensuring the atomicity and durability properties
→ Lots of work to keep track of log sequence numbers

(LSNs) all throughout the DBMS.

28

DISK-ORIENTED DBMS OVERHEAD

29

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

DISK-ORIENTED DBMS OVERHEAD

30

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

DISK-ORIENTED DBMS OVERHEAD

31

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

34%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

DISK-ORIENTED DBMS OVERHEAD

32

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

14%

34%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

DISK-ORIENTED DBMS OVERHEAD

33

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

16%14%

34%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

DISK-ORIENTED DBMS OVERHEAD

34

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

16%14%

34%

12%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

DISK-ORIENTED DBMS OVERHEAD

35

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

16%14%

34%

12%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

16%

DISK-ORIENTED DBMS OVERHEAD

36

BUFFER POOL

LATCHING

LOCKING

LOGGING

B-TREE KEYS

REAL WORK

16%14%

34%

12%

Measured CPU Instructions

OLTP THROUGH THE LOOKING GLASS,
AND WHAT WE FOUND THERE
SIGMOD, pp. 981-992, 2008.

16%

7%

TAKEAWAYS

Disk-oriented DBMSs do a lot of extra stuff
because they are predicated on the assumption that
data has to reside on disk

In-memory DBMSs maximize performance by
optimizing these protocols and algorithms

37

IN-MEMORY DBMSS

Assume that the primary storage location of the
database is permanently in memory.

Early ideas proposed in the 1980s but it is now
feasible because DRAM prices are low and
capacities are high.

38

BOTTLENECKS

If I/O is no longer the slowest resource, much of
the DBMS’s architecture will have to change
account for other bottlenecks:
→ Locking/latching
→ Cache misses
→ Pointer chasing (e.g., virtual function lookup tables)
→ Predicate evaluations
→ Data movement & copying (e.g., multi-socket machine)
→ Networking (between application & DBMS)

39

STORAGE ACCESS LATENCIES

40

L3 DRAM SSD HDD

Read Latency ~20 ns 60 ns 25,000 ns 10,000,000 ns

Write Latency ~20 ns 60 ns 300,000 ns 10,000,000 ns

LET’S TALK ABOUT STORAGE & RECOVERY
METHODS FOR NON-VOLATILE MEMORY
DATABASE SYSTEMS
SIGMOD, pp. 707-722, 2015.

IN-MEMORY DATABASES

41

Jim Gray’s analogy:
→ Reading from L3 cache: Reading a book on a table
→ Reading from HDD: Flying to Pluto to read that book

Because everything fits in DRAM, we can do more
sophisticated things in software.

DATA ORGANIZATION

An in-memory DBMS does not need to store the
database in slotted pages but it will still organize
tuples in blocks/pages:
→ Direct memory pointers vs. tuple identifiers
→ Separate pools for fixed-length (e.g., date of birth) and

variable-length data (e.g., medical notes)
→ Use checksums to detect software errors from trashing

the database.
The OS organizes memory in pages too. We will
cover this later.

42

DATA ORGANIZATION

43

Fixed-Length
Data Blocks

Index Variable-Length
Data Blocks

DATA ORGANIZATION

44

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

DATA ORGANIZATION

45

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

DATA ORGANIZATION

46

Fixed-Length
Data Blocks

Index

Memory
Address

Variable-Length
Data Blocks

WHY NOT MMAP?

Memory-map (mmap) a database file into DRAM
and let the OS be in charge of swapping data in
and out as needed.
Use madvise and msync to give hints to the OS
about what data is safe to flush.

Notable mmap DBMSs:
→ MongoDB (pre WiredTiger)
→ MonetDB
→ LMDB

47

http://mongodb.org/
http://wiredtiger.com/
https://www.monetdb.org/
http://symas.com/mdb/

WHY NOT MMAP?

Using mmap gives up fine-grained control on the
contents of memory to the OS.
→ Cannot perform non-blocking memory access.
→ The "on-disk" representation has to be the same as the

"in-memory" representation.
→ The DBMS has no way of knowing what pages are in

memory or not.
→ Various mmap-related syscalls are not portable.

A well-written DBMS always knows best.

48

CONCURRENCY CONTROL

Observation: The cost of a txn acquiring a lock is
the same as accessing data (since the lock data is
also in memory).

In-memory DBMS may want to detect conflicts
between txns at a different granularity.
→ Fine-grained locking allows for better concurrency but

requires more locks.
→ Coarse-grained locking requires fewer locks but limits

the amount of concurrency.

49

CONCURRENCY CONTROL

The DBMS can store locking information about
each tuple together with its data.
→ This helps with CPU cache locality.
→ Mutexes are too slow. Need to use CAS instructions.

Disk-oriented DBMSs: Stalling during disk I/O
Memory-oriented DBMSs: New bottleneck is
contention caused from txns executing on multiple
cores trying access data at the same time.

50

INDEXES

Specialized main-memory indexes (e.g., T-Tree)
were proposed in 1980s when cache and memory
access speeds were roughly equivalent.
But then caches got faster than main memory:
→ Memory-optimized indexes performed worse than the

B+trees because they were not cache aware.

Indexes are usually rebuilt in an in-memory DBMS
after restart to avoid logging overhead.

51

QUERY PROCESSING

52

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

QUERY PROCESSING

53

Tuple-at-a-time
→ Each operator calls next on their child to get

the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire output

for their parent operator.
Vector-at-a-time
→ Each operator calls next on their child to get

the next chunk of data to process.

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

QUERY PROCESSING

54

Tuple-at-a-time
→ Each operator calls next on their child to get

the next tuple to process.

Operator-at-a-time
→ Each operator materializes their entire output

for their parent operator.
Vector-at-a-time
→ Each operator calls next on their child to get

the next chunk of data to process.

SELECT A.id, B.value
FROM A, B
WHERE A.id = B.id
AND B.value > 100

A B

A.id=B.id

value>100

A.id, B.value

⨝
s

p

QUERY PROCESSING

The best strategy for executing a query plan in a
DBMS changes when all of the data is already in
memory.
→ Sequential scans are no longer significantly faster than

random access.

The traditional tuple-at-a-time iterator model is
too slow because of function calls.
→ This problem is more significant in OLAP DBMSs.

55

LOGGING & RECOVERY

The DBMS still needs a WAL on non-volatile
storage since the system could halt at anytime.
→ Use group commit to batch log entries and flush them

together to amortize fsync cost.
→ May be possible to use more lightweight logging schemes

(e.g., only store redo information, NO-STEAL).

But since there are no "dirty" pages, there is no
need to maintain LSNs all throughout the system.

56

LOGGING & RECOVERY

The system also still takes checkpoints to speed up
recovery time.
Different methods for checkpointing:
→ Old idea: Maintain a second copy of the database in

memory that is updated by replaying the WAL.
→ Switch to a special “copy-on-write” mode and then write

a dump of the database to disk.
→ Fork the DBMS process and then have the child process

write its contents to disk (leveraging virtual memory).

57

LARGER-THAN-MEMORY DATABASES

DRAM is fast, but data is not accessed with the
same frequency and in the same manner.
→ Hot Data: OLTP Operations (Tweets posted yesterday)
→ Cold Data: OLAP Queries (Tweets posted last year)

We will study techniques for how to bring back
disk-resident data without slowing down the
entire system.

58

NON-VOLATILE MEMORY

Emerging hardware that is able to get almost the
same read/write speed as DRAM but with the
persistence guarantees of an SSD.
→ Also called storage class memory
→ Examples: Phase-Change Memory, Memristors

It’s not clear how to build a DBMS to operate on
this kind of memory.
Again, we’ll cover this topic later.

59

NOTABLE IN-MEMORY DBMSs

Oracle TimesTen
Dali / DataBlitz
Altibase
P*TIME
SAP HANA
VoltDB / H-Store

60

Microsoft Hekaton
Harvard Silo
TUM HyPer
MemSQL
IBM DB2 BLU
Apache Geode

http://www.oracle.com/technetwork/database/database-technologies/timesten
https://en.wikipedia.org/wiki/Datablitz
http://altibase.com/
http://hana.sap.com/
http://voltdb.com/
http://hstore.cs.brown.edu/
https://en.wikipedia.org/wiki/Hekaton_(database)
https://github.com/stephentu/silo
http://hyper-db.de/
http://memsql.com/
http://www.ibmbluhub.com/
http://geode.incubator.apache.org/

NOTABLE IN-MEMORY DBMSs

Oracle TimesTen
Dali / DataBlitz
Altibase
P*TIME
SAP HANA
VoltDB / H-Store

61

Microsoft Hekaton
Harvard Silo
TUM HyPer
MemSQL
IBM DB2 BLU
Apache Geode

http://www.oracle.com/technetwork/database/database-technologies/timesten
https://en.wikipedia.org/wiki/Datablitz
http://altibase.com/
http://hana.sap.com/
http://voltdb.com/
http://hstore.cs.brown.edu/
https://en.wikipedia.org/wiki/Hekaton_(database)
https://github.com/stephentu/silo
http://hyper-db.de/
http://memsql.com/
http://www.ibmbluhub.com/
http://geode.incubator.apache.org/

P*TIME

Korean in-memory DBMS from the 2000s.
Performance numbers are still impressive.
Lots of interesting features:
→ Uses differential encoding (XOR) for log records.
→ Hybrid storage layouts.
→ Support for larger-than-memory databases.
Sold to SAP in 2005. Now part of HANA.

62

P*TIME: HIGHLY SCALABLE OLTP DBMS FOR
MANAGING UPDATE-INTENSIVE STREAM WORKLOAD
VLDB, pp. 1033-1044, 2004.

TIMESTEN

Originally SmallBase from HP Labs in 1995.
Multi-process, shared memory DBMS.
→ Single-version database using two-phase locking.
→ Dictionary-encoded columnar compression.

Bought by Oracle in 2005.
Can work as a cache in front of Oracle DBMS.

63

ORACLE TIMESTEN: AN IN-MEMORY
DATABASE FOR ENTERPRISE APPLICATIONS
VLDB, pp. 1033-1044, 2004.

DALI / DATABLITZ

Developed at AT&T Labs in the early 1990s.
Multi-process, shared memory storage manager
using memory-mapped files.
Employed additional safety measures to make sure
that erroneous writes to memory do not corrupt
the database.
→ Meta-data is stored in a non-shared location.
→ A page’s checksum is always tested on a read; if the

checksum is invalid, recover page from log.

64

DALI: A HIGH PERFORMANCE MAIN
MEMORY STORAGE MANAGER
VLDB, pp. 48-59, 1994.

PELOTON DBMS

CMU’s in-memory hybrid relational DBMS
→ Latch-free Multi-version concurrency control.
→ Latch-free Bw-Tree Index
→ LLVM-based Execution Engine
→ Tile-based storage manager.
→ Multi-threaded architecture.
→ Write-Ahead Logging + Checkpoints
→ Cascades-style Query Optimizer
→ Zone Maps
→ PL/pgSQL UDFs (preliminary)
Currently supports some of SQL-92.

65

PARTING THOUGHTS

Disk-oriented DBMSs are a relic of the past.
→ Most databases fit entirely in DRAM on a single machine.

The world has finally become comfortable with in-
memory data storage and processing.

Never use mmap for your DBMS.

66

COURSE LOAD REDUCTION

The frequency of reading reviews is reduced to
one review due every two weeks (earlier it was
one review due every week).

The final exam (15%) will be a take home
assignment. The exam will be long-form questions
based on the topics discussed during the entire
semester and you will get a week to complete it.

67

DEVELOPMENT ENVIRONMENT

Install Ubuntu 18.04 LTS Linux OS on your laptop
(either natively or in a virtual machine).

You will be using this environment for
programming assignments and research project.

68

NEXT CLASS

Storage Models

Reminder: Homework 0 is due on Tuesday Jan
15th. Submit via Gradescope.

69

