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TODAY’S  AGENDA

B+Tree Overview
Index Implementation Issues
ART Index
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LOGISTICS

Reminder: Problem set due on Feb 21st.

Reminder: Mid-term Exam on Feb 26th.

Reminder: Project Proposals due on Feb 28th.
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B+TREE

A B+Tree is a self-balancing tree data structure 
that keeps data sorted and allows searches, 
sequential access, insertions, and deletions in 
O(log n).  
→ Generalization of a binary search tree in that a node can 

have more than two children. 
→ Optimized for systems that read and write large blocks of 

data.
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B+TREE PROPERTIES

A B+tree is an M-way search tree with the 
following properties: 
→ It is perfectly balanced (i.e., every leaf node is at the same 

depth).
→ Every inner node other than the root, is at least half-full 

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children
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B+TREE EXAMPLE
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NODES

Every node in the B+Tree contains an array of 
key/value pairs.
→ The keys will always be the column or columns that you 

built your index on
→ The values will differ based on whether the node is 

classified as inner nodes or leaf nodes.

The arrays are (usually) kept in sorted key order.
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LEAF NODE VALUES

Approach #1: Record Ids
→ A pointer to the location of the tuple that the index entry 

corresponds to.

Approach #2: Tuple Data
→ The actual contents of the tuple is stored in the leaf node.
→ Secondary indexes have to store the record id as their 

values.
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B+TREE LEAF NODES
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B+TREE INSERT

Find correct leaf L.
Put data entry into L in sorted order.
If L has enough space, done!
Else, must split L into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly, 
but push up middle key. 
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Source: Chris Re

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx


B+TREE VISUALIZATION

https://www.cs.usfca.edu/~galles/visualizati
on/BPlusTree.html

Source: David Gales (Univ. of San Francisco)
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B+TREE DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done! 
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent 

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.
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Source: Chris Re

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx


B+TREES IN PRACTICE

Typical Fill-Factor: 67%.
→ Average Fanout = 2*100*0.67 = 134

Typical Capacities:
→ Height 4: 1334 = 312,900,721 entries
→ Height 3: 1333 =    2,406,104 entries

Pages per level:
→ Level 1 =           1 page   =     8 KB
→ Level 2 =      134 pages  =     1 MB
→ Level 3 =  17,956 pages = 140 MB
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CLUSTERED INDEXES

The table is stored in the sort order specified by 
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table doesn’t include a pkey, the DBMS will 

automatically make a hidden row id pkey.

Other DBMSs cannot use them at all.
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SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query 
provides any of the attributes of the search key.
Example: Index on <a,b,c>
→ Supported: (a=5 AND b=3)
→ Supported: (b=3).

Not all DBMSs support this.
For hash index, we must have all attributes in 
search key.
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B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Intra-Node Search
Variable Length Keys
Non-Unique Indexes
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NODE SIZE

The slower the disk, the larger the optimal node 
size for a B+Tree.
→ HDD ~1MB
→ SSD: ~10KB 
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals
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MERGE THRESHOLD

Some DBMSs don't always merge nodes when it is 
half full.

Delaying a merge operation may reduce the 
amount of reorganization.
May be better to just let underflows to exist and 
then periodically rebuild entire tree.
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INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right 

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based 

on known distribution of keys.
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INDEX IMPLEMENTATION ISSUES

Bulk Insert
Pointer Swizzling
Prefix Compression
Memory Pools
Garbage Collection
Non-Unique Keys
Variable-length Keys
Prefix Compression
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BULK INSERT

The fastest/best way to build a B+Tree is to first 
sort the keys and then build the index from the 
bottom up.
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BULK INSERT
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POINTER SWIZZLING

Nodes use page ids to reference other 
nodes in the index. The DBMS has to 
get the memory location from the page 
table during traversal.

If a page is pinned in the buffer pool, 
then we can store raw pointers instead 
of page ids, thereby removing the need 
to get address from the page table.
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MEMORY POOLS

We don’t want to be calling malloc and free
anytime we need to add or delete a node.

This could lead to a system call.
→ If you call malloc to request 10 bytes of memory, the 

allocator may invoke the sbrk (or mmap) system call to 
request 4K bytes from OS.

→ Then, when you call malloc next time to request 
another 10 bytes, it may not have to issue a system call; 
instead, it may return a pointer within allocated memory. 

57



MEMORY POOLS

If all the nodes are the same size, then the index 
can maintain a pool of available nodes.
→ Insert: Grab a free node, otherwise create a new one.
→ Delete: Add the node back to the free pool.

Need some policy to decide when to retract the 
pool size (garbage collection & de-fragmentation).
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GARBAGE COLLECTION

We need to know when it is safe to reclaim 
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…
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REFERENCE COUNTING

Maintain a counter for each node to keep track of 
the number of threads that are accessing it.
→ Increment the counter before accessing.
→ Decrement it when finished.
→ A node is only safe to delete when the count is zero.

This has bad performance for multi-core CPUs
→ Incrementing/decrementing counters causes a lot of 

cache coherence traffic.
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OBSERVATION

We don’t actually care about the actual value of the 
reference counter. We only need to know when it 
reaches zero.

We don’t have to perform garbage collection 
immediately when the counter reaches zero.
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Source: Stephen Tu

http://www.cs.berkeley.edu/~stephentu/presentations/workshop.pdf


EPOCH GARBAGE COLLECTION

Maintain a global epoch counter that is 
periodically updated (e.g., every 10 ms).
→ Keep track of what threads enter the index during an 

epoch and when they leave.

Mark the current epoch of a node when it is 
marked for deletion.
→ The node can be reclaimed once all threads have left that 

epoch (and all preceding epochs).

Also known as Read-Copy-Update (RCU) in Linux.
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NON-UNIQUE INDEXES

Approach #1: Duplicate Keys
→ Use the same node layout but store duplicate keys 

multiple times.

Approach #2: Value Lists
→ Store each key only once and maintain a linked list of 

unique values.
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B+Tree Leaf Node

NON-UNIQUE:  DUPLICATE KEYS
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B+Tree Leaf Node
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VARIABLE LENGTH KEYS

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value 

list within the node.
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B+Tree Leaf Node
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B+Tree Leaf Node
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PREFIX  COMPRESSION

Store a minimum prefix that is needed to correctly 
route probes into the index.
Since keys are sorted in lexicographical order, 
there will be a lot of duplicated prefixes.
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Store a minimum prefix that is needed to correctly 
route probes into the index.
Since keys are sorted in lexicographical order, 
there will be a lot of duplicated prefixes.
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ADAPATIVE RADIX TREE (ART)

Uses digital representation of keys to examine 
prefixes 1-by-1 instead of comparing entire key.
Radix trees properties:
→ The height of the tree depends on the length of keys.
(unlike B+tree where height depends on the number of keys)
→ Does not require rebalancing
→ The path to a leaf node represents the key of the leaf
→ Keys are stored implicitly and can be reconstructed from 

paths.
→ Structure does not depend on order of key insertion
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THE ADAPTIVE RADIX TREE: ARTFUL
INDEXING FOR MAIN-MEMORY DATABASES
ICDE 2013



TRIE  VS.  RADIX TREE
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ART:  ADAPTIVELY SIZED NODES

The index supports four different internal node 
types with different capacities.

Pack in multiple digits into a single node to 
improve cache locality.
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ART:  BINARY COMPARABLE KEYS 

Not all attribute types can be decomposed into 
binary comparable digits for a radix tree.
→ Unsigned Integers: Byte order must be flipped to big 

endian representation for little endian machines (x86).
→ Signed Integers: Flip two’s-complement so that negative 

numbers are smaller than positive.
→ Floats: Classify into group (neg vs. pos, normalized vs. 

denormalized), then store as unsigned integer.
→ Compound: Transform each attribute separately.
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BINARY COMPARABLE KEYS
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CONCURRENT ART INDEX

HyPer’s ART is not latch-free.
→ The authors argue that it would be a significant amount 

of work to make it latch-free.

Approach #1: Optimistic Lock Coupling
Approach #2: Read-Optimized Write Exclusion
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OPTIMISTIC LOCK COUPLING

Optimistic crabbing scheme where writers are not 
blocked on readers.
→ Writers increment counter when they acquire latch.
→ Readers can proceed if a node’s latch is available.
→ It then checks whether the latch’s counter has changed 

from when it checked the latch.
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READ-OPTIMIZED WRITE EXCLUSION

Each node includes an exclusive lock that blocks 
only other writers and not readers.
→ Readers proceed without checking versions or locks.
→ Every writer must ensure that reads are always 

consistent.

Requires fundamental changes to how threads 
make modifications to the data structure.
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IN-MEMORY INDEXES
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PARTING THOUGHTS

Andy was wrong about the Bw-Tree and latch-
free indexes.
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NEXT CLASS

Query Compilation

Reminder: Mid-term Exam on Feb 26th.

Reminder: Project Proposals due on Feb 26th.
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