
DATABASE SYSTEM IMPLEMENTATION

GT 4420/6422 // SPRING 2019 // @JOY_ARULRAJ

LECTURE #12: OLTP INDEXES (PART II)

TODAY’S AGENDA

B+Tree Overview
Index Implementation Issues
ART Index

2

LOGISTICS

Reminder: Problem set due on Feb 21st.

Reminder: Mid-term Exam on Feb 26th.

Reminder: Project Proposals due on Feb 28th.

3

B+TREE

A B+Tree is a self-balancing tree data structure
that keeps data sorted and allows searches,
sequential access, insertions, and deletions in
O(log n).
→ Generalization of a binary search tree in that a node can

have more than two children.
→ Optimized for systems that read and write large blocks of

data.

4

B+TREE PROPERTIES

A B+tree is an M-way search tree with the
following properties:
→ It is perfectly balanced (i.e., every leaf node is at the same

depth).
→ Every inner node other than the root, is at least half-full

M/2-1 ≤ #keys ≤ M-1
→ Every inner node with k keys has k+1 non-null children

5

B+TREE EXAMPLE

6

5 9

6 7 9 131 3

B+TREE EXAMPLE

7

Inner Node
5 9

6 7 9 131 3

B+TREE EXAMPLE

8

Leaf Nodes

Inner Node
5 9

6 7 9 131 3

B+TREE EXAMPLE

9

Leaf Nodes

Inner Node

Sibling Pointers

5 9

6 7 9 131 3

B+TREE EXAMPLE

10

Leaf Nodes

<5 <9 ≥9

Inner Node

Sibling Pointers

5 9

6 7 9 131 3

B+TREE EXAMPLE

11

Leaf Nodes

<5 <9 ≥9

Inner Node

<value>|<key>
Sibling Pointers

5 9

6 7 9 131 3

NODES

Every node in the B+Tree contains an array of
key/value pairs.
→ The keys will always be the column or columns that you

built your index on
→ The values will differ based on whether the node is

classified as inner nodes or leaf nodes.

The arrays are (usually) kept in sorted key order.

12

LEAF NODE VALUES

Approach #1: Record Ids
→ A pointer to the location of the tuple that the index entry

corresponds to.

Approach #2: Tuple Data
→ The actual contents of the tuple is stored in the leaf node.
→ Secondary indexes have to store the record id as their

values.

13

LEAF NODE VALUES

Approach #1: Record Ids
→ A pointer to the location of the tuple that the index entry

corresponds to.

Approach #2: Tuple Data
→ The actual contents of the tuple is stored in the leaf node.
→ Secondary indexes have to store the record id as their

values.

14

B+TREE LEAF NODES

15

B+Tree Leaf Node

B+TREE LEAF NODES

16

K1 V1 • • • Kn Vn¤ ¤
Prev Next

B+Tree Leaf Node

B+TREE LEAF NODES

17

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID
PageID

B+Tree Leaf Node

B+TREE LEAF NODES

18

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

PageID
PageID

B+Tree Leaf Node

B+TREE LEAF NODES

19

Key+ Value

K1 V1 • • • Kn Vn¤ ¤
Prev Next

¤ ¤PageID
PageID

B+Tree Leaf Node

B+TREE LEAF NODES

20

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values
¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

B+Tree Leaf Node

B+TREE LEAF NODES

21

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

Values
¤ ¤ ¤ ¤ ¤ • • • ¤

¤
Prev

¤
Next

#
Level

#
Slots

B+TREE INSERT

Find correct leaf L.
Put data entry into L in sorted order.
If L has enough space, done!
Else, must split L into L and a new node L2
→ Redistribute entries evenly, copy up middle key.
→ Insert index entry pointing to L2 into parent of L.

To split inner node, redistribute entries evenly,
but push up middle key.

22

Source: Chris Re

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREE VISUALIZATION

https://www.cs.usfca.edu/~galles/visualizati
on/BPlusTree.html

Source: David Gales (Univ. of San Francisco)

23

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
https://www.cs.usfca.edu/~galles/

B+TREE DELETE

Start at root, find leaf L where entry belongs.
Remove the entry.
If L is at least half-full, done!
If L has only M/2-1 entries,
→ Try to re-distribute, borrowing from sibling (adjacent

node with same parent as L).
→ If re-distribution fails, merge L and sibling.

If merge occurred, must delete entry (pointing to L
or sibling) from parent of L.

24

Source: Chris Re

https://web.stanford.edu/class/cs346/2015/notes/Blink.pptx

B+TREES IN PRACTICE

Typical Fill-Factor: 67%.
→ Average Fanout = 2*100*0.67 = 134

Typical Capacities:
→ Height 4: 1334 = 312,900,721 entries
→ Height 3: 1333 = 2,406,104 entries

Pages per level:
→ Level 1 = 1 page = 8 KB
→ Level 2 = 134 pages = 1 MB
→ Level 3 = 17,956 pages = 140 MB

25

CLUSTERED INDEXES

The table is stored in the sort order specified by
the primary key.
→ Can be either heap- or index-organized storage.

Some DBMSs always use a clustered index.
→ If a table doesn’t include a pkey, the DBMS will

automatically make a hidden row id pkey.

Other DBMSs cannot use them at all.

26

SELECTION CONDITIONS

The DBMS can use a B+Tree index if the query
provides any of the attributes of the search key.
Example: Index on <a,b,c>
→ Supported: (a=5 AND b=3)
→ Supported: (b=3).

Not all DBMSs support this.
For hash index, we must have all attributes in
search key.

27

B+TREE DESIGN CHOICES

Node Size
Merge Threshold
Intra-Node Search
Variable Length Keys
Non-Unique Indexes

28

NODE SIZE

The slower the disk, the larger the optimal node
size for a B+Tree.
→ HDD ~1MB
→ SSD: ~10KB
→ In-Memory: ~512B

Optimal sizes can vary depending on the workload
→ Leaf Node Scans vs. Root-to-Leaf Traversals

29

MERGE THRESHOLD

Some DBMSs don't always merge nodes when it is
half full.

Delaying a merge operation may reduce the
amount of reorganization.
May be better to just let underflows to exist and
then periodically rebuild entire tree.

30

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

31

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

32

Find Key=8

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

33

Find Key=8

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

34

Find Key=8

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

35

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

36

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

37

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

38

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

39

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

40

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104
Offset: 7-(10-8)=5

INTRA-NODE SEARCH

Approach #1: Linear
→ Scan node keys from beginning to end.

Approach #2: Binary
→ Jump to middle key, pivot left/right

depending on comparison.

Approach #3: Interpolation
→ Approximate location of desired key based

on known distribution of keys.

41

Find Key=8

5 6 7 8 9 104

5 6 7 8 9 104

5 6 7 8 9 104
Offset: 7-(10-8)=5

INDEX IMPLEMENTATION ISSUES

Bulk Insert
Pointer Swizzling
Prefix Compression
Memory Pools
Garbage Collection
Non-Unique Keys
Variable-length Keys
Prefix Compression

42

BULK INSERT

The fastest/best way to build a B+Tree is to first
sort the keys and then build the index from the
bottom up.

43

BULK INSERT

The fastest/best way to build a B+Tree is to first
sort the keys and then build the index from the
bottom up.

44

Keys: 3, 7, 9, 13, 6, 1

BULK INSERT

The fastest/best way to build a B+Tree is to first
sort the keys and then build the index from the
bottom up.

45

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

BULK INSERT

The fastest/best way to build a B+Tree is to first
sort the keys and then build the index from the
bottom up.

46

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

BULK INSERT

The fastest/best way to build a B+Tree is to first
sort the keys and then build the index from the
bottom up.

47

6 9

6 7 9 131 3

Keys: 3, 7, 9, 13, 6, 1

Sorted Keys: 1, 3, 6, 7, 9, 13

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

48

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

49

6 9

6 71 3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

50

6 9

6 71 3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

51

6 9

6 71 3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

52

6 9

6 71 3

Page #2

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

53

6 9

6 71 3

Page #2

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

54

6 9

6 71 3

Page #2

Page #3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>

Find Key>3

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

55

6 9

6 71 3

Page #2

Page #3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Page #2 → <Page*>
Page #3 → <Page*>

Find Key>3

POINTER SWIZZLING

Nodes use page ids to reference other
nodes in the index. The DBMS has to
get the memory location from the page
table during traversal.

If a page is pinned in the buffer pool,
then we can store raw pointers instead
of page ids, thereby removing the need
to get address from the page table.

56

6 9

6 71 3

B
u

ff
e

r
P

o
o

l

1
Header

2
Header

3
Header

Find Key>3

<Page*>

<Page*>

MEMORY POOLS

We don’t want to be calling malloc and free
anytime we need to add or delete a node.

This could lead to a system call.
→ If you call malloc to request 10 bytes of memory, the

allocator may invoke the sbrk (or mmap) system call to
request 4K bytes from OS.

→ Then, when you call malloc next time to request
another 10 bytes, it may not have to issue a system call;
instead, it may return a pointer within allocated memory.

57

MEMORY POOLS

If all the nodes are the same size, then the index
can maintain a pool of available nodes.
→ Insert: Grab a free node, otherwise create a new one.
→ Delete: Add the node back to the free pool.

Need some policy to decide when to retract the
pool size (garbage collection & de-fragmentation).

58

GARBAGE COLLECTION

We need to know when it is safe to reclaim
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…

59

K2
V2

K3
V3

K4
V4

GARBAGE COLLECTION

We need to know when it is safe to reclaim
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…

60

K2
V2

K3
V3

K4
V4

GARBAGE COLLECTION

We need to know when it is safe to reclaim
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…

61

K2
V2

K3
V3

K4
V4

GARBAGE COLLECTION

We need to know when it is safe to reclaim
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…

62

K2
V2

K3
V3

K4
V4X

GARBAGE COLLECTION

We need to know when it is safe to reclaim
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…

63

K2
V2

K4
V4

GARBAGE COLLECTION

We need to know when it is safe to reclaim
memory for deleted nodes in a latch-free index.
→ Reference Counting
→ Epoch-based Reclamation
→ Hazard Pointers
→ Many others…

64

K2
V2

K4
V4

REFERENCE COUNTING

Maintain a counter for each node to keep track of
the number of threads that are accessing it.
→ Increment the counter before accessing.
→ Decrement it when finished.
→ A node is only safe to delete when the count is zero.

This has bad performance for multi-core CPUs
→ Incrementing/decrementing counters causes a lot of

cache coherence traffic.

65

OBSERVATION

We don’t actually care about the actual value of the
reference counter. We only need to know when it
reaches zero.

We don’t have to perform garbage collection
immediately when the counter reaches zero.

66

Source: Stephen Tu

http://www.cs.berkeley.edu/~stephentu/presentations/workshop.pdf

EPOCH GARBAGE COLLECTION

Maintain a global epoch counter that is
periodically updated (e.g., every 10 ms).
→ Keep track of what threads enter the index during an

epoch and when they leave.

Mark the current epoch of a node when it is
marked for deletion.
→ The node can be reclaimed once all threads have left that

epoch (and all preceding epochs).

Also known as Read-Copy-Update (RCU) in Linux.

67

NON-UNIQUE INDEXES

Approach #1: Duplicate Keys
→ Use the same node layout but store duplicate keys

multiple times.

Approach #2: Value Lists
→ Store each key only once and maintain a linked list of

unique values.

68

MODERN B-TREE TECHNIQUES
NOW PUBLISHERS 2010

B+Tree Leaf Node

NON-UNIQUE: DUPLICATE KEYS

69

Sorted Keys
K1 K1 K1 K2 K2 • • • Kn

¤
Prev

¤
Next

#
Level

#
Slots

Values
¤ ¤ ¤ ¤ ¤ • • • ¤

B+Tree Leaf Node

NON-UNIQUE: DUPLICATE KEYS

70

Sorted Keys
K1 K1 K1 K2 K2 • • • Kn

¤
Prev

¤
Next

#
Level

#
Slots

Values
¤ ¤ ¤ ¤ ¤ • • • ¤

B+Tree Leaf Node

NON-UNIQUE: DUPLICATE KEYS

71

Sorted Keys
K1 K1 K1 K2 K2 • • • Kn

¤
Prev

¤
Next

#
Level

#
Slots

Values
¤ ¤ ¤ ¤ ¤ • • • ¤

B+Tree Leaf Node

NON-UNIQUE: VALUE LISTS

72

Values
¤ ¤ ¤
¤ ¤

• •
 •

¤
Prev

¤
Next

#
Level

#
Slots

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

B+Tree Leaf Node

NON-UNIQUE: VALUE LISTS

73

Values
¤ ¤ ¤
¤ ¤

• •
 •

¤
Prev

¤
Next

#
Level

#
Slots

Sorted Keys
K1 K2 K3 K4 K5 • • • Kn

VARIABLE LENGTH KEYS

Approach #1: Pointers
→ Store the keys as pointers to the tuple’s attribute.

Approach #2: Variable Length Nodes
→ The size of each node in the index can vary.
→ Requires careful memory management.

Approach #3: Padding
→ Always pad the key to be max length of the key type.

Approach #4: Key Map / Indirection
→ Embed an array of pointers that map to the key + value

list within the node.

74

B+Tree Leaf Node

KEY MAP / INDIRECTION

75

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Key Map

Andy V1

¤ ¤ ¤

Obama
Prashanth

V2

V3

B+Tree Leaf Node

KEY MAP / INDIRECTION

76

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Key Map

Andy V1

¤ ¤ ¤

Obama
Prashanth

V2

V3

B+Tree Leaf Node

KEY MAP / INDIRECTION

77

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Key Map

Andy V1

¤ ¤ ¤

Obama
Prashanth

V2

V3

B+Tree Leaf Node

KEY MAP / INDIRECTION

78

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Key Map

Andy V1

¤ ¤ ¤

Obama
Prashanth

V2

V3

B+Tree Leaf Node

KEY MAP / INDIRECTION

79

Key+Values

¤
Prev

¤
Next

#
Level

#
Slots

Key Map

Andy V1

¤ ¤ ¤

Obama
Prashanth

V2

V3

A·¤ O·¤ P·¤

PREFIX COMPRESSION

Store a minimum prefix that is needed to correctly
route probes into the index.
Since keys are sorted in lexicographical order,
there will be a lot of duplicated prefixes.

80

abcdefghijk lmnopqrstuv

… …… …

PREFIX COMPRESSION

Store a minimum prefix that is needed to correctly
route probes into the index.
Since keys are sorted in lexicographical order,
there will be a lot of duplicated prefixes.

81

abcdefghijk lmnopqrstuv

… …… …

PREFIX COMPRESSION

Store a minimum prefix that is needed to correctly
route probes into the index.
Since keys are sorted in lexicographical order,
there will be a lot of duplicated prefixes.

82

… …… …

abc lmn

PREFIX COMPRESSION

Store a minimum prefix that is needed to correctly
route probes into the index.
Since keys are sorted in lexicographical order,
there will be a lot of duplicated prefixes.

83

… …… …

abc lmn
Andre Andy Annie

PREFIX COMPRESSION

Store a minimum prefix that is needed to correctly
route probes into the index.
Since keys are sorted in lexicographical order,
there will be a lot of duplicated prefixes.

84

… …… …

abc lmn

An dre dy nie

Andre Andy Annie

ADAPATIVE RADIX TREE (ART)

Uses digital representation of keys to examine
prefixes 1-by-1 instead of comparing entire key.
Radix trees properties:
→ The height of the tree depends on the length of keys.
(unlike B+tree where height depends on the number of keys)
→ Does not require rebalancing
→ The path to a leaf node represents the key of the leaf
→ Keys are stored implicitly and can be reconstructed from

paths.
→ Structure does not depend on order of key insertion

85

THE ADAPTIVE RADIX TREE: ARTFUL
INDEXING FOR MAIN-MEMORY DATABASES
ICDE 2013

TRIE VS. RADIX TREE

86

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

TRIE VS. RADIX TREE

87

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

TRIE VS. RADIX TREE

88

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

TRIE VS. RADIX TREE

89

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

TRIE VS. RADIX TREE

90

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

TRIE VS. RADIX TREE

91

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

Radix Tree

ELLO
H

¤

A

¤
T

¤

VE

TRIE VS. RADIX TREE

92

Keys: HELLO, HAT, HAVE

Trie (Re`trie’val - 1959)

E
H

L

¤

L
O

A

¤
T

¤

V

E

Radix Tree

ELLO
H

¤

A

¤
T

¤

VE

ART: ADAPTIVELY SIZED NODES

The index supports four different internal node
types with different capacities.

Pack in multiple digits into a single node to
improve cache locality.

93

ART: MODIFICATIONS

94

¤

ELLO

¤¤

TVE

H

A

ART: MODIFICATIONS

95

¤

ELLO

¤¤

TVE

H

A

Operation: Insert HAIR

ART: MODIFICATIONS

96

¤

ELLO

¤¤

TVE

H

A

¤

IR

Operation: Insert HAIR

ART: MODIFICATIONS

97

¤

ELLO

¤¤

TVE

H

A

¤

IR

Operation: Insert HAIR
Operation: Delete HAT, HAVE

ART: MODIFICATIONS

98

¤

ELLO

¤¤

TVE

H

A

¤

IR

Operation: Insert HAIR
Operation: Delete HAT, HAVE

ART: MODIFICATIONS

99

¤

ELLO

H

A

¤

IR

Operation: Insert HAIR
Operation: Delete HAT, HAVE

ART: MODIFICATIONS

100

¤

ELLO

H

A

¤

IR

Operation: Insert HAIR
Operation: Delete HAT, HAVE

ART: MODIFICATIONS

101

¤

ELLO

H

A

Operation: Insert HAIR
Operation: Delete HAT, HAVE

AIR
¤

ART: BINARY COMPARABLE KEYS

Not all attribute types can be decomposed into
binary comparable digits for a radix tree.
→ Unsigned Integers: Byte order must be flipped to big

endian representation for little endian machines (x86).
→ Signed Integers: Flip two’s-complement so that negative

numbers are smaller than positive.
→ Floats: Classify into group (neg vs. pos, normalized vs.

denormalized), then store as unsigned integer.
→ Compound: Transform each attribute separately.

102

ART: BINARY COMPARABLE KEYS

103

Int Key: 168496141

ART: BINARY COMPARABLE KEYS

104

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

ART: BINARY COMPARABLE KEYS

105

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0A
0B
0C
0D

Big Endian

0D
0C
0B
0A

Little Endian

ART: BINARY COMPARABLE KEYS

106

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0A
0B
0C
0D

Big Endian

0D
0C
0B
0A

Little Endian

0F0F0F
0A

¤

0B

¤

0B0F
¤

OF0F

¤

¤¤

0C
0F 0D

ART: BINARY COMPARABLE KEYS

107

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0A
0B
0C
0D

Big Endian

0D
0C
0B
0A

Little Endian

0F0F0F
0A

¤

0B

¤

0B0F
¤

OF0F

¤

¤¤

0C
0F 0D

ART: BINARY COMPARABLE KEYS

108

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0F0F0F
0A

¤

0B

¤

0B0F
¤

OF0F

¤

¤¤

0C
0F 0D

ART: BINARY COMPARABLE KEYS

109

Hex Key: 0A 0B 0C 0D

Int Key: 168496141

0F0F0F
0A

¤

0B

¤

0B0F
¤

OF0F

¤

¤¤

0C
0F 0D Hex: 0A 0B 1D

Lookup: 658205

BINARY COMPARABLE KEYS

110

6695
3277

78999430
6775

18518

12093 13682

31052

0

8000

16000

24000

32000

Insert Lookup Delete

Ex
ec

ut
io

n
Ti

m
e (

m
s)

CompactIntsKey GenericKey + FastCompare
GenericKey + GenericCompare

Peloton w/ Bw-Tree Index
Data Set: 10m keys (three 64-bit ints)

CONCURRENT ART INDEX

HyPer’s ART is not latch-free.
→ The authors argue that it would be a significant amount

of work to make it latch-free.

Approach #1: Optimistic Lock Coupling
Approach #2: Read-Optimized Write Exclusion

111

THE ART OF PRACTICAL SYNCHRONIZATION
DaMoN 2016

OPTIMISTIC LOCK COUPLING

Optimistic crabbing scheme where writers are not
blocked on readers.
→ Writers increment counter when they acquire latch.
→ Readers can proceed if a node’s latch is available.
→ It then checks whether the latch’s counter has changed

from when it checked the latch.

112

OPTIMISTIC LOCK COUPLING

113

A

B

D G

20

10 35

6 12 23 38 44

C

E F

SEARCH 44

OPTIMISTIC LOCK COUPLING

114

A

B

D G

20

10 35

6 12 23 38 44

C

E F

SEARCH 44

OPTIMISTIC LOCK COUPLING

115

A

B

D G

20

10 35

6 12 23 38 44

C

E F

SEARCH 44

OPTIMISTIC LOCK COUPLING

116

A

B

D G

20

10 35

6 12 23 38 44

C

E F

SEARCH 44

OPTIMISTIC LOCK COUPLING

117

A

B

D G

20

10 35

6 12 23 38 44

C

E F

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

118

A

B

D G

20

10 35

6 12 23 38 44

C

E F

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

119

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

120

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

121

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

122

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

123

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

124

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

SEARCH 44

OPTIMISTIC LOCK COUPLING

125

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

126

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

127

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

128

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

129

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node
C: Read v9
B: Recheck v5
C: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

130

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node
C: Read v9
B: Recheck v5
C: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

131

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

OPTIMISTIC LOCK COUPLING

132

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

v6

OPTIMISTIC LOCK COUPLING

133

A

B

D G

20

10 35

6 12 23 38 44

C

E F

A: Read v3
A: Search Node

v3

v5

v6 v9v4

v4

v5

B: Read v5
A: Recheck v3
B: Search Node

SEARCH 44

v6 X

READ-OPTIMIZED WRITE EXCLUSION

Each node includes an exclusive lock that blocks
only other writers and not readers.
→ Readers proceed without checking versions or locks.
→ Every writer must ensure that reads are always

consistent.

Requires fundamental changes to how threads
make modifications to the data structure.

134

IN-MEMORY INDEXES

135

9.94
15.5 13.3

8.09

29 25.1

2.51 2.78 1.51

17.9

30.5
22

44.9
51.5

42.9

0

20

40

60

Insert-Only Read-Only Read/Update

O
pe

ra
tio

ns
/s

ec
 (M

)

Open Bw-Tree B+Tree Skip List Masstree ART

Processor: 1 socket, 10 cores w/ 2×HT
Workload: 50m Random Integer Keys (64-bit)

Source: Ziqi Wang

https://github.com/wangziqi2016/index-microbench

PARTING THOUGHTS

Andy was wrong about the Bw-Tree and latch-
free indexes.

136

NEXT CLASS

Query Compilation

Reminder: Mid-term Exam on Feb 26th.

Reminder: Project Proposals due on Feb 26th.

137

