
DATABASE SYSTEM IMPLEMENTATION

GT 4420/6422 // SPRING 2019 // @JOY_ARULRAJ

LECTURE #18: OPTIMISTIC CONCURRENCY CONTROL

LOGISTICS

Reminder: Project Updates due on next Tuesday
(Apr 2).

Grading Scheme: No Final Exam.
→ 50% Project
→ 30% Homework
→ 15% Exam
→ 5% Reading Reviews

ANATOMY OF A DATABASE SYSTEM

Connection Manager + Admission Control

Query Parser

Query Optimizer

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes)

Buffer Pool Manager

Log Manager

Memory Manager + Disk Manager

Networking Manager

3

Query
Transactional

Storage Manager

Query Processor

Shared Utilities

Process Manager

Source: Anatomy of a Database System

http://cs.brown.edu/courses/cs295-11/2006/anatomyofadatabase.pdf

TODAY’S AGENDA

Stored Procedures
Optimistic Concurrency Control
Modern OCC Implementations

4

OBSERVATION

Disk stalls are (almost) gone when executing txns
in an in-memory DBMS.

There are still other stalls when an app uses
conversational API to execute queries on DBMS
→ ODBC/JDBC
→ DBMS-specific wire protocols

5

CONVERSATIONAL DATABASE API

6

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

CONVERSATIONAL DATABASE API

7

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

CONVERSATIONAL DATABASE API

8

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

CONVERSATIONAL DATABASE API

9

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

CONVERSATIONAL DATABASE API

10

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

CONVERSATIONAL DATABASE API

11

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

CONVERSATIONAL DATABASE API

12

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

CONVERSATIONAL DATABASE API

13

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

Parser
Planner
Optimizer
Query Execution

SOLUTIONS

Prepared Statements
→ Removes query preparation overhead.

Query Batches
→ Reduces the number of network roundtrips.

Stored Procedures
→ Removes both preparation and network stalls.

14

STORED PROCEDURES

A stored procedure is a group of queries that
form a logical unit and perform a particular task
on behalf of an application directly inside of the
DBMS.
Programming languages:
→ SQL/PSM (standard)
→ PL/SQL (Oracle / IBM / MySQL)
→ PL/pgSQL (Postgres)
→ Transact-SQL (Microsoft / Sybase)

15

STORED PROCEDURES

16

Application

BEGIN
SQL
Program Logic
SQL
Program Logic
⋮

COMMIT

STORED PROCEDURES

17

Application PROC(x)

STORED PROCEDURES

18

Application

CALL PROC(x=99)

PROC(x)

STORED PROCEDURES

19

Application

CALL PROC(x=99)

PROC(x)

STORED PROCEDURE EXAMPLE

20

CREATE PROCEDURE testProc
(num INT, name VARCHAR) RETURNS INT
BEGIN

DECLARE cnt INT DEFAULT 0;
LOOP

INSERT INTO student VALUES (cnt, name);
SET cnt := cnt + 1;
IF (cnt > num) THEN

RETURN cnt;
END IF;

END LOOP;
END;

ADVANTAGES

Reduce the number of round trips between
application and database servers.

Increased performance because queris are pre-
compiled and stored in DBMS.

Procedure reuse across applications.

Server-side txn restarts on conflicts.

21

DISADVANTAGES

Not as many developers know how to write
SQL/PSM code.
→ Safe Languages vs. Sandbox Languages

Outside the scope of the application so it is difficult
to manage versions and hard to debug.

Probably not be portable to other DBMSs.

DBAs usually don’t give permissions out freely…

22

CONCURRENCY CONTROL

The protocol to allow txns to access a database in a
multi-programmed fashion while preserving the
illusion that each of them is executing alone on a
dedicated system.
→ The goal is to have the effect of a group of txns on the

database’s state is equivalent to any serial execution of all
txns.

Provides Atomicity + Isolation in ACID

23

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)
→ Assume txns will conflict so they must acquire locks on

database objects before they are allowed to access them.

Timestamp Ordering (T/O)
→ Assume that conflicts are rare so txns do not need to first

acquire locks on database objects and instead check for
conflicts at commit time.

24

TWO-PHASE LOCKING

25

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)

TWO-PHASE LOCKING

26

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

27

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

28

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

Growing Phase

TWO-PHASE LOCKING

29

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)

Shrinking Phase

LOCK(A) LOCK(B)

Growing Phase

TWO-PHASE LOCKING

30

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

31

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

32

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

33

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

34

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

35

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

36

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

37

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

38

Txn #2

BE
GI
N

CO
MM
IT

LOCK(B) LOCK(A) WRITE(A) UNLOCK(A) UNLOCK(B)WRITE(B)

Txn #1

BE
GI
N

CO
MM
IT

LOCK(A) LOCK(B) UNLOCK(A) UNLOCK(B)READ(A) WRITE(B)LOCK(A) LOCK(B)

TWO-PHASE LOCKING

Deadlock Detection
→ Each txn maintains a queue of the txns that hold the locks

that it waiting for.
→ A separate thread checks these queues for deadlocks.
→ If deadlock found, use a heuristic to decide what txn to

kill in order to break deadlock.
Deadlock Prevention
→ Check whether another txn already holds a lock when

another txn requests it.
→ If lock is not available, the txn will either (1) wait, (2)

commit suicide, or (3) kill the other txn.

39

TIMESTAMP ORDERING

40

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • • • • •

TIMESTAMP ORDERING

41

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • • • • •

TIMESTAMP ORDERING

42

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • • • • •

10001

TIMESTAMP ORDERING

43

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10000

10000

• • •

10000

10001

TIMESTAMP ORDERING

44

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10000

10000

• • •

10000

10001

TIMESTAMP ORDERING

45

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10000

10000

• • •

10000

10001

TIMESTAMP ORDERING

46

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10000

• • •

10000

10001

TIMESTAMP ORDERING

47

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10000

• • •

10000

10001

TIMESTAMP ORDERING

48

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10000

• • •

10000

10001

TIMESTAMP ORDERING

49

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10000

10001

TIMESTAMP ORDERING

50

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10000

10001

TIMESTAMP ORDERING

51

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10000

10001

TIMESTAMP ORDERING

52

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10005

10001

TIMESTAMP ORDERING

53

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10005

10001

TIMESTAMP ORDERING

54

Record Read
Timestamp

Write
Timestamp

A

B 10000

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(B) WRITE(A)

• • • •

10001

10001

• • •

10005

10001

TIMESTAMP ORDERING

Basic T/O
→ Check for conflicts on each read/write.
→ Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)
→ Store all changes in private workspace.
→ Check for conflicts at commit time and then merge.

55

OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data
read/write into a private workspace that is not
visible to other active txns.
When a txn commits, the DBMS verifies that
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.

56

ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
ACM Transactions on Database Systems 1981

http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung

OPTIMISTIC CONCURRENCY CONTROL

57

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

58

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

59

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

60

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Read Phase
Record Value Write

Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

61

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

62

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

63

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp Record Value Write

Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

64

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

65

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

66

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

67

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

68

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

69

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

70

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

71

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B)

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

72

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

73

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

74

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

75

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

OPTIMISTIC CONCURRENCY CONTROL

76

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Workspace

Record Value Write
Timestamp

B 456 10000

123A 10000

Record Value Write
Timestamp

B 456 10000

123A 10000888 ∞
999 ∞

CO
MM
IT

888

999 10001

10001

OPTIMISTIC CONCURRENCY CONTROL

77

Txn #1

BE
GI
N

READ(A) WRITE(A) WRITE(B) VALIDATE PHASE WRITE PHASE

10001

Record Value Write
Timestamp

B 456 10000

123A 10000

CO
MM
IT

888

999 10001

10001

READ PHASE

Track the read/write sets of txns and store their
writes in a private workspace.
The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure
repeatable reads.

78

VALIDATION PHASE

When the txn invokes COMMIT, the DBMS checks
if it conflicts with other txns.

Two methods for this phase:
→ Backward Validation
→ Forward Validation

79

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

80

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

81

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

82

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

83

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

84

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

Validation Scope

FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

85

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

86

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

87

Txn #1

Txn #2

Txn #3

TIME

CO
MM

IT

CO
MM

IT

CO
MM

IT

Validation Scope

VALIDATION PHASE

Original OCC uses serial validation.
Parallel validation means that each txn must check
the read/write sets of other txns that are trying to
validate at the same time.
→ Each txn has to acquire locks for its write set records in

some global order.
→ The txn does not need locks for read set records.

88

WRITE PHASE

The DBMS propagates the changes in the txn’s
write set to the database and makes them visible to
other txns.
As each record is updated, the txn releases the lock
acquired during the Validation Phase.

89

TIMESTAMP ALLOCATION

Mutex
→ Worst option. Mutexes are the "Hitler of Concurrency".
Atomic Addition
→ Requires cache invalidation on write.
Batched Atomic Addition
→ Needs a back-off mechanism to prevent fast burn.
Hardware Clock
→ Not sure if it will exist in future CPUs.
Hardware Counter
→ Not implemented in existing CPUs.

90

TIMESTAMP ALLOCATION

91

STARING INTO THE ABYSS: AN EVALUATION OF
CONCURRENCY CONTROL WITH ONE THOUSAND CORES
VLDB 2014

MODERN OCC

Harvard/MIT Silo
MIT/CMU TicToc

92

SILO

Single-node, in-memory OLTP DBMS.
→ Serializable OCC with parallel backward validation.
→ Stored procedure-only API.
No writes to shared-memory for read txns.
Batched timestamp allocation using epochs.

Pure awesomeness from Eddie Kohler.

93

SPEEDY TRANSACTIONS IN MULTICORE
IN-MEMORY DATABASES
SOSP 2013

https://en.wikipedia.org/wiki/Eddie_Kohler

SILO

Single-node, in-memory OLTP DBMS.
→ Serializable OCC with parallel backward validation.
→ Stored procedure-only API.
No writes to shared-memory for read txns.
Batched timestamp allocation using epochs.

Pure awesomeness from Eddie Kohler.

94

SPEEDY TRANSACTIONS IN MULTICORE
IN-MEMORY DATABASES
SOSP 2013

https://en.wikipedia.org/wiki/Eddie_Kohler

SILO

Single-node, in-memory OLTP DBMS.
→ Serializable OCC with parallel backward validation.
→ Stored procedure-only API.
No writes to shared-memory for read txns.
Batched timestamp allocation using epochs.

Pure awesomeness from Eddie Kohler.

95

SPEEDY TRANSACTIONS IN MULTICORE
IN-MEMORY DATABASES
SOSP 2013

https://en.wikipedia.org/wiki/Eddie_Kohler

SILO: EPOCHS

Time is sliced into fixed-length epochs (40ms).
All txns that start in the same epoch will be
committed together at the end of the epoch.
→ Txns that span an epoch have to refresh themselves to be

carried over into the next epoch.

Worker threads only need to synchronize at the
beginning of each epoch.

96

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next
value in its assigned batch.

97

Worker Worker

Worker Worker

Epoch
Thread

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next
value in its assigned batch.

98

Worker Worker

Worker Worker

Epoch
Thread

Epoch=100

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next
value in its assigned batch.

99

Worker Worker

Worker Worker

Epoch
Thread

Epoch=100[0,10]

[11,20] [31,40]

[21,30]

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next
value in its assigned batch.

100

Worker Worker

Worker Worker

Epoch
Thread

[0,10]

[11,20] [31,40]

[21,30]Epoch=200

SILO: COMMIT PROTOCOL

101

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13

TID Word

SILO: COMMIT PROTOCOL

102

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13

BATCH TIMESTAMPEPOCH EXTRA

TID Word

SILO: COMMIT PROTOCOL

103

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13

BATCH TIMESTAMPEPOCH EXTRA

TID Word

Write Lock Bit
Latest Version Bit
Absent Bit

SILO: COMMIT PROTOCOL

104

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13

TID Word

SILO: COMMIT PROTOCOL

105

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

TID Word

SILO: COMMIT PROTOCOL

106

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

TID Word

SILO: COMMIT PROTOCOL

107

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

TID Word

SILO: COMMIT PROTOCOL

108

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set

TID Word

SILO: COMMIT PROTOCOL

109

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set

TID Word

SILO: COMMIT PROTOCOL

110

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set

???

TID Word

SILO: COMMIT PROTOCOL

111

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set

???

TID Word

SILO: COMMIT PROTOCOL

112

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set

TID Word

SILO: COMMIT PROTOCOL

113

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set
Step #3: Install Write Set

TID Word

SILO: COMMIT PROTOCOL

114

ATTR1 ATTR2

#-###-# John $100

#-###-# Tupac $999

#-###-# Wiz $67

#-###-# O.D.B. $13
Step #1: Lock Write Set

Workspace
Read Set

Write Set

#-###-# O.D.B. $13

Tupac $777

#-###-# Tupac $999

Step #2: Examine Read Set
Step #3: Install Write Set

TID Word

$777#-###-#

SILO: GARBAGE COLLECTION

Cooperative threads GC.
Each worker thread marks a deleted object with a
reclamation epoch.
→ This is the epoch after which no thread could access the

object again, and thus can be safely removed.
→ Object references are maintained in thread-local storage

to avoid unnecessary data movement.

115

SILO: RANGE QUERIES

DBMS handles phantoms by tracking the txn’s
scan set (node set) on indexes.
→ Re-execute scans in the validation phase to see whether

the index has changed.
→ Have to include “virtual” entries for keys that do not exist

in the index.

We will discuss key-range and index gap locking
next week…

116

SILO: PERFORMANCE

117

Source: Eddie Kohler

Database: TPC-C with 28 Warehouses
Processor: 4 sockets, 8 cores per socket

http://15721.courses.cs.cmu.edu/spring2016/papers/tu-sosp2013.pdf

SILO: PERFORMANCE

118

Source: Eddie Kohler

Database: TPC-C with 28 Warehouses
Processor: 4 sockets, 8 cores per socket

http://15721.courses.cs.cmu.edu/spring2016/papers/tu-sosp2013.pdf

PARTING THOUGHTS

Trade-off between aborting txns early or later.
→ Early: Avoid wasted work for txns that will eventually

abort, but has checking overhead.
→ Later: No runtime overhead but lots of wasted work

under high contention.

Silo is a very influential system.

119

NEXT CLASS

Multi-Version Concurrency Control

120

NEXT CLASS

Multi-Version Concurrency Control

121

