Georgia &
Tech|)

DATABASE SYSTEM IMPLEMENTATION
GT 4420/6422 // SPRING 2019 // @)OY_ARULRAJ

LECTURE #18: OPTIMISTIC CONCURRENCY CONTROL

CREATING THE NEXT"

Y/

LOGISTICS

Reminder: Project Updates due on next Tuesday
(Apr 2).

Grading Scheme: No Final Exam.

— 50% Project
— 30% Homework
— 15% Exam

— 5% Reading Reviews

ANATOMY OF A DATABASE SYSTEM

Query

v

Connection Manager + Admission Control Process Manager

Query Parser
Query Optimizer Query Processor

Query Executor

Lock Manager (Concurrency Control)

Access Methods (or Indexes) S Trans% tional
Buffer Pool Manager torag e vianager
Log Manager

Memory Manager + Disk Manager Shared Utilities
Networking Manager

Source: Anatomy of a Database System

http://cs.brown.edu/courses/cs295-11/2006/anatomyofadatabase.pdf

TODAY'S AGENDA

Stored Procedures
Optimistic Concurrency Control
Modern OCC Implementations

OBSERVATION

Disk stalls are (almost) gone when executing txns
in an in-memory DBMS.

There are still other stalls when an app uses
conversational API to execute queries on DBMS

— ODBC/JDBC
— DBMS-specific wire protocols

CONVERSATIONAL DATABASE API
Application

BEGIN

SQL

Program Logic
SQL

Program Logic

COMMIT

CONVERSATIONAL DATABASE API
Application

‘BEGIN

SQL
Program Logic
SQL
Program Logic

COMMIT

CONVERSATIONAL DATABASE API

Application a
‘ BEGIN
Program Logic

SQL
Program Logic

COMMIT

CONVERSATIONAL DATABASE API

Application

‘BEGIN

SQL
Program Logic
SQL
Program Logic

COMMIT

—

Parser

Planner
Optimizer
Query Execution

CONVERSATIONAL DATABASE API

Application g ;"'S‘?’”
anner
a Optimizer
‘ BEGIN Query Execution

Program Logic
SQL

Program Logic

COMMIT

CONVERSATIONAL DATABASE API

Application gﬂﬁf;r
a Optimizer
‘ BEGIN Query Execution
SQL T——
Program Logic
sQL

Program Logic

COMMIT

X

11

CONVERSATIONAL DATABASE API

Application a
‘ BEGIN
Program Logic

Program Logic

COMMIT

X

Parser

Planner
Optimizer
Query Execution

12

CONVERSATIONAL DATABASE API

Application a
‘ BEGIN
SQL “T——
Program Logic
Program Logic

Parser

Planner
Optimizer
Query Execution

13

SOLUTIONS

Prepared Statements
— Removes query preparation overhead.

Query Batches

— Reduces the number of network roundtrips.

Stored Procedures

— Removes both preparation and network stalls.

14

STORED PROCEDURES

A stored procedure is a group of queries that
form a logical unit and perform a particular task

on behalf of an application directly inside of the
DBMS.

Programming languages:

— SQL/PSM (standard)

— PL/SQL (Oracle / IBM / MySQL)
— PL/pgSQL (Postgres)

— Transact-SQL (Microsoft / Sybase)

15

STORED PROCEDURES
Application

BEGIN

SQL

Program Logic
SQL

Program Logic

COMMIT

16

Application

STORED PROCEDURES

PROC(x)

BEGIN

SQL

Program Logic
sQL

Program Logic

COMMIT

17

STORED PROCEDURES

Application

CALL PROC(x=99)

PROC(x)

BEGIN

SQL

Program Logic
sQL

Program Logic

COMMIT

18

STORED PROCEDURES

Application a PROC(x)
SQL
CALL PROC(x=99) T orogran Logic

— SQL

Program Logic

COMMIT

STORED PROCEDURE EXAMPLE

CREATE PROCEDURE testProc
(num INT, name VARCHAR) RETURNS INT
BEGIN
DECLARE cnt INT DEFAULT 0©;
LOOP
INSERT INTO student VALUES (cnt, name);
SET cnt := ¢cnt + 1;
IF (cnt > num) THEN
RETURN cnt;
END IF;
END LOOP;
END;

ADVANTAGES

Reduce the number of round trips between
application and database servers.

Increased performance because queris are pre-
compiled and stored in DBMS.

Procedure reuse across applications.

Server-side txn restarts on conflicts.

21

DISADVANTAGES

Not as many developers know how to write
SQL/PSM code.

— Safe Languages vs. Sandbox Languages

Outside the scope of the application so it is difficult
to manage versions and hard to debug.

Probably not be portable to other DBMSs.

DBAs usually don’t give permissions out freely...

)

23

CONCURRENCY CONTROL

The protocol to allow txns to access a database in a
multi-programmed fashion while preserving the
illusion that each of them is executing alone on a

dedicated system.

— The goal is to have the effect of a group of txns on the
database’s state is equivalent to any serial execution of all
txns.

Provides Atomicity + Isolation in ACID

CONCURRENCY CONTROL SCHEMES

Two-Phase Locking (2PL)

— Assume txns will conflict so they must acquire locks on
database objects before they are allowed to access them.

Timestamp Ordering (T/O)

— Assume that conflicts are rare so txns do not need to first
acquire locks on database objects and instead check for
conflicts at commit time.

24

TWO-PHASE LOCKING

Txn #1

O
060 08| @ | al o
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

COMMIT

TWO-PHASE LOCKING

Txn #1

D
060 08| @ | al o
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

COMMIT

TWO-PHASE LOCKING

Txn #1

D
060 08| @ | al o
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

COMMIT

TWO-PHASE LOCKING

Txn #1

D
060 08| @ | al o
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

Growing Phase

COMMIT

28

TWO-PHASE LOCKING

Txn #1

O
060 08| @ | al o
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

Growing Phase Shrinking Phase

COMMIT

29

TWO-PHASE LOCKING

Txn #1

D
060 08| @ | al o
LOCK(A) READ(A) LOCK(B) | WRITE(B) | UNLOCK(A) | UNLOCK(B)

COMMIT

TWO-PHASE LOCKING

LOCK(B) | WRITE(B)
Txn #2
\\
O @
Lock(B) | WRITE(B) | Lock(A) | WRITE(A) | UNLOCK(A) | UNLOCK(B)

LOCK(A)

LOCK(A)

Txn #2

E

TWO-PHASE LOCKING

LOCK(B) | WRITE(B)

WRITE(B) | LOCK(A) | WRITE(A) | UNLOCK(A)

UNLOCK(B)

32

LOCK(A)

Txn #2

E

TWO-PHASE LOCKING

LOCK(B) | WRITE(B)

WRITE(B) | LOCK(A) | WRITE(A) | UNLOCK(A)

UNLOCK(B)

33

LOCK(A)

Txn #2

E

TWO-PHASE LOCKING

LOCK(B) | WRITE(B)

WRITE(B) | LOCK(A) | WRITE(A) | UNLOCK(A)

UNLOCK(B)

34

LOCK(B)

TWO-PHASE LOCKING

WRITE(B)

LOCK(A)

WRITE(A)

UNLOCK(A)

UNLOCK(B)

35

LOCK(B)

TWO-PHASE LOCKING

WRITE(B)

LOCK(A)

WRITE(A)

UNLOCK(A)

UNLOCK(B)

36

LOCK(B)

TWO-PHASE LOCKING

N\

WRITE(B)

UNLOCK(B)

37

TWO-PHASE LOCKING

UNLOCK(B)

38

39

TWO-PHASE LOCKING

Deadlock Detection

— Each txn maintains a queue of the txns that hold the locks
that it waiting for.

— A separate thread checks these queues for deadlocks.

— If deadlock found, use a heuristic to decide what txn to
kill in order to break deadlock.

Deadlock Prevention

— Check whether another txn already holds a lock when
another txn requests it.

— Iflock is not available, the txn will either (1) wait, (2)
commit suicide, or (3) kill the other txn.

TIMESTAMP ORDERING

Txn #1

W S
CE;EE> lS’i e & o o |4‘1 e o o
READ(A) WRITE(B) WRITE(A)

COMMIT

©)

1

TIMESTAMP ORDERING

@\ e 6 o o @\\

WRITE(B) WRITE(A)

41

10001 |

1

TIMESTAMP ORDERING

@\ e 6 o o @\\

WRITE(B) WRITE(A)

42

¢1

TIMESTAMP ORDERING

e 6 o °o
WRITE(B)
Record TimReesatdamp Timgg%gmp
A 10000 10000
B 10000 10000

WRITE(A)

43

50

READ(A)

TIMESTAMP ORDERING

WRITE(B)

Reaod

Timestau

10000

Write
Timestamp

10000

10000

10000

WRITE(A)

44

50

READ(A)

TIMESTAMP ORDERING

WRITE(B)

. Read
Timestamp

10000

Write
Timestamp

10000

10000

10000

WRITE(A)

45

50

READ(A)

TIMESTAMP ORDERING

WRITE(B)

. Read
Timestamp

10001

Write
Timestamp

10000

10000

10000

WRITE(A)

46

50

READ(A)

TIMESTAMP ORDERING

e 6 o °o
WRITE(B)
Record TimReesatdamp Timgg%gmp
A 10001 10000
B 10000 10000

WRITE(A)

47

50

READ(A)

TIMESTAMP ORDERING

A 0001

10000

B 10000

10000

WRITE(A)

48

50

READ(A)

TIMESTAMP ORDERING

A 0001

10000

B 10000

10001

WRITE(A)

49

50

READ(A)

TIMESTAMP ORDERING

e 6 o °o
WRITE(B)
Record TimReesatdamp Timgg%gmp
A 10001 10000
B 10000 10001

WRITE(A)

50

50

READ(A)

TIMESTAMP ORDERING

WRITE(B)

Record

Read

Write

Timestamp Timestamp
A 10001 10000
B 10000 10001

WRITE(A)

51

50

READ(A)

TIMESTAMP ORDERING

WRITE(B)

Record

Read

Write

Timestamp Timestamp
A 10001 10005
B 10000 10001

WRITE(A)

52

50

READ(A)

TIMESTAMP ORDERING

WRITE(B) WRITE(A)

_ Read Write
Timestamp Timestam~

53

50

READ(A)

TIMESTAMP ORDERING

QQO
o we

_ Read Write
Timestamp Timestam~

WRITE(B) WRITE(A)

54

TIMESTAMP ORDERING

Basic T/O

— Check for conflicts on each read/write.

— Copy tuples on each access to ensure repeatable reads.

Optimistic Currency Control (OCC)

— Store all changes in private workspace.
— Check for conflicts at commit time and then merge.

55

OPTIMISTIC CONCURRENCY CONTROL

Timestamp-ordering scheme where txns copy data
read/write into a private workspace that is not
visible to other active txns.

When a txn commits, the DBMS verifies that
there are no conflicts.

First proposed in 1981 at CMU by H.T. Kung.

| ON OPTIMISTIC METHODS FOR CONCURRENCY CONTROL
— | ACM Transactions on Database Systems 1981

56

http://dl.acm.org/citation.cfm?id=319567
https://en.wikipedia.org/wiki/H._T._Kung

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

O N =

ol | [|E
S

READ(A) WRITE(A) | WRITE(B) | Y

57

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

N N
@ | #
READ(A) | WRITE(A) | WRITE(B)

Record Value

COMMIT

Write

Timestamp

A 123 10000
B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1
N N
4 | (4
WRITE(A) | WRITE(B)

Record Value

COMMIT

READ(A)

Write

Timestamp

A 123 10000
B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1
\\
WRITE(A) wRITE(B)

Read Phase

READ(A)
Record Value

COMMIT

Write

Timestamp

A 123 10000
B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1
N N
4 | (4
WRITE(A) | WRITE(B)

Record Value

COMMIT

READ(A)

Write

Timestamp

A 123 10000
B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1
N N
4 | (4
WRITE(A) | WRITE(B)

Record Value

COMMIT

READ(A)

Write
Timestamp

A 123 10000
B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

65\ @ | @

READ(A) | WRITE(A) | WRITE(B)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

Write

Timestamp Record Value

Record Value

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

65\ @ | @

READ(A) | WRITE(A) | WRITE(B)

W orkspace

Write
Timestamp

Write
Timestamp

10000 «

Record Value Record Value

A 123

B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(A)

WRITE(B)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

Write
Timestamp

Record Value

Record value

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(B)

WRITE(A)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

Write
Timestamp

Record value Record Value

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(A)

WRITE(B)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

Write
Timestamp

Record Value

Record value

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(B)

WRITE(A)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

‘write
Iimestamp

Record Value

Record Value

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(B)

WRITE(A)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

‘write
Iimestamp

Record Value

Record Value

B 456 10000

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(B)

WRITE(A)

W orkspace

Write
Timestamp

A 123 10000
B 456 10000

‘write
Iimestamp

Record Value

Record Value

B 999 o0

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

WRITE(A) | WRITE(B)

W orkspace

Write
Timestamp

Write
Timestamp

A 888 (o o) A 123 10000
B 999 (o o) B 456 10000

Record Value

Record Value

72

OPTIMISTIC CONCURRENCY CONTROL

Txn #1

60

READ(A)

@ (@] o | &

WRITE(A) WRITE(B) .IDATE PHASE WRITE PHASE

Workspace

Write
Timestamp

Write
Timestamp

A 888 (o 0] A 123 10000
B 999 (o 0] B 456 10000

Record Value

Record Value

OPTIMISTIC CONCURRENCY CONTROL

By

Txn #1

60

READ(A)

SAREE

WRITE(A) WRITE(B) .IDATE PHASE WRITE PHASE

Workspace

Write

Write
Timestamp

A 888 (o 0] A 123 10000
B 00 B 456 10000

Record Value Record Value

Timestamp

OPTIMISTIC CONCURRENCY CONTROL

By

Txn #1

60

READ(A)

SAREE

WRITE(A) WRITE(B) .IDATE PHASE WRITE PHASE

Workspace

Write

Write
Timestamp

A 888 (o 0] A 123 10000
B 00 B 456 10000

Record Value Record Value

Timestamp

OPTIMISTIC CONCURRENCY CONTE

Txn #1

60

READ(A)

WRITE(A) WRITE(B) .IDATE PHASE WRITE PHASE

Workspace

Write

Write
Timestamp

A 888 (o 0] A 123 10000
B 00 B 456 10000

Record Value Record Value

Timestamp

OPTIMISTIC CONCURRENCY CONTE

Txn #1

60

READ(A)

WRITE(A) WRITE(B) .IDATE PHASE WRITE PHASE

Workspace

Write

Record Value

Timestamp Timestamp

A 888 10001
B 999 10001

OPTIMISTIC CONCURRENCY CONT

Txn #1

60

READ(A)

WRITE(A) | WRITE(B) _.IDATE PHASE

WRITE PHASE

Write
Timestamp

Record Value

A 888 10001
B 999 10001

READ PHASE

Track the read/write sets of txns and store their
writes in a private workspace.

The DBMS copies every tuple that the txn accesses
from the shared database to its workspace ensure
repeatable reads.

78

VALIDATION PHASE

When the txn invokes COMMIT, the DBMS checks
if it conflicts with other txns.

Two methods for this phase:
— Backward Validation
— Forward Validation

79

80

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

ronor N

Txn #2 | |

iw
\ 4

Txn #3

81

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

roner N

Txn #3

iw
\ 4

82

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

renet

Txn #3

TIME

83

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

84

BACKWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with those of any txns that have
already committed.

Validation Scope

85

FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

ronor N

Txn #2 | |

iw
\ 4

Txn #3

FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

ren vt |
o

Txn #3

TIME

86

87

FORWARD VALIDATION

Check whether the committing txn intersects its
read/write sets with any active txns that have not
yet committed.

rener

Txn #2 | |

Validgtion Scope

S - — p——"

Txn #3

COMMIT

VALIDATION PHASE

Original OCC uses serial validation.

Parallel validation means that each txn must check
the read/write sets of other txns that are trying to

validate at the same time.

— Each txn has to acquire locks for its write set records in
some global order.

— The txn does not need locks for read set records.

88

WRITE PHASE

The DBMS propagates the changes in the txn’s
write set to the database and makes them visible to
other txns.

As each record is updated, the txn releases the lock
acquired during the Validation Phase.

89

TIMESTAMP ALLOCATION

Mutex

— Worst option. Mutexes are the "Hitler of Concurrency".

Atomic Addition
— Requires cache invalidation on write.

Batched Atomic Addition
— Needs a back-off mechanism to prevent fast burn.

Hardware Clock

— Not sure if it will exist in future CPUs.

Hardware Counter
— Not implemented in existing CPUs.

90

TIMESTAMP ALLOCATION

10000¢ o—o (Clock

F | =0 Hardware

| ~~a Atomic batch=16
1000f| o0 © Atomic batch=8

=~ = Atomic
Mutex

Throughput (Million ts/s)

1 10 100 1000

Number of Cores

== | STARING INTO THE ABYSS: AN EVALUATION OF
CONCURRENCY CONTROL WITH ONE THOUSAND CORES
VLDB 2014

MODERN OCC

Harvard/MIT Silo
MIT/CMU TicToc

92

SILO

Single-node, in-memory OLTP DBMS.

— Serializable OCC with parallel backward validation.

— Stored procedure-only API.
No writes to shared-memory for read txns.
Batched timestamp allocation using epochs.

Pure awesomeness from Eddie Kohler.

— | SPEEDY TRANSACTIONS IN MULTICORE

IN-MEMORY DATABASES

SOSP 2013

93

https://en.wikipedia.org/wiki/Eddie_Kohler

Single
— Seri
— Stor

No w1
Batcha

Pure ¢

SPEEDY TRANSACTIONS IN
IN-MEMORY DATABASES
SOSP 2013

Session 18: Transactions and Consistency

Thursday 1:30-3:00
Grand Ballroom A
Session Chair: Andy Pavlo (CMU)

e TARDIS: A Branch-and-Merge Approach To Weak Consistency
Natacha Crooks; Youer Pu: Nancy Estrada; Trinabh Gupta; Lorenzo
Alvisi; Allen Clement

TicToc: Time Traveling Optimistic Concurrency Control
Xiangyao Yu; Andy Pavlo; Daniel Sanchez; Srinivas Devadas

Scaling Multicore Databases via Constrained Parallel Execution
Zhaoguo Wang; Yang Cui; Han Yi: Shuai Mu; haibo Chen; Jinyang Li

Towards a Non-2PC Transaction Management in Distributed
Database Systems

Qian Lin; Pengfei Chang; Gang Chen:; Beng Chin Ooi; Kian-Lee Tan;
Zhengkui Wang

* ERMIA: Fast memory-optimized database system for
heterogeneous workloads

Kangnyeon Kim; Tianzheng Wang; Ryan Johnson; Ippokratis Pandis

Transaction Healing: Scaling Optimistic Concurrency Control on
Multicores
Yingjun Wu; Chee Yong Chan; Kian-Lee Tan

94

https://en.wikipedia.org/wiki/Eddie_Kohler

Single
— Seri
— Stor

No w1
Batcha

Pure ¢

SPEEDY TRANSACTIONS IN
IN-MEMORY DATABASES
SOSP 2013

Session 18: Transactions and Consistency

Thursday 1:30-3:00
Grand Ballroom A
Session Chair: Andy Pavlo (CMU)

e TARDIS: A Branch-and-Merge Approach To Weak Consistency
Natacha Crooks; Youer Pu: Nancy Estrada; Trinabh Gupta; Lorenzo
Alvisi; Allen Clement

TicToc: Time Traveling Optimistic Concurrency Control
Xiangyao Yu; Andy Pavlo; Daniel Sanchez; Srinivas Devadas

Scaling Multicore Databases via Constrained Parallel Execution
Zhaoguo Wang; Yang Cui; Han Yi: Shuai Mu; haibo Chen; Jinyang Li

Towards a Non-2PC Transaction Management in Distributed
Database Systems

Qian Lin; Pengfei Chang; Gang Chen; Beng Chin Ooi: Kian-Lee Tan;
Zhengkui Wang

* ERMIA: Fast memory-optimized database system for
heterogeneous workloads

Kangnyeon Kim; Tianzheng Wang; Ryan Johnson; Ippokratis Pandis

Transaction Healing: Scaling Optimistic Concurrency Control on
Multicores
Yingjun Wu; Chee Yong Chan; Kian-Lee Tan

95

https://en.wikipedia.org/wiki/Eddie_Kohler

SILO: EPOCHS

Time is sliced into fixed-length epochs (40ms).

All txns that start in the same epoch will be

committed together at the end of the epoch.
— Txns that span an epoch have to refresh themselves to be
carried over into the next epoch.

Worker threads only need to synchronize at the
beginning of each epoch.

96

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next
value in its assigned batch.

‘@

Thread

Epoch

97

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next
value in its assigned batch.

Epoch=100

Epoch

Thread

98

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next

value in its assigned batch.
9,10 21,30

Epoch=100

Epoch
Thread

99

100

SILO: TRANSACTION IDS

Each worker thread generates a unique txn id
based on the current epoch number and the next

value in its assigned batch.
9,10 21,30

Epoch=200

Epoch
Thread

SILO: COMMIT PROTOCOL

TID Word ATTR1 ATTR2
H-HH44#-4# John $100
H#- 4 - Tupac $999
H-HH44#-4# Wiz $67
H-HH44#-4# 0.D.B. $13

101

102

SILO: COMMIT PROTOCOL

TID Word ATTR1 ATTR2

“““““““ #-###-# [John $100

“““““““ P L $999

“““““““ g4 |} Wiz 367
""""""" - - # "-___O.D.B. $13

EPOCH BATCH TIMESTAMP EXTRA

103

SILO: COMMIT PROTOCOL

TID Word ATTR1 ATTR2

“““““““ #-###-# [John $100

“““““““ P L $999

“““““““ g4 |} Wiz 367
""""""" - - # "-___O.D.B. $13

Write Lock Bit

EPOCH BATCH TIMESTAMP EXTRA Latest Ve.rsion Bit
Absent Bit

SILO: COMMIT PROTOCOL

TID Word ATTR1 ATTR2
H-HH44#-4# John $100
H#- 4 - Tupac $999
H-HH44#-4# Wiz $67
H-HH44#-4# 0.D.B. $13

104

SILO: COMMIT PROTOCOL

Workspace
Read Set
H-###-# 1 0.D.B. $13
#-###-# | Tupac $999
Write Set
Tupac $777

TID Word ATTR1 ATTR2
H-HH44#-4# John $100
H#- 4 - Tupac $999
H-HH44#-4# Wiz $67
H-HH44#-4# 0.D.B. $13

105

SILO: COMMIT PROTOCOL

Workspace
Read Set
H-###-# 1 0.D.B. $13
#-###-# | Tupac $999
Write Set
Tupac $777

Step #1: Lock Write Set

TID Word ATTR1 ATTR2
H-HH44#-4# John $100
H#- 4 - Tupac $999
H-HH44#-4# Wiz $67
H-HH44#-4# 0.D.B. $13

106

107

SILO: COMMIT PROTOCOL

Workspace
Read Set
-4 | 0.D.B. | $13 LEDRNCNC
#-###-# | Tupac | $999 = o John $100
Write Set 1 DR Tupac $999
5777 e | wz | ser
#-#i#-# | 0.D.B. $13

Step #1: Lock Write Set

108

SILO: COMMIT PROTOCOL

Workspace

Read Set

-4 | 0.D.B. | $13 LEDRNCNC

#-###-# | Tupac | $999 = o John $100
Write Set ! I Tupac $999
Tupac | $777 # - - # Wiz $67

- - # 0.D.B. $13

Step #1: Lock Write Set

Step #2: Examine Read Set

109

SILO: COMMIT PROTOCOL

Workspace
Read Set
0.0.B. | 13 Ul e
#-###-# | Tupac | $999 o AL John $100
Write Set t DRt Tupac $999
Tupac | $777 H- - Wiz $67
#-###-# | 0.D.B. $13
Step #1: Lock Write Set

Step #2: Examine Read Set

110

SILO: COMMIT PROTOCOL

Workspace
Read Set

#-#u#-# 1 0.0.8. | $13 LY Lere
#-###-# | Tupac $999
Write Set

Tupac $777 H- -4 Wiz $67
i Jp dr H- it -4 0.D.B. $13

Step #1: Lock Write Set
Step #2: Examine Read Set

SILO: COMMIT PROTOCOL

Workspace
Read Set
0.0.B. | 13 Ul e
#-###-# | Tupac | $999 o AL John $100
Write Set t B Tupac $999
Tupac | $777 [- Wiz $67
P72 KN #-#H-# 0.D.B. $13

Step #1: Lock Write Set
Step #2: Examine Read Set

Workspace
Read Set

SILO: COMMIT PROTOCOL

$13

#-###-# | 0.D.B.
#-###-# | Tupac

$999

Write Set

Tupac

$777

Step #1: Lock Write Set

Step #2: Examine Read Set

TID Word

H-HH44#-4# John $100
H#- 4 - Tupac $999
H-HH44#-4# Wiz $67
H-HH44#-4# 0.D.B. $13

112

113

SILO: COMMIT PROTOCOL

Workspace

Read Set

-4 | 0.D.B. | $13 LEDRNCNC

#-###-# | Tupac | $999 = o John $100
Write Set ! I Tupac $999
Tupac | $777 # - - # Wiz $67

- - # 0.D.B. $13

Step #1: Lock Write Set

Step #2: Examine Read Set
Step #3: Install Write Set

SILO: COMMIT PROTOCOL

Workspace
Read Set
H-###-# 1 0.D.B. $13
#-###-# | Tupac $999
Write Set

/

Step #1: Lock Write Set

Step #2: Examine Read Set
Step #3: Install Write Set

TID Word

H-HH44#-4# John $100
#-fHtH-# Tupac $777
H-HH44#-4# Wiz $67
H-HH44#-4# 0.D.B. $13

114

115

SILO: GARBAGE COLLECTION

Cooperative threads GC.

Each worker thread marks a deleted object with a

reclamation epoch.
— This is the epoch after which no thread could access the

object again, and thus can be safely removed.
— Object references are maintained in thread-local storage
to avoid unnecessary data movement.

116

SILO: RANGE QUERIES

DBMS handles phantoms by tracking the txn’s

scan set (node set) on indexes.

— Re-execute scans in the validation phase to see whether
the index has changed.

— Have to include “virtual” entries for keys that do not exist
in the index.

We will discuss key-range and index gap locking
next week...

1.4M
1.2M

IM
0.8M
0.6M
0.4M
0.2M

Throughput (txns/sec)

SILO: PERFORMANCE

Database: TPC-C with 28 W arehouses
Processor: 4 sockets, 8 cores per socket

Partitioned-Store
MemSilo+Split

— MemSilo
| | | | |

0 10 20 30 40 50

% cross-partition transactions

117

Source: Eddie Kohler

http://15721.courses.cs.cmu.edu/spring2016/papers/tu-sosp2013.pdf

1.4M
1.2M

IM
0.8M
0.6M
0.4M
0.2M

Throughput (txns/sec)

SILO: PERFORMANCE

Database: TPC-C with 28 W arehouses
Processor: 4 sockets, 8 cores per socket

Partitioned-Store
MemSilo+Split

— MemSilo
| | | | |

0 10 20 30 40 50

% cross-partition transactions

118

Source: Eddie Kohler

http://15721.courses.cs.cmu.edu/spring2016/papers/tu-sosp2013.pdf

PARTING THOUGHTS

Trade-oft between aborting txns early or later.
— Early: Avoid wasted work for txns that will eventually

abort, but has checking overhead.
— Later: No runtime overhead but lots of wasted work
under high contention.

Silo is a very influential system.

119

120

NEXT CLASS

Multi-Version Concurrency Control

121

Paper ID 366
Title This is the Best Paper Ever on In-Memory Multi-Version Concurrency Control

Masked Meta-Reviewer ID: Meta_Reviewer_1

Meta-Reviews:
Overall Rating

Revise

Dear Authors,
Thank you for your submission to PVLDB Vol 10.

We have now received the reviews for your manuscript as an "Experiments and Analyses
Papers" paper from the Review Board. While the reviewers appreciate your research results,
Summary Comments they have given a substantial amount of comments for your revision (enclosed).

We encourage you to revise your paper taking into consideration of the reviewer comments,
and submit an improved version of the manuscript in due course.

Regards,

Associate Editor

- Remove "This is the Best Paper Ever" from the title and revise it to be scientific and reflect

the experimental nature of the work.

from design issues in the classification to make the taxonomy more general.

