Georgia &
Tech|)

DATABASE SYSTEM IMPLEMENTATION
GT 4420/6422 // SPRING 2019 // @)OY_ARULRAJ

LECTURE #19: MULTI-VERSION CONCURRENCY
CONTROL (PART 1)

CREATING THE NEXT"

Y/

TODAY'S AGENDA

Compare-and-Swap (CAS)
[solation Levels
MVCC Design Decisions

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

__sync_bool compare_and_swap(&M, 20, 30)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

Address

__sync_bool compa r'e_and_swap(&'M, 20, 30)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

Address

20

__sync_bool compa r'e_and_swap(&'M, 20, 30)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

Address

20

__sync_bool compa r'e_and_swap(&'M, 2?, 30)

Compare
Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
Address Value

20

__sync_bool compa r'e_and_swap(&'M, 2?, 3'0)

Compare
Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
Address Value

20

__sync_bool compa r'e_and_swap(&'M, 2?, 3'0)

Compare
Value

10

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
Address Value

30

__sync_bool compa r'e_and_swap(&'M, 2?, 3'0)

Compare
Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
Address Value

30

__sync_bool compa r'e_and_swap(&'M, 2?, 3'5)

Compare
Value

11

COMPARE-AND-SWAP

Atomic instruction that compares contents of a

memory location M to a given value V
— If values are equal, installs new given value V° in M
— Otherwise operation fails

New
Address Value

30

__sync_bool compare_and_swap (&'M, 2? s 35) x

Compare
Value

12

OBSERVATION

Serializability is useful because it allows
programmers to ignore concurrency issues but
enforcing it may allow too little parallelism and
limit performance.

We may want to use a weaker level of consistency
to improve scalability.

13

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.

Provides for greater concurrency at the cost of

exposing txns to uncommitted changes:

— Dirty Read Anomaly
— Unrepeatable Reads Anomaly
— Phantom Reads Anomaly

14

ANSI ISOLATION LEVELS

SERIALIZABLE

— No phantoms, all reads repeatable, no dirty reads.

REPEATABLE READS

— Phantoms may happen.

READ COMMITTED

— Phantoms and unrepeatable reads may happen.

READ UNCOMMITTED
— All of them may happen.

15

ISOLATION LEVEL HIERARCHY

SERIALIZABLE

REPEATABLE READS
READ COMMITTED
READ UNCOMMITTED

16

17

REAL-WORLD ISOLATION LEVELS

Default Maximum
Actian Ingres SERTIALIZABLE SERTIALIZABLE
Greenplum READ COMMITTED SERTIALIZABLE
IBM DB2 CURSOR STABILITY SERIALIZABLE
MySQL REPEATABLE READS SERTIALIZABLE
MemSQL READ COMMITTED READ COMMITTED
MS SQL Server READ COMMITTED SERTIALIZABLE
Oracle READ COMMITTED SNAPSHOT ISOLATION
Postgres READ COMMITTED SERTIALIZABLE
SAP HANA READ COMMITTED SERTIALIZABLE
VoltDB SERIALIZABLE SERIALIZABLE

Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/

18

REAL-WORLD ISOLATION LEVELS

Default Maximum
Actian Ingres SERTIALIZABLE SERTIALIZABLE
Greenplum READ COMMITTED SERTIALIZABLE
IBM DB2 SERIALIZABLE
MySQL REPEATABLE READS SERTIALIZABLE
MemSQL READ COMMITTED READ COMMITTED
MS SQL Server READ COMMITTED SERTIALIZABLE
Oracle READ COMMITTED SNAPSHOT ISOLATION
Postgres READ COMMITTED SERTIALIZABLE
SAP HANA READ COMMITTED SERTIALIZABLE
VoltDB SERIALIZABLE SERIALIZABLE

Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/

19

REAL-WORLD ISOLATION LEVELS

Default Maximum

Actian Ingres SERTIALIZABLE SERTIALIZABLE

Greenplum READ COMMITTED SERTIALIZABLE

IBM DB2 SERIALIZABLE

MySQL REPEATABLE READS SERTIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERTIALIZABLE
Oracle READ COMMITTED

Postgres READ COMMITTED SERTIALIZABLE

SAP HANA READ COMMITTED SERTIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE

Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/

CRITICISM OF ISOLATION LEVELS

The isolation levels defined as part of SQL-92
standard only focused on anomalies that can occur
in a 2PL-based DBMS.

Two additional isolation levels:
— CURSOR STABILITY
— SNAPSHOT ISOLATION

“““=| A CRITIQUE OF ANSI SQL ISOLATION LEVELS
= | SiGMoD 1995

20

21

CURSOR STABILITY (CS)

The DBMS'’s internal cursor maintains a lock on a
item in the database until it moves on to the next
1tem.

CS is a stronger isolation level in between
REPEATABLE READS and READ COMMITTED
that can (sometimes) prevent the Lost Update
Anomaly.

)

LOST UPDATE ANOMALY

Txn #1
O
READ(A) WRITE(A)
Txn #2

-
[
=
=
o
O

N\
e o o @ e 6 6 o ©°o
WRITE(A)

LOST UPDATE ANOMALY

N

WRITE(A)

N\

WRITE(A)

23

LOST UPDATE ANOMALY

Txn #1
>
& e o6 o D
READ(A) WRITE(A)
Txn #2

24

LOST UPDATE ANOMALY

Txn #1

READ(A)

Txn #2

N\
e o o ll e 6 6 o ©°o
WRITE(A)

25

LOST UPDATE ANOMALY

Txn #1

>
& e o6 o D
READ(A) WRITE(A)
Txn #2

N\
e o o ll e 6 6 o ©°o
WRITE(A)

26

LOST UPDATE ANOMALY

Txn #1
>
& e o6 o D
READ(A) WRITE(A)
Txn #2

N\
e o o ll e 6 6 o ©°o
WRITE(A)

27

28

LOST UPDATE ANOMALY

Txn #1
Txn #2’s write to A will
66 l /‘ be lost even though it
o o o . .
commits after Txn #1.
READ(A) WRITE(A)
Txn #2

N\

WRITE(A)

29

LOST UPDATE ANOMALY

Txn #1
Txn #2’s write to A will
66 l /‘ be lost even though it
e o o = .
commits after Txn #1.
READ(A) WRITE(A)
Txn #2 A cursor lock on A
would prevent this
/\x problem (but not
o o 0 l I e 0o 0 0 0o always).

WRITE(A)

30

SNAPSHOT ISOLATION (SI)

Guarantees that all reads made in a txn see a
consistent snapshot of the database that existed at

the time the txn started.

— A txn will commit under SI only if its writes do not
conflict with any concurrent updates made since that
snapshot.

SI is susceptible to the Write Skew Anomaly

O®
O®

WRITE SKEW ANOMALY

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black.

o0
OO

Txn #2

Change black marbles
to white.

32

WRITE SKEW ANOMALY

Txn #1

Change white marbles

to black. ‘ ‘
Txn #Z\A ' '
Change black marbles Q Q
to white.

WRITE SKEW ANOMALY

55

Txn #1

Change white marbles
to black.

o0 —

O —

Change black marbles
to white.

WRITE SKEW ANOMALY

Txn #1

Change white marbles
to black. ﬁ

O —

Change black marbles
to white.

Txn #1

Change white marbles
to black.

WRITE SKEW ANOMALY
/
o

3%\
OO

ez %8' —

Change black marbles
to white.

S,
»

O®
O®

WRITE SKEW ANOMALY

WRITE SKEW ANOMALY

Txn #1
Change white marbles
to black.

"7 JY | BN ee
06 " ammgele

Change black marbles
to white.

ISOLATION LEVEL HIERARCHY

SERIALIZABLE

REPEATABLE READS SNAPSHOT ISOLATION

CURSOR STABILITY
READ COMMITTED
READ UNCOMMITTED

39

ISC

CURSOR §

Strict Serializability (PL-SS)

Full Serializability (PL-3)

Snapshot Isolation (PL-SI) Update Serializability (PL-3U)

Forward Consistent View (PL-FCV)
Repeatable Read (PL-2.99)

Consistent View (PL-2+)
Monotonic Snapshot

Reads (PL-MSR)

Cursor Stability (PL-CS) Monotonic View (PL-2L)
PL-2
PL-1

Figure 4-1: A partial order to relate various isolation levels.

Source: Atul Adya

40

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:

— When a txn writes to an object, the DBMS creates a new
version of that object.

— When a txn reads an object, it reads the newest version
that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.

First implementation was InterBase (Firebird).
Used in almost every new DBMS in last 10 years.

41

http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

42

MULTI-VERSION CONCURRENCY CONTROL

Main benefits:

— Woriters don't block readers.

— Read-only txns can read a consistent snapshot without
acquiring locks.

— Easily support time-travel queries.

MVCC is more than just a “concurrency control
protocol”. It completely affects how the DBMS
manages transactions and the database.

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage
Garbage Collection

Index Management
Txn Id Wraparound (New)

= | AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
- VERSION CONCURRENCY CONTROL
VLDB 2017

AN EMPIRICA
VERSION CO
VLDB 2017

In-Memory Multi-Version Concurrency Control

This is the Best Paper Ever on

Vinaivn WALy Lo Avileai

CISIONS

Jig
Carnegie M
jiexil@d

ABSTRACT

Multi-version concurrend
popular scheme used in
(DBMSs). Although the |
itis used in almost every 1
decade. Maintaining mul
parallelism without sacri
schemes in a multi-core,
there are a large number
nization overhead can out|
Tounderstand how MV
we conduct an extensive
decisions: scheduling prof
and index management
of all of these in an i
transactional and hybrid
fundamental botlenecks

1. INTRODUCT
The evolution of compul
core, in-memory DBMS:
workloads, these systems
tocols that maximize para
The most popular protc
decade is multi-version ¢
of idea of MVCC is that
versions of each logical tf
the same tuple to proceed
tions to access older versi
transactions from simultaj
is appealing for hybrid tr]
workloads that execute red
immediately after transac
What is interesting al
MVCC is that the algoril
appeared in a 1979 disse
started in 1981 [21] for th

If You Only Read One Empirical Evaluation Paper on
In-Memory Multi-Version Concurrency Control,
Make It This One!

Jig
Carnegie M

jiexil@d We Think That You Will Really Enjoy This

ABSTRACT

Multi-version concurrend
popular transaction mana,

Empirical Evaluation Paper on

In-Memory Multi-Version Concurrency Control

agement systems (DBMS
the late 1970s, it is used
released in the last decad)
potentially increases paraf

when processing transact]

and in-memory setting is 1

of threads running in pai iq

outweigh the benefits of 1 Carnegie M
“To understand how MV| jiexil@

in modern hardware settiy
scheme’s four key design|

version storage, garbage ABSTRACT

Mull

DBMS and evaluated the]

popular transaction mana
identifies the fundamental

agement systems (DBMS
the late 1970s. it is used
released in the last decadf
potentially increases para)
when processing transac

1. INTRODUCT

Computer architecture

core, in-memory DBMS: and in-memory setting is |
agement TECHANISIS 10 of threads running in pas
outweigh the benefits of r

serializability. The most
in the last decade is multi-
basic idea of MVCC is thy
versions of each logical ob
the same object 10 proced
granularity, but almost ey
provides a good balance

of version tracking. Multi
1o access older versions
transactions from simulta}
trast this with a single-vq L. INTRODUCT|
overwrite a tuple with ne Computer architecture
cote, in-memory DBMS:
agement mechanisms to
serializability. The most

in the last decade is multi-
basic idea of MVCC is th{

To understand how MV|
in modern hardware setti
scheme’s four key design
version storage. garbage
implemented state-of-the-
DBMS and evaluated the|
identifies the fundamental

versions of each logical oty

An Empirical Evaluation of
In-Memory Multi-Version Concurrency Control

Yingjun Wu
National University of Singapore
yingjun@comp.nus.edu.sg

Jiexi Lin Ran

Joy Arulraj
Carnegie Mellon University
jarulraj@cs.cmu.edu

Xian Andrew Pavlo

Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

jiexil@cs.cmu.edu

ABSTRACT

Multi-version concurrency control (MVCC) is currently the most
popular transaction management scheme in modem database man-
agement systems (DBMSs). Although MVCC was discovered in
the late 1970s. it is used in almost every major relational DBMS
released in the last decade. Maintaining multiple versions of data
potentially increases parallelism without sacrificing serializability
when processing transactions. But scaling MVCC in a multi-core
and in-memory setting is non-trivial: when there are a large number
of threads running in paralel, the synchronization overhead can
h the benefits of multi-versioning.

To understand how MVCC perform when processing transactions.
in modern hardware settings, we conduct an extensive study of the
scheme’s four key design decisions: concurrency control protocol,
version storage, garbage collection, and index management. We
implemented state-of-the-art ariants of all of these in an in-memory

rxian@cs.cmu.edu

pavio@cs.cmu.edu

ina 1979 dissertation [38] and the first implementation started in
1981 [22] for the InterBase DBMS (now open-sourced as Firebird).
MVCC is also used in some of the most widely deployed disk-
oriented DBMSs today. including Oracle (since 1984 [4]). Postgres
(since 1985 [41]). and MySQLs InnoDB engine (since 2001). But
while there are plenty of contemporaries to these older systems
that use a single-version scheme BM DB2. Sybuse). almost
every new transactional DBMS eschews this approach in favor of
MVCC [37]. This includes both commercial (e.g.. Microsoft Heka-
ton[16], SAP HANA [40), MemSQL [1]. NuoDB [3]) and academic
(e.g.. HYRISE [21], HyPer [36]) systems.
Despite all these newer systems using MVC(

there is no one

“standard” implementation. There are several design choices that

have different trade-offs and performance behaviors. Until now,
there has not been a comprehensive evaluation of MVCC ina mod-
em DBMS operating environment. The last extensive study was
in the 1980s (131 but it used simulated workloads running in a

44

MVCC IMPLEMENTATIONS

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical
Postgres MV-2PL/MV-TO Append-Only Vacuum Physical
MySQL-InnoDB MV-2PL Delta Vacuum Logical
HYRISE MV-0CC Append-Only - Physical
Hekaton MV-0CC Append-Only Cooperative Physical
MemSQL MV-0CC Append-0Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical
NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-0CC Delta Txn-level Logical

45

TXN-ID

BEGIN-TS

TUPLE FORMAT

END-TS POINTER

46

TXN-ID

Unique Txn
[dentifier

BEGIN-TS

TUPLE FORMAT

END-TS POINTER

47

TXN-ID

Unique Txn
[dentifier

TUPLE FORMAT

BEGIN-TS END-TS POINTER

Version
Lifetime

48

TXN-ID

Unique Txn
[dentifier

TUPLE FORMAT

BEGIN-TS END-TS POINTER

Version Next/Prev
Lifetime Version

49

TXN-ID

Unique Txn
[dentifier

TUPLE FORMAT

BEGIN-TS END-TS POINTER

Version Next/Prev
Lifetime Version

Additional
Metadata

50

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering

— Assign txns timestamps that determine serial order.
— Considered to be original MV CC protocol.

Approach #2: Optimistic Concurrency
Control

— Three-phase protocol from last class.
— Use private workspace for new versions.

Approach #3: Two-Phase Locking
— Txns acquire appropriate lock on physical version before
they can read/write a logical tuple.

51

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

52

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

53

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

54

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS

END-TS

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

55

TIMESTAMP ORDERING (MVTO)

£
READ(A)

TXN-ID READ-TS BEGIN-TS END-TS

E,i‘ B, 7] 7] 1 (00

WRITE(B)

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

TIMESTAMP ORDERING (MVTO)

6.6 TXN-ID READ-TS BEGIN-TS END-TS
1 0 READ(A) A % 1 1 00

E,i‘ B, 7] 7] 1 (00

T.

1

WRITE(B)

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
1 E’l B, % % 1 00
WRITE(B)
Use “read-ts” field in the Txn is allowed to read
header to keep track of the version if the lock is unset
timestamp of the last txn and its T4 is between

that read it. “begin-ts” and “end-ts”.

58

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
1 E’l B, % % 1 00
WRITE(B)
Use “read-ts” field in the Txn is allowed to read
header to keep track of the version if the lock is unset
timestamp of the last txn and its T4 is between

that read it. “begin-ts” and “end-ts”.

59

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T 10 READ(A)
1 E’l B, % % 1 00
WRITE(B)
Use “read-ts” field in the Txn is allowed to read
header to keep track of the version if the lock is unset
timestamp of the last txn and its T4 is between

that read it. “begin-ts” and “end-ts”.

60

TIMESTAMP ORDERING (MVTO)

6.6 TXN-ID READ-TS BEGIN-TS END-TS
T 10 READ(A) A, 0 10 1 00
id—

@\ Bl @ @ 1 (0.0
WRITE(B)
Use “read-ts” field in the Txn is allowed to read
header to keep track of the version if the lock is unset
timestamp of the last txn and its T4 is between

that read it. “begin-ts” and “end-ts”.

62

TIMESTAMP ORDERING (MVTO)

63
T,=10 { o=t nio fio] L

TXN-ID READ-TS BEGIN-TS END-TS

@\ Bl 7} 7} 1 (0.0
WRITE(B)
Use “read-ts” field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the lock is unset if no other txn holds lock
timestamp of the last txn and its T4 is between and T4 is greater than

that read it. “begin-ts” and “end-ts”. “read-ts”.

63

TIMESTAMP ORDERING (MVTO)

60

READ(A)

Tid=10

WRITE(B)

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

TXN-ID

READ-TS BEGIN-TS

END-TS

Txn creates a new version
if no other txn holds lock
and T4 is greater than
“read-ts”.

Txn is allowed to read
version if the lock is unset
and its T4 is between
“begin-ts” and “end-ts”.

64

TIMESTAMP ORDERING (MVTO)

60

READ(A)

Tid=10

WRITE(B)

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

TXN-ID

READ-TS BEGIN-TS

END-TS

Txn creates a new version
if no other txn holds lock
and T4 is greater than
“read-ts”.

Txn is allowed to read
version if the lock is unset
and its T4 is between
“begin-ts” and “end-ts”.

65

TIMESTAMP ORDERING (MVTO)

60

READ(A)

Tid=10

WRITE(B)

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

TXN-ID READ-TS BEGIN-TS END-TS
A 7 10 1 00
a
B | 10 Z 1 00

Txn creates a new version
if no other txn holds lock
and T4 is greater than
“read-ts”.

Txn is allowed to read
version if the lock is unset
and its T4 is between
“begin-ts” and “end-ts”.

Tid=10

60

READ(A)

WRITE(B)

Use “read-ts” field in the

header to keep track of the

timestamp of the last txn

that read it.

66

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS

A 7 10 1 00
a

B | 10 Z 1 00
a

B | 10 0 10 00

Txn creates a new version
if no other txn holds lock
and T4 is greater than
“read-ts”.

Txn is allowed to read
version if the lock is unset
and its T4 is between
“begin-ts” and “end-ts”.

67

TIMESTAMP ORDERING (MVTO)

60

TXN-ID READ-TS BEGIN-TS END-TS

T. =10 { & o
id 7
WRITE(B)
Use “read-ts” field in the Txn is allowed to read Txn creates a new version
header to keep track of the version if the lock is unset if no other txn holds lock
timestamp of the last txn and its T4 is between and T4 is greater than

that read it. “begin-ts” and “end-ts”. “read-ts”.

Tid=10

60

READ(A)

WRITE(B)

Use “read-ts” field in the

header to keep track of the

timestamp of the last txn

that read it.

TIMESTAMP ORDERING (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS
A, 7 10 1 0o
B, 7 1 10
B> 7] 10 (00)

Txn is allowed to read
version if the lock is unset
and its T4 is between

“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and T4 is greater than

“read-ts”.

68

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a

latch-free version chain per logical tuple.
— This allows the DBMS to find the version that is visible

to a particular txn at runtime.
— Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions
to avoid contention on centralized data structures.

Different storage schemes determine where/what
to store for each version.

69

VERSION STORAGE

Approach #1: Append-Only Storage

— New versions are appended to the same table space.

Approach #2: Time-Travel Storage
— Old versions are copied to separate table space.

Approach #3: Delta Storage

— The original values of the modified attributes are copied
into a separate delta record space.

70

Main Table

KEY

APPEND-ONLY STORAGE

VALUE POINTER

A XXX | $111 o
A, XXX | $222 0]
B, Yyy | $i1eo 1]

71

Main Table

KEY

APPEND-ONLY STORAGE

VALUE

POINTER

A XXX | $111 o—:|
A, XXX | $222 0]
B, Yyy | $i1eo 1]

All of the physical versions of a
logical tuple are stored in the
same table space

72

Main Table

KEY

73

APPEND-ONLY STORAGE

VALUE

POINTER

A XXX | $111 o—:|
A, XXX | $222 0]
B, Yyy | $i1eo 1]

All of the physical versions of a
logical tuple are stored in the
same table space

On every update, append a new
version of the tuple into an
empty space in the table.

Main Table

KEY

XXX
XXX

74

APPEND-ONLY STORAGE

VALUE
$111
$222

$10

POINTER

All of the physical versions of a
logical tuple are stored in the
same table space

On every update, append a new
version of the tuple into an
empty space in the table.

Main Table

KEY

XXX
XXX

75

APPEND-ONLY STORAGE

VALUE
$111
$222

$10

POINTER

XXX

$333

All of the physical versions of a
logical tuple are stored in the
same table space

On every update, append a new
version of the tuple into an
empty space in the table.

Main Table

KEY

76

APPEND-ONLY STORAGE

VALUE

POINTER

A XXX | $111 o
A, XXX | $222 O
B, Yyy | $i1eo 0]
As XXX | $333 0]

All of the physical versions of a
logical tuple are stored in the
same table space

On every update, append a new
version of the tuple into an
empty space in the table.

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)

— Just append new version to end of the chain.
— Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N20)

— Have to update index pointers for every new version.
— Don’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.

77

Main Table

KEY

XXX

TIME-TRAVEL STORAGE

VALUE

$222

POINTER

Time-Travel Table

YYY

$10

A,

KEY

XXX

VALUE

$111

POINTER

)

78

Main Table

A;

KEY

XXX

TIME-TRAVEL STORAGE

VALUE

$222

POINTER

Time-Travel Table

B,

YYY

$10

On every update, copy the
current version to the time-

travel table. Update pointers.

A,

KEY

XXX

VALUE

$111

POINTER

)

79

TIME-TRAVEL STORAGE
Main Table Time-Travel Table

KEY VALUE POINTER

A, XXX $222 ® A, XXX $111 @

KEY VALUE POINTER

B, YYY $10 A, XXX $222 o—

On every update, copy the
current version to the time-
travel table. Update pointers.

80

TIME-TRAVEL STORAGE
Main Table Time-Travel Table

KEY VALUE POINTER KEY VALUE POINTER

A, Xxx | $222 ® A Xxx | $111 ¢

B, yvyy | $ie A, Xxx | $222 *—
On every update, copy the Overwrite master version in
current version to the time- the main table. Update

travel table. Update pointers. pointers.

TIME-TRAVEL STORAGE
Main Table Time-Travel Table

KEY VALUE POINTER KEY VALUE POINTER

A; XXX | $333 ® A Xxx | $111 ¢

B, yvyy | $ie — A Xxx | $222 *—
On every update, copy the Overwrite master version in
current version to the time- the main table. Update

travel table. Update pointers. pointers.

Main Table

KEY

XXX

VALUE

$111

DELTA STORAGE

POINTER

YYY

$10

Delta Storage Segment

83

DELTA STORAGE

Main Table
KEY VALUE POINTER
A xxx | $111
B, yyy | $1e

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Delta Storage Segment

84

DELTA STORAGE

Main Table

KEY VALUE POINTER

B, YYY

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Delta Storage Segment

85

DELTA STORAGE

Main Table

KEY VALUE POINTER

B, YYY

On every update, copy only
the values that were modified
to the delta storage and

overwrite the master version.

Delta Storage Segment

DELTA POINTER

A, |(vALUE-$111)| ¢

86

DELTA STORAGE

Main Table

KEY VALUE POINTER

Delta Storage Segment

DELTA POINTER

B, YYY

On every update, copy only
the values that were modified
to the delta storage and

overwrite the master version.

A, |(vALUE-$111)| ¢

87

DELTA STORAGE
Main Table Delta Storage Segment

KEY VALUE POINTER

DELTA POINTER

(VALUE-$111)| ¢

B, YYY

(VALUE->$222)| e—

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

88

DELTA STORAGE
Main Table Delta Storage Segment

KEY VALUE POINTER

DELTA POINTER

(VALUE-$111)| ¢

B, YYY

(VALUE->$222)| e—

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

89

DELTA STORAGE
Main Table Delta Storage Segment

DELTA POINTER

KEY VALUE POINTER

A, |(vALUE-$111)| ¢

B, 1444 —| A, [(vALUE-$222)| e—
On every update, copy only Txns can recreate old
the values that were modified versions by applying the delta
to the delta storage and in reverse order.

overwrite the master version.

90

Main Table

A,

KEY

XXX

NON-INLINE ATTRIBUTES

INT VAL STR_VAL

Variable-Length Data

—— MY_LONG_STRING

$100 ®

91

NON-INLINE ATTRIBUTES

Main Table

A,

KEY INT_VAL STR_VAL

Variable-Length Data

—— MY_LONG_STRING

xxx | s100 | e

92

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_ VAL Abl MY_LONG_STRING

—— MY_LONG_STRING

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_ VAL Abl MY_LONG_STRING

—— MY_LONG_STRING

Reuse pointers to variable-
length pool for values that do
not change between versions.

95

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_VAL

Reuse pointers to variable-
length pool for values that do
not change between versions.

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_VAL 4>|Refs=1 MY_LONG_STRING

Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it safe to free
not change between versions. memory. Unable to relocate

memory easily.

96

NON-INLINE ATTRIBUTES
Main Table Variable-Length Data

KEY INT_VAL STR_VAL >|Refs=2 MY_LONG_STRING

Reuse pointers to variable- Requires reference counters
length pool for values that do to know when it safe to free
not change between versions. memory. Unable to relocate

memory easily.

97

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can “see” that version (SI).
— The version was created by an aborted txn.

Two additional design decisions:
— How to look for expired versions?
— How to decide when it is safe to reclaim memory?

98

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical

versions from the database over time.
— No active txn in the DBMS can “see” that version (SI).
— The version was created by an aborted txn.

99

GARBAGE COLLECTION

Approach #1: Tuple-level

— Find old versions by examining tuples directly.
— Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level

— Txns keep track of their old versions so the DBMS does
not have to scan tuples to determine visibility.

100

101

TUPLE-LEVEL GC
Thread #1

TXN-ID BEGIN-TS END-TS
Tg-12 B I
Ay 0 1 9
Thread #2 B, 0 1 9
T,;=25 B, 7 10 20

TUPLE-LEVEL GC

Thread #1
T. =12

1

Thread #2
]id=225

1
Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

TXN-ID BEGIN-TS END-TS

A 0 1 9
B, 0 1 9
B, 0 10 20

102

103

TUPLE-LEVEL GC

Thread #1 Vacuum
TXN-ID BEGIN-TS END-TS
T 12 B I BEGIN-TS END-TS

’ Al o 1 9
Thread #2 ‘ B, % 1 9
T,;=25 O B, 0 10 20

Background Vacuuming:

Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

104

TUPLE-LEVEL GC

Thread #1
T;~12 Vo
o d=

Thread #2 ‘ B, 5 p ;
T25 = O B, | o 10 20

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

105

TUPLE-LEVEL GC

Thread #1
Vacuum TXN-ID BEGIN-TS END-TS

Ti = 12 \
Thread #2 ‘ »
Tid=25 / o

Background Vacuuming:

Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

106

TUPLE-LEVEL GC

Thread #1
T;=12 e

Thread #2 ‘
T25 = O B, | o 10 20

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

107

TUPLE-LEVEL GC

Thread #1
Vacuum 74578 TXN-ID BEGIN-TS END-TS

Ti =12 \
Thread #2 ‘ »
T, ;=25 —7 O B, Z 10 20

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

108

TUPLE-LEVEL GC

Thread #1
T. =12

1

Thread #2
T Q d=25

1
Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

TUPLE-LEVEL GC

Thread #1
T Q d= 12

1

Thread #2
T Q d=25

1
Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Cooperative Cleaning:
Worker threads identify reclaimable

versions as they traverse version
chain. Only works with O2N.

109

110

TUPLE-LEVEL GC

Thread #1
Tid=12 A4 —> A3 m A2 —> Al
A
=2 INDEX
Thread #2 — 5. bl & bl 5 Pl s,
Tid=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version

versions. Works with any storage. chain. Only works with O2N.

TUPLE-LEVEL GC

Thread #1
Tid=12 A4 —> A3 m A2 —> Al
Thread #2 m 5. bl & bl 5 Pl s,
Tid=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version

versions. Works with any storage. chain. Only works with O2N.

112

TUPLE-LEVEL GC

Thread #1
Tid=12 m A2 —> Al
Thread #2 L6, bl s,
Tid=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version

versions. Works with any storage. chain. Only works with O2N.

113

TUPLE-LEVEL GC

Thread #1
Tid=12 A3 m A2 —> Al
Thread #2 5. bl & bl 5 Pl s,
Tid=25
Background Vacuuming: Cooperative Cleaning:
Separate thread(s) periodically scan Worker threads identify reclaimable
the table and look for reclaimable versions as they traverse version

versions. Works with any storage. chain. Only works with O2N.

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.

114

OBSERVATION

TXN-ID READ-TS BEGIN-TS END-TS
Thread #1 A; 0 231_1 231_2 Fove)
T;=1 B, | o | 2:-1 | 22| o0

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in

the "future" from new transactions.

115

116

OBSERVATION

TXN-ID READ-TS BEGIN-TS END-TS

Thread o
T;=1 B, | o | 2:-1 | 22| o0

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

117

OBSERVATION

TXN-ID READ-TS BEGIN-TS END-TS

Thread #1

T;=1 B, | o | 2:-1 | 22| o0

[f the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

118

POSTGRES TXN ID WRAPAROUND

Stop accepting new commands when the system
gets close to the max txn id.

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

INDEX MANAGEMENT

PKey indexes always point to version chain head.

— How often the DBMS has to update the pkey index
depends on whether the system creates new versions
when a tuple is updated.

— If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated...

119

WHY UBER ENGINEERING
SWITCHED FROM
POSTGRES TO MYSQL

EEEEEEEEEEEEE

Secondary Index | A B C D

Primary Index 1 2 3 4

Disk [[NI []

103 107

120

SECONDARY INDEXES

Approach #1: Logical Pointers

— Use a fixed identifier per tuple that does not change.

— Requires an extra indirection layer.
— Primary Key vs. Tuple Id

Approach #2: Physical Pointers

— Use the physical address to the version chain head.

121

122

INDEX POINTERS

A PRIMARY INDEX A SECONDARY INDEX

123

INDEX POINTERS

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

124

INDEX POINTERS
GET(A) @

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

125

INDEX POINTERS

GET(A) @
A PRIMARY INDEX A SECONDARY INDEX

Physical
Address

Append-Only
4" Av L As LA P A }Newest-to-Oldest

126

INDEX POINTERS

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

127

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

Physical
Address

}

Append-Only
Newest-to-Oldest

128

129

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

4 SECONDARY INDEX

A2 SECONDARY INDEX

4= SECONDARY INDI

"l n, bl A Bl A bl A }Append-Only

Newest-to-Oldest

130

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

4 SECONDARY INDEX

A2 SECONDARY INDEX

4= SECONDARY INDI

) A'4 PN N yyy Ny }Append-Only
f

Newest-to-Oldest

131

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

132

INDEX POINTERS

¥ GET(A)
A PRIMARY INDEX A SECONDARY INDEX
Primary
Key

Physical
Address

Append-Only
4" Av L As LA P A }Newest-to-Oldest

133

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

134

INDEX POINTERS

¥ GET(A)

A PRIMARY INDEX A SECONDARY INDEX

B Tupleld— Address

Newest-to-Oldest

n, bl A Bl A bl A }Append-Only

INDEX POINTERS

135

¥ GET(A)
A PRIMARY INDEX A SECONDARY INDEX

B Tupleld— Address

Physical

Address

}

Tupleld

Append-Only
Newest-to-Oldest

136

MVCC CONFIGURATION EVALUATION

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

MVCC CONFIGURATION EVALUATION

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

~®-Oracle/MySQL -#=Postgres -+~HYRISE -**=HEKATON
=¥MemSQL -o-HANA =+-NuoDB -e-HyPer
~ 100
3 75
|
T 50 O
= e —
g-n 25 x— =\
=
80
=
E 0 | | | | |
= 0 8 16 24 32 40

Threads

137

MVCC CONFIGURATION EVALUATION

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

|-@=Oracle/MySQL| -#=Postgres -+~HYRISE -**=HEKATON
<¥MemSQL --HANA | +-NuoDB | | -e=HyPer I
~ 100
3 75
|
< 50 O
= e —
§-1 25 x— =\
80
=
E 0 | | | | |
= 0 8 16 24 32 40

Threads

138

Robert Haas

VP, Chief Architect, Database Server @ EnterpriseDB, PostgreSQL Major Contributor and Committer

Tuesday, January 30, 2018

DO or UNDO - there is no VACUUM

What if PostgreSQL didn’t need VACUUM at all? This seems hard to imagine. After all,
PostgreSQL uses multi-version concurrency control (MVCC), and if you create multiple versions of
rows, you have to eventually get rid of the row versions somehow. In PostgreSQL, VACUUM is in
charge of making sure that happens, and the autovacuum process is in charge of making sure
that happens soon enough. Yet, other schemes are possible, as shown by the fact that not all
relational databases handle MVCC in the same way, and there are reasons to believe that
PostgreSQL could benefit significantly from adopting a new approach. In fact, many of my
colleagues at EnterpriseDB are busy implementing a new approach, and today I'd like to tell you a
little bit about what we're doing and why we’re doing it.

While it's certainly true that VACUUM has significantly improved over the years, there are some
problems that are very difficult to solve in the current system structure. Because old row versions
and new row versions are stored in the same place - the table, also known as the heap - updating
a large number of rows must, at least temporarily, make the heap bigger. Depending on the
pattern of updates, it may be impossible to easily shrink the heap again afterwards. For example,
imagine loading a large number of rows into a table and then updating half of the rows in each
block. The table size must grow by 50% to accommodate the new row versions. When VACUUM
removes the old versions of those rows, the original table blocks are now all 50% full. That space
is available for new row versions, but there is no easy way to move the rows from the new newly-
added blocks back to the old half-full blocks: you can use VACUUM FULL or you can use third-
party tools like pg_repack, but either way you end up rewriting the whole table. Proposals have

’

About Me
@ Robert Haas
G+ Follow 0
View my complete profile
‘\\
Blog Archive
v 2018(2)

v January (2)
DO or UNDO - there is no VACUUM

The State of VACUUM

2017 (6)
2016 (6)
2015 (4)
2014 (11)
2013 (5)
2012 (14)
2011 (41)
2010 (46)

Yy vV VvV vV Y vV VY

139

PARTING THOUGHTS

MVCC is currently the best approach for
supporting txns in mixed workoads

We only discussed MVCC for OLTP.
— Design decisions may be different for HTAP

Interesting MV CC research/project Topics:

— Block compaction
— Version compression
— On-line schema changes

140

141

NEXT CLASS

Modern MVCC Implementations
— CMU Cicada

— Microsoft Hekaton

— TUM HyPer

— Serializable Snapshot [solation

