
DATABASE SYSTEM IMPLEMENTATION

GT 4420/6422 // SPRING 2019 // @JOY_ARULRAJ

LECTURE #19: MULTI-VERSION CONCURRENCY
CONTROL (PART 1)

TODAY’S AGENDA

Compare-and-Swap (CAS)
Isolation Levels
MVCC Design Decisions

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

3

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

4

__sync_bool_compare_and_swap(&M, 20, 30)

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

5

__sync_bool_compare_and_swap(&M, 20, 30)

Address

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

6

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Address

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

7

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare
Value

Address

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

8

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare
Value

Address
New

Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

9

M
__sync_bool_compare_and_swap(&M, 20, 30)20

Compare
Value

Address
New

Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

10

M
__sync_bool_compare_and_swap(&M, 20, 30)30

Compare
Value

Address
New

Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

11

M
__sync_bool_compare_and_swap(&M, 20, 30)30 25 35

Compare
Value

Address
New

Value

COMPARE-AND-SWAP

Atomic instruction that compares contents of a
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails

12

M
__sync_bool_compare_and_swap(&M, 20, 30)30 X25 35

Compare
Value

Address
New

Value

OBSERVATION

Serializability is useful because it allows
programmers to ignore concurrency issues but
enforcing it may allow too little parallelism and
limit performance.

We may want to use a weaker level of consistency
to improve scalability.

13

ISOLATION LEVELS

Controls the extent that a txn is exposed to the
actions of other concurrent txns.
Provides for greater concurrency at the cost of
exposing txns to uncommitted changes:
→ Dirty Read Anomaly
→ Unrepeatable Reads Anomaly
→ Phantom Reads Anomaly

14

ANSI ISOLATION LEVELS

SERIALIZABLE
→ No phantoms, all reads repeatable, no dirty reads.
REPEATABLE READS
→ Phantoms may happen.
READ COMMITTED
→ Phantoms and unrepeatable reads may happen.
READ UNCOMMITTED
→ All of them may happen.

15

ISOLATION LEVEL HIERARCHY

16

REPEATABLE READS

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED

REAL-WORLD ISOLATION LEVELS

17

Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

Greenplum READ COMMITTED SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

Postgres READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/

REAL-WORLD ISOLATION LEVELS

18

Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

Greenplum READ COMMITTED SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

Postgres READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/

REAL-WORLD ISOLATION LEVELS

19

Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

Greenplum READ COMMITTED SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

Postgres READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/

CRITICISM OF ISOLATION LEVELS

The isolation levels defined as part of SQL-92
standard only focused on anomalies that can occur
in a 2PL-based DBMS.

Two additional isolation levels:
→ CURSOR STABILITY
→ SNAPSHOT ISOLATION

20

A CRITIQUE OF ANSI SQL ISOLATION LEVELS
SIGMOD 1995

CURSOR STABILITY (CS)

The DBMS’s internal cursor maintains a lock on a
item in the database until it moves on to the next
item.

CS is a stronger isolation level in between
REPEATABLE READS and READ COMMITTED
that can (sometimes) prevent the Lost Update
Anomaly.

21

LOST UPDATE ANOMALY

22

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

23

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

24

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

25

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

26

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

27

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

28

Txn #2’s write to A will
be lost even though it
commits after Txn #1.

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

LOST UPDATE ANOMALY

29

Txn #2’s write to A will
be lost even though it
commits after Txn #1.

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT

READ(A) WRITE(A)
• • •

• • • • • • • •

A cursor lock on A
would prevent this
problem (but not
always).

SNAPSHOT ISOLATION (SI)

Guarantees that all reads made in a txn see a
consistent snapshot of the database that existed at
the time the txn started.
→ A txn will commit under SI only if its writes do not

conflict with any concurrent updates made since that
snapshot.

SI is susceptible to the Write Skew Anomaly

30

WRITE SKEW ANOMALY

31

WRITE SKEW ANOMALY

32

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

WRITE SKEW ANOMALY

33

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

WRITE SKEW ANOMALY

34

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

WRITE SKEW ANOMALY

35

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

WRITE SKEW ANOMALY

36

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

WRITE SKEW ANOMALY

37

WRITE SKEW ANOMALY

38

Txn #1
Change white marbles
to black.

Txn #2
Change black marbles
to white.

ISOLATION LEVEL HIERARCHY

39

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

ISOLATION LEVEL HIERARCHY

40

REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

Source: Atul Adya

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf

MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new

version of that object.
→ When a txn reads an object, it reads the newest version

that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.
First implementation was InterBase (Firebird).
Used in almost every new DBMS in last 10 years.

41

http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/

MULTI-VERSION CONCURRENCY CONTROL

Main benefits:
→ Writers don’t block readers.
→ Read-only txns can read a consistent snapshot without

acquiring locks.
→ Easily support time-travel queries.

MVCC is more than just a “concurrency control
protocol”. It completely affects how the DBMS
manages transactions and the database.

42

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage
Garbage Collection
Index Management
Txn Id Wraparound (New)

43

AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017

MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage
Garbage Collection
Index Management
Txn Id Wraparound (New)

44

AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017

MVCC IMPLEMENTATIONS

45

Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical

TUPLE FORMAT

46

TXN-ID DATABEGIN-TS END-TS POINTER ...

TUPLE FORMAT

47

Unique Txn
Identifier

TXN-ID DATABEGIN-TS END-TS POINTER ...

TUPLE FORMAT

48

Unique Txn
Identifier

Version
Lifetime

TXN-ID DATABEGIN-TS END-TS POINTER ...

TUPLE FORMAT

49

Unique Txn
Identifier

Version
Lifetime

Next/Prev
Version

TXN-ID DATABEGIN-TS END-TS POINTER ...

TUPLE FORMAT

50

Unique Txn
Identifier

Version
Lifetime

Next/Prev
Version

Additional
Metadata

TXN-ID DATABEGIN-TS END-TS POINTER ...

CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.
→ Considered to be original MVCC protocol.

Approach #2: Optimistic Concurrency
Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before

they can read/write a logical tuple.

51

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

52

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

53

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

54

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

55

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

56

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

57

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

58

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

59

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

60

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

61

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

62

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

63

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

64

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10 10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

65

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10 10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

66

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10 10
B2 10 0 10 ∞

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

67

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10 10
B2 10 0 10 ∞

10

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)

68

Use “read-ts” field in the
header to keep track of the
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read
version if the lock is unset
and its Tid is between
“begin-ts” and “end-ts”.

Txn creates a new version
if no other txn holds lock
and Tid is greater than
“read-ts”.

Tid=10
B2 10 0 10 ∞

10

0

VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a
latch-free version chain per logical tuple.
→ This allows the DBMS to find the version that is visible

to a particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions
to avoid contention on centralized data structures.

Different storage schemes determine where/what
to store for each version.

69

VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied

into a separate delta record space.

70

APPEND-ONLY STORAGE

71

Main Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø

APPEND-ONLY STORAGE

72

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø

APPEND-ONLY STORAGE

73

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø

APPEND-ONLY STORAGE

74

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø

APPEND-ONLY STORAGE

75

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

A3 XXX $333 Ø

B1 YYY $10 Ø

APPEND-ONLY STORAGE

76

All of the physical versions of a
logical tuple are stored in the
same table space

Main Table

On every update, append a new
version of the tuple into an
empty space in the table.

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

A3 XXX $333 Ø

B1 YYY $10 Ø

VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Just append new version to end of the chain.
→ Have to traverse chain on look-ups.

Approach #2: Newest-to-Oldest (N2O)
→ Have to update index pointers for every new version.
→ Don’t have to traverse chain on look ups.

The ordering of the chain has different
performance trade-offs.

77

TIME-TRAVEL STORAGE

78

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

Ø

TIME-TRAVEL STORAGE

79

On every update, copy the
current version to the time-
travel table. Update pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

Ø

TIME-TRAVEL STORAGE

80

On every update, copy the
current version to the time-
travel table. Update pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø

TIME-TRAVEL STORAGE

81

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table. Update
pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø

TIME-TRAVEL STORAGE

82

On every update, copy the
current version to the time-
travel table. Update pointers.

Overwrite master version in
the main table. Update
pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

A3 $333

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø

DELTA STORAGE

83

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA STORAGE

84

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA STORAGE

85

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA STORAGE

86

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) Ø

DELTA STORAGE

87

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222

DELTA STORAGE

88

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222

DELTA STORAGE

89

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

DELTA STORAGE

90

On every update, copy only
the values that were modified
to the delta storage and
overwrite the master version.

Txns can recreate old
versions by applying the delta
in reverse order.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333

NON-INLINE ATTRIBUTES

91

Main Table

KEY INT_VAL

A1 XXX $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING

NON-INLINE ATTRIBUTES

92

Main Table

KEY INT_VAL

A1 XXX $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING

NON-INLINE ATTRIBUTES

93

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRING

NON-INLINE ATTRIBUTES

94

Reuse pointers to variable-
length pool for values that do
not change between versions.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRING

NON-INLINE ATTRIBUTES

95

Reuse pointers to variable-
length pool for values that do
not change between versions.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

NON-INLINE ATTRIBUTES

96

Reuse pointers to variable-
length pool for values that do
not change between versions.

Requires reference counters
to know when it safe to free
memory. Unable to relocate
memory easily.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL

NON-INLINE ATTRIBUTES

97

Reuse pointers to variable-
length pool for values that do
not change between versions.

Requires reference counters
to know when it safe to free
memory. Unable to relocate
memory easily.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL Refs=2

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

98

GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?

99

GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does

not have to scan tuples to determine visibility.

100

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

101

Thread #1
Tid=12

Thread #2
Tid=25

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

102

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

103

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

104

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

105

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

106

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum

TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC

107

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum Dirty?

TUPLE-LEVEL GC

108

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

TUPLE-LEVEL GC

109

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

TUPLE-LEVEL GC

110

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX

TUPLE-LEVEL GC

111

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX

TUPLE-LEVEL GC

112

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX

TUPLE-LEVEL GC

113

Background Vacuuming:
Separate thread(s) periodically scan
the table and look for reclaimable
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable
versions as they traverse version
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX X

TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created
by a finished txn are no longer visible.

May still require multiple threads to reclaim the
memory fast enough for the workload.

114

OBSERVATION

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

115

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞

Thread #1
Tid=1

OBSERVATION

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

116

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞

Thread #1
Tid=1

OBSERVATION

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and start
at zero. This will make all previous versions be in
the "future" from new transactions.

117

TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞
B2 10 0 10 ∞0

Thread #1
Tid=1

POSTGRES TXN ID WRAPAROUND

Stop accepting new commands when the system
gets close to the max txn id.

Set a flag in each tuple header that says that it is
"frozen" in the past. Any new txn id will always be
newer than a frozen version.

Runs the vacuum before the system gets close to
this upper limit.

118

INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS has to update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated…

119

INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS has to update the pkey index

depends on whether the system creates new versions
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated…

120

SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.

121

INDEX POINTERS

122

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

INDEX POINTERS

123

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

INDEX POINTERS

124

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

INDEX POINTERS

125

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1

GET(A)

Append-Only
Newest-to-Oldest

Physical
Address

INDEX POINTERS

126

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

INDEX POINTERS

127

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

INDEX POINTERS

128

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

129

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

SECONDARY INDEX

SECONDARY INDEX

SECONDARY INDEX

INDEX POINTERS

130

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

INDEX POINTERS

131

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

INDEX POINTERS

132

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

Physical
Address

Primary
Key

INDEX POINTERS

133

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

INDEX POINTERS

134

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address

INDEX POINTERS

135

PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address
TupleId

Physical
Address

MVCC CONFIGURATION EVALUATION

136

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

MVCC CONFIGURATION EVALUATION

137

0

25

50

75

100

0 8 16 24 32 40Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Threads

Oracle/MySQL Postgres HYRISE HEKATON

MemSQL HANA NuoDB HyPer

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

MVCC CONFIGURATION EVALUATION

138

0

25

50

75

100

0 8 16 24 32 40Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Threads

Oracle/MySQL Postgres HYRISE HEKATON

MemSQL HANA NuoDB HyPer

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

MVCC CONFIGURATION EVALUATION

139

0

25

50

75

100

0 8 16 24 32 40Th
ro

ug
hp

ut
 (t

xn
/s

ec
)

Threads

Oracle/MySQL Postgres HYRISE HEKATON

MemSQL HANA NuoDB HyPer

Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket

PARTING THOUGHTS

MVCC is currently the best approach for
supporting txns in mixed workoads

We only discussed MVCC for OLTP.
→ Design decisions may be different for HTAP

Interesting MVCC research/project Topics:
→ Block compaction
→ Version compression
→ On-line schema changes

140

NEXT CLASS

Modern MVCC Implementations
→ CMU Cicada
→ Microsoft Hekaton
→ TUM HyPer
→ Serializable Snapshot Isolation

141

