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TODAY’S  AGENDA

Compare-and-Swap (CAS)
Isolation Levels
MVCC Design Decisions



COMPARE-AND-SWAP

Atomic instruction that compares contents of a 
memory location M to a given value V
→ If values are equal, installs new given value V’ in M
→ Otherwise operation fails
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OBSERVATION

Serializability is useful because it allows 
programmers to ignore concurrency issues but 
enforcing it may allow too little parallelism and 
limit performance.

We may want to use a weaker level of consistency 
to improve scalability.
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ISOLATION LEVELS

Controls the extent that a txn is exposed to the 
actions of other concurrent txns.
Provides for greater concurrency at the cost of 
exposing txns to uncommitted changes:
→ Dirty Read Anomaly
→ Unrepeatable Reads Anomaly
→ Phantom Reads Anomaly
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ANSI  ISOLATION LEVELS

SERIALIZABLE
→ No phantoms, all reads repeatable, no dirty reads.
REPEATABLE READS
→ Phantoms may happen.
READ COMMITTED
→ Phantoms and unrepeatable reads may happen.
READ UNCOMMITTED
→ All of them may happen.
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ISOLATION LEVEL HIERARCHY
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REPEATABLE READS

READ UNCOMMITTED

SERIALIZABLE

READ COMMITTED



REAL-WORLD ISOLATION LEVELS
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Default Maximum

Actian Ingres SERIALIZABLE SERIALIZABLE

Greenplum READ COMMITTED SERIALIZABLE

IBM DB2 CURSOR STABILITY SERIALIZABLE

MySQL REPEATABLE READS SERIALIZABLE

MemSQL READ COMMITTED READ COMMITTED

MS SQL Server READ COMMITTED SERIALIZABLE

Oracle READ COMMITTED SNAPSHOT ISOLATION

Postgres READ COMMITTED SERIALIZABLE

SAP HANA READ COMMITTED SERIALIZABLE

VoltDB SERIALIZABLE SERIALIZABLE
Source: Peter Bailis

http://www.bailis.org/blog/when-is-acid-acid-rarely/
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CRITICISM OF ISOLATION LEVELS

The isolation levels defined as part of SQL-92 
standard only focused on anomalies that can occur 
in a 2PL-based DBMS.

Two additional isolation levels:
→ CURSOR STABILITY
→ SNAPSHOT ISOLATION
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A CRITIQUE OF ANSI SQL ISOLATION LEVELS
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CURSOR STABILITY (CS)

The DBMS’s internal cursor maintains a lock on a 
item in the database until it moves on to the next 
item.

CS is a stronger isolation level in between 
REPEATABLE READS and READ COMMITTED 
that can (sometimes) prevent the Lost Update 
Anomaly.
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LOST UPDATE ANOMALY
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LOST UPDATE ANOMALY
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LOST UPDATE ANOMALY
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Txn #2’s write to A will 
be lost even though it 
commits after Txn #1.

Txn #2

BE
GI
N

CO
MM
IT

WRITE(A)

Txn #1

BE
GI
N

CO
MM
IT
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•  •  •
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A cursor lock on A
would prevent this 
problem (but not 
always).



SNAPSHOT ISOLATION (SI )

Guarantees that all reads made in a txn see a 
consistent snapshot of the database that existed at 
the time the txn started.
→ A txn will commit under SI only if its writes do not 

conflict with any concurrent updates made since that 
snapshot.

SI is susceptible to the Write Skew Anomaly
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WRITE SKEW ANOMALY
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WRITE SKEW ANOMALY
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Txn #1
Change white marbles 
to black.

Txn #2
Change black marbles 
to white.
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ISOLATION LEVEL HIERARCHY
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REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED



ISOLATION LEVEL HIERARCHY
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REPEATABLE READS SNAPSHOT ISOLATION

READ UNCOMMITTED

CURSOR STABILITY

SERIALIZABLE

READ COMMITTED

Source: Atul Adya

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-786.pdf


MULTI-VERSION CONCURRENCY CONTROL

The DBMS maintains multiple physical versions 
of a single logical object in the database:
→ When a txn writes to an object, the DBMS creates a new 

version of that object. 
→ When a txn reads an object, it reads the newest version 

that existed when the txn started.

First proposed in 1978 MIT PhD dissertation.
First implementation was InterBase (Firebird).
Used in almost every new DBMS in last 10 years.
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http://publications.csail.mit.edu/lcs/specpub.php?id=773
https://firebirdsql.org/


MULTI-VERSION CONCURRENCY CONTROL

Main benefits:
→ Writers don’t block readers.
→ Read-only txns can read a consistent snapshot without 

acquiring locks.
→ Easily support time-travel queries.

MVCC is more than just a “concurrency control 
protocol”. It completely affects how the DBMS 
manages transactions and the database.
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MVCC DESIGN DECISIONS

Concurrency Control Protocol
Version Storage
Garbage Collection
Index Management
Txn Id Wraparound (New)
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AN EMPIRICAL EVALUATION OF IN-MEMORY MULTI-
VERSION CONCURRENCY CONTROL
VLDB 2017
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MVCC IMPLEMENTATIONS
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Protocol Version Storage Garbage Collection Indexes

Oracle MV2PL Delta Vacuum Logical

Postgres MV-2PL/MV-TO Append-Only Vacuum Physical

MySQL-InnoDB MV-2PL Delta Vacuum Logical

HYRISE MV-OCC Append-Only – Physical

Hekaton MV-OCC Append-Only Cooperative Physical

MemSQL MV-OCC Append-Only Vacuum Physical

SAP HANA MV-2PL Time-travel Hybrid Logical

NuoDB MV-2PL Append-Only Vacuum Logical

HyPer MV-OCC Delta Txn-level Logical



TUPLE FORMAT
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TXN-ID DATABEGIN-TS END-TS POINTER ...
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TUPLE FORMAT
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Unique Txn
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Version
Lifetime

Next/Prev
Version

Additional
Metadata

TXN-ID DATABEGIN-TS END-TS POINTER ...



CONCURRENCY CONTROL PROTOCOL

Approach #1: Timestamp Ordering
→ Assign txns timestamps that determine serial order.
→ Considered to be original MVCC protocol.

Approach #2: Optimistic Concurrency 
Control
→ Three-phase protocol from last class.
→ Use private workspace for new versions.

Approach #3: Two-Phase Locking
→ Txns acquire appropriate lock on physical version before 

they can read/write a logical tuple.
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TXN-ID READ-TS BEGIN-TS END-TS

A1 0 1 1 ∞
B1 0 0 1 ∞

TIMESTAMP ORDERING (MVTO)
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Use “read-ts” field in the 
header to keep track of the 
timestamp of the last txn
that read it.
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timestamp of the last txn
that read it.

READ(A)
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Use “read-ts” field in the 
header to keep track of the 
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

Tid=10
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Use “read-ts” field in the 
header to keep track of the 
timestamp of the last txn
that read it.

READ(A)

WRITE(B)
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Txn is allowed to read 
version if the lock is unset 
and its Tid is between 
“begin-ts” and “end-ts”.

Txn creates a new version 
if no other txn holds lock 
and Tid is greater than 
“read-ts”.
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Use “read-ts” field in the 
header to keep track of the 
timestamp of the last txn
that read it.
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Use “read-ts” field in the 
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timestamp of the last txn
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Use “read-ts” field in the 
header to keep track of the 
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read 
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Use “read-ts” field in the 
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Use “read-ts” field in the 
header to keep track of the 
timestamp of the last txn
that read it.

READ(A)

WRITE(B)

10

Txn is allowed to read 
version if the lock is unset 
and its Tid is between 
“begin-ts” and “end-ts”.

Txn creates a new version 
if no other txn holds lock 
and Tid is greater than 
“read-ts”.

Tid=10
B2 10 0 10 ∞

10
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VERSION STORAGE

The DBMS uses the tuples’ pointer field to create a 
latch-free version chain per logical tuple.
→ This allows the DBMS to find the version that is visible 

to a particular txn at runtime.
→ Indexes always point to the “head” of the chain.

Threads store versions in “local” memory regions 
to avoid contention on centralized data structures.

Different storage schemes determine where/what 
to store for each version.
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VERSION STORAGE

Approach #1: Append-Only Storage
→ New versions are appended to the same table space.

Approach #2: Time-Travel Storage
→ Old versions are copied to separate table space.

Approach #3: Delta Storage
→ The original values of the modified attributes are copied 

into a separate delta record space.
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APPEND-ONLY STORAGE
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Main Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø



APPEND-ONLY STORAGE
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All of the physical versions of a 
logical tuple are stored in the 
same table space

Main Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222 Ø

B1 YYY $10 Ø



APPEND-ONLY STORAGE
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All of the physical versions of a 
logical tuple are stored in the 
same table space

Main Table

On every update, append a new 
version of the tuple into an 
empty space in the table.

KEY VALUE
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POINTER
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B1 YYY $10 Ø
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APPEND-ONLY STORAGE
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All of the physical versions of a 
logical tuple are stored in the 
same table space

Main Table

On every update, append a new 
version of the tuple into an 
empty space in the table.

KEY VALUE
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POINTER

A2 XXX $222

A3 XXX $333 Ø
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VERSION CHAIN ORDERING

Approach #1: Oldest-to-Newest (O2N)
→ Just append new version to end of the chain.
→ Have to traverse chain on look-ups. 

Approach #2: Newest-to-Oldest (N2O)
→ Have to update index pointers for every new version.
→ Don’t have to traverse chain on look ups. 

The ordering of the chain has different 
performance trade-offs.
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TIME-TRAVEL STORAGE
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Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

Ø



TIME-TRAVEL STORAGE
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On every update, copy the 
current version to the time-
travel table. Update pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

Ø



TIME-TRAVEL STORAGE

80

On every update, copy the 
current version to the time-
travel table. Update pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø



TIME-TRAVEL STORAGE
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On every update, copy the 
current version to the time-
travel table. Update pointers.

Overwrite master version in 
the main table. Update 
pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø



TIME-TRAVEL STORAGE
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On every update, copy the 
current version to the time-
travel table. Update pointers.

Overwrite master version in 
the main table. Update 
pointers.

Main Table

KEY VALUE

A2 XXX $222

POINTER

B1 YYY $10

A3 $333

Time-Travel Table

KEY VALUE

A1 XXX $111

POINTER

A2 XXX $222

Ø



DELTA STORAGE
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Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment



DELTA STORAGE
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On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment



DELTA STORAGE

85

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Main Table

KEY VALUE
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Delta Storage Segment



DELTA STORAGE
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On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) Ø



DELTA STORAGE

87

On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A1 (VALUE→$111) ØA2 $222



DELTA STORAGE
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On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222
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On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333
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On every update, copy only 
the values that were modified 
to the delta storage and 
overwrite the master version.

Txns can recreate old 
versions by applying the delta 
in reverse order.

Main Table

KEY VALUE

A1 XXX $111

POINTER

B1 YYY $10

Delta Storage Segment

DELTA POINTER

A2 (VALUE→$222)

A1 (VALUE→$111) ØA2 $222A3 $333
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Main Table

KEY INT_VAL

A1 XXX $100

Variable-Length Data

A1

STR_VAL MY_LONG_STRING
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Reuse pointers to variable-
length pool for values that do 
not change between versions.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL

MY_LONG_STRING

MY_LONG_STRING
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Reuse pointers to variable-
length pool for values that do 
not change between versions.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

A1

STR_VAL
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Reuse pointers to variable-
length pool for values that do 
not change between versions.

Requires reference counters 
to know when it safe to free 
memory. Unable to relocate 
memory easily.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL



NON-INLINE ATTRIBUTES
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Reuse pointers to variable-
length pool for values that do 
not change between versions.

Requires reference counters 
to know when it safe to free 
memory. Unable to relocate 
memory easily.

Main Table

KEY INT_VAL

A1 XXX $100

A2 XXX $90

Variable-Length Data

MY_LONG_STRINGRefs=1

A1

STR_VAL Refs=2



GARBAGE COLLECTION

The DBMS needs to remove reclaimable physical 
versions from the database over time.
→ No active txn in the DBMS can “see” that version (SI).
→ The version was created by an aborted txn.

Two additional design decisions:
→ How to look for expired versions?
→ How to decide when it is safe to reclaim memory?
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GARBAGE COLLECTION

Approach #1: Tuple-level
→ Find old versions by examining tuples directly.
→ Background Vacuuming vs. Cooperative Cleaning

Approach #2: Transaction-level
→ Txns keep track of their old versions so the DBMS does 

not have to scan tuples to determine visibility.
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TXN-ID BEGIN-TS END-TS

A1 0 1 9

B1 0 1 9

B2 0 10 20

TUPLE-LEVEL GC
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Thread #1
Tid=12

Thread #2
Tid=25
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Background Vacuuming:
Separate thread(s) periodically scan 
the table and look for reclaimable 
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25
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Background Vacuuming:
Separate thread(s) periodically scan 
the table and look for reclaimable 
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum
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Background Vacuuming:
Separate thread(s) periodically scan 
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Background Vacuuming:
Separate thread(s) periodically scan 
the table and look for reclaimable 
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Vacuum Dirty?



TUPLE-LEVEL GC
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Background Vacuuming:
Separate thread(s) periodically scan 
the table and look for reclaimable 
versions. Works with any storage.
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Tid=12
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TUPLE-LEVEL GC
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Background Vacuuming:
Separate thread(s) periodically scan 
the table and look for reclaimable 
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable 
versions as they traverse version 
chain. Only works with O2N.
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TUPLE-LEVEL GC
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Background Vacuuming:
Separate thread(s) periodically scan 
the table and look for reclaimable 
versions. Works with any storage.

Thread #1
Tid=12

Thread #2
Tid=25

Cooperative Cleaning:
Worker threads identify reclaimable 
versions as they traverse version 
chain. Only works with O2N.

A4 A3 A2 A1

B4 B3 B2 B1

INDEX X



TRANSACTION-LEVEL GC

Each txn keeps track of its read/write set.

The DBMS determines when all versions created 
by a finished txn are no longer visible.

May still require multiple threads to reclaim the 
memory fast enough for the workload.
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OBSERVATION

If the DBMS reaches the max value for its 
timestamps, it will have to wrap around and start 
at zero. This will make all previous versions be in 
the "future" from new transactions.
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TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞

Thread #1
Tid=1
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OBSERVATION

If the DBMS reaches the max value for its 
timestamps, it will have to wrap around and start 
at zero. This will make all previous versions be in 
the "future" from new transactions.
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TXN-ID READ-TS BEGIN-TS END-TS

A1 0 231-1 231-2 ∞
B1 0 231-1 231-2 ∞
B2 10 0 10 ∞0

Thread #1
Tid=1



POSTGRES TXN ID WRAPAROUND

Stop accepting new commands when the system 
gets close to the max txn id.

Set a flag in each tuple header that says that it is 
"frozen" in the past. Any new txn id will always be 
newer than a frozen version.

Runs the vacuum before the system gets close to 
this upper limit.
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INDEX MANAGEMENT

PKey indexes always point to version chain head.
→ How often the DBMS has to update the pkey index 

depends on whether the system creates new versions 
when a tuple is updated.

→ If a txn updates a tuple’s pkey attribute(s), then this is 
treated as an DELETE followed by an INSERT.

Secondary indexes are more complicated…
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SECONDARY INDEXES

Approach #1: Logical Pointers
→ Use a fixed identifier per tuple that does not change.
→ Requires an extra indirection layer.
→ Primary Key vs. Tuple Id

Approach #2: Physical Pointers
→ Use the physical address to the version chain head.
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PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
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PRIMARY INDEX SECONDARY INDEX

A4 A3 A2 A1
Append-Only
Newest-to-Oldest

GET(A)

TupleId→Address
TupleId

Physical 
Address



MVCC CONFIGURATION EVALUATION
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Database: TPC-C Benchmark (40 Warehouses)
Processor: 4 sockets, 10 cores per socket
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PARTING THOUGHTS

MVCC is currently the best approach for 
supporting txns in mixed workoads

We only discussed MVCC for OLTP.
→ Design decisions may be different for HTAP

Interesting MVCC research/project Topics:
→ Block compaction
→ Version compression
→ On-line schema changes
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NEXT CLASS

Modern MVCC Implementations
→ CMU Cicada
→ Microsoft Hekaton
→ TUM HyPer
→ Serializable Snapshot Isolation
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