L ecture 9:
Multi-Threading &
ynchronization

Logistics

» Point Solutions App
= Session |ID: database

* Programming assignment 2 due on Sep 24 (Gradescope)

» Exercise sheet 1 due on Sep 24 (Gradescope)

Recap

» Cache Replacement Policy

» Buffer Pool Flooding
» 2Q Policy

Lecture Overview

* Multi-Threading

* Synchronization

* Fine-Grained Locking

» Debugging

71970-1980s
First CPUs
Few

. Megahertz

History of CPUs

" 1990 |
100s of
MHz to

. over | GHZJ

Early 2000s
Top-end
CPUs
over 3 GHz

” Mid 2000s |
3.8 GHz
Thermal

History of CPUs

First 2-core
CPUs
Parallel
Processing

Today
64-core
CPUs
AMD

Threadripper

Multi-Core CPUs

Clock Speed

Rhythm of Drumbeat

One Instruction Per
Beat

N
Single-Core CPU

Faster Drumbeat

Caused Overheating
& Other Issues

Multi-Core CPU

Multiple Drummers

Same-Time Multiple
Instructions

Parallel Processing

Threading

1o

o\

Thread: Database Instructions for CPU

Multi-Core CPUs: Threads Used In

Parallel

¥

Thread 1 Thread 2
Txn 1 from User 1 Txn 2 from User 2

¥

¥

Multi-Threading Example

#include <iostream>
#include <thread>
#include <vector>

int bankBalance = 1868; // Initial bank balance

void performTransactions() {
for (int i = 0; i < 10008; ++i) {
bankBalance += 18; // Deposit
bankBalance -= 18; // Withdrawal

Multi-Threading Example

int main() {
std: :vector<std::thread> threads;
for (int i =0; i < 8; ++1) {
// Initiate transactions without synchronization
threads.emplace_back(performTransactions);

}
for (auto& thread : threads) {

thread.join(); // Wait for all threads to finish
s

std::cout << "Expected balance: 18088\nActual balance: " <<
bankBalance << std::endl;

return 6;
}

Need for Synchronization

Without proper synchronization, simultaneous
Challenge deposits and withdrawals can lead to an
Inaccurate balance — race condition

Run 1
Expected Output: $1000
Actual Qutput : $910

Run 2
Expected Output: $16000
Actual Output : $1826

Playground Slide Example

Thread 1

Thread 2 g ;

Playground
Slide

Assembly Level Explanation

» bankBalance += 10 maps to three assembly instructions.

« LOAD value of bankBalance from memory to register
« Assembly: MOV EAX, [bankBalance]

« ADD 10 to increment the value in the register
« Assembly: ADD EAX, 10

« STORE the new value In register back to the memory location of
bankBalance

« Assembly: MOV [bankBalance], EAX

Race Condition

Thread 1

Thread 1 LOAD $1000 into a register.

Thread 1 ADDs $10 to its register (now
$1010) and STOREs it back in bankBalance.

Time

Thread 2

Thread 2 also LOADs $1000 into another
register around the same time

Thread 2, unaware that Thread 1 has
modified bankBalance, still has the old
value (1000) in its register

Thread 2 also ADDs S10 and STOREs
S1010 back to bankBalance.

Non-Atomic Load-ADD-STORE Sequence

Thread 1 Thread 2
1 |LOAD $1000
2 LOAD S$1000
3 |ADD S10
4 |STORE $1010
5 ADD $10
6 STORE S1010

Time

std::mutex (mutual exclusion)

a door [ock to a room with the sharec
mutex e

Thread 2 Thread 1

Shared
Variable

mutex

std::mutex (mutual exclusion)

std: :mutex bankMutex;

void performTransactions(int account) {
for (int 1 = 0; 1 < 10008; ++i) {

Mutex manual

szggnk?n& bankMutex.lock(): // Manually lock the
_ g / mutex
" Transactions aantgaiance " 18’ % V[\)ﬁféﬁzit .
rocessed hankBalance -= 10; ithdrawa
proce Y nankMutex.unlock(); // Manually unlock
_atomically the mutex
h }
Prevents data }
corruption

\ /

Cr

Critical Section

« Lock and unlock operations form critical

code sections
* Only one thread enters at a time

bankMutex.lock(); Manually lock the mutex
// CRITICAL SECTION STARTS

bankBalance += 18; // Deposi

bankBalance -= 18; // Withdrawal

// CRITICAL SECTION ENDS

bankMutex.unlock(); // Manually unlock the
mutex

Mutex Operations at Assembly Level

; Locking the Mutex
retry:
- EAX is set to the expected old value (unlocked = 8)
MOV EAX, 8
» EBX is set to the new value to store if comparison is successful (locked = 1)
MOV EBX, 1
+ Atomically compare [mutex] to 8, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
» Test if the original value of [mutex] (now in EBX) was
TEST EBX, EBX:
» If the mutex was already locked (EBX was 1), jump to retry
JNZ retry

Mutex Operations at Assembly Level

» Critical section to update bankBalance

MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 18 : Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

: Unlocking the Mutex

MOV EBX, @ » Set EBX to 8, which represents the
unlocked state

MOV [mutex], EBX » Store 0 into the mutex, effectively
unlocking it

Mutex Prevents Data Race

Thread 1 Thread 2
1 |LOCK mutex
2 |[LOAD $1000
3 |ADD S10
4 |STORE S1010
5 |UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD S10
9 STORE $1020
10 . UNLOCK mutex

Time

Multiple Bank Accounts

Managing transactions across 5 bank accounts in a multi-threaded
application

std: :mutex bankMutex;
int bankAccounts[5] = {1060, 2060, 3000, 4608, 5608%}; // Initial balances

void performTransactions(int account) {

for (int i = 0; i < 10008; ++i) {
nankMutex.lock(); // Single mutex for all accounts
nankAccounts[account] += 18; // Deposit
nankAccounts[account] -= 18; // Withdrawal
nankMutex.unlock();

Multiple Bank Accounts

Thread 2 Thread 1

Account | Account | Account | Account | Account
1 2 3 4 5

Single Mutex

Fine-Grain Locking

Use a separate mutex for each bank account to improve concurrency

Fine-Grain Locking

Non-conflicting transactions can now run in
parallel

std: :mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1606, 2060, 3600, 4000, 5600%}; // Initial balances

void performTransactions(int account) {
for (int 1 = 0; 1 < 18008; ++i) {

bankAccountMutexes[account].lock(); // Lock only the mutex for specified
account

bankAccounts[account] += 18; // Deposit

bankAccounts[account] -= 18; // Withdrawal

bankAccountMutexes[account].unlock(); // Unlock the mutex for the specified
account

}
}

Manual Locking and Unlocking

void performTransactions(int account) {
for (int 1 = 8; i < 10800; ++i) {
bankAccountMutexes[account].lock(); // Lock only the mutex for
specified account
bankAccounts[account] += 18; // Deposit
bankAccounts[account] -= 18; // Withdrawal
// Forgot to unlock the mutex

Thread Starvation

std::lock_guard
A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

void performTransactions(int account) {
for (int 1 =8; i < 10008; ++i) {
// Automatically locks
std: :lock_guard<std: :mutex>
lock (bankAccountMutexes[account]);
bankAccounts[account] += 18; // Deposit
bankAccounts[account] -= 10; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}
std::lock_guard automatically manages mutex locking and unlocking

RAIl Principle

std::lock_guard § another example of C++ RAII

std: :mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object
created here

lock on the mutex Object < instance of
std::lock_guard

RAIl Principle in C++

SIimplify resource management by tying resource allocation to object
lifespan

RAIl Object Resource Managed Acquisition Release

Automatically releases the
lock when the object is
destroyed.

Locks the mutex upon

std::lock_guard Mutex .
creation.

Automatically deallocates
memory when the object is
destroyed.

Allocates memory and

std::unique_ptr | Dynamic memory takes ownership

Closes the file and releases
the file handle when the object
Is destroyed.

Opens a file and

std:fstream File handle acquires the file handle.

Debugging
* Bugs can lead to data corruption, performance degradation, and system

crashes.

 Tools for debugging
« GDB
* print statements

rigin of Debuggin

|
nl '-H_[!-lll | |
(T WEYEI |

ot
e

GRACE HOPPER IMAGE NEEDS ATTRIBUTION

James S. Davis
Public domain, via Wikimedia Commons

Using GDB for Debugging

 gdb is a tool that allows developers to see what is going on 'Inside’ a
program while it executes or at the moment it crashed.

g++ —-g program.cpp -0 program
gdb ./program

Using GDB for Debugging

« Consider the following code snippet:

finclude <iostream>
using namespace std;
int add(int x, int y) {
return x + y; // Set a breakpoint here

}
int main() {
int sum = O;
for(int 1 = 1; 1 <= 10; ++i) {
sum = add(sum, i);
cout << "Sum: " << sum << endl;
}
return 6;

GDB Commands

* run: Start the program.

 next: Execute the next line.

e print: Display the value of a variable.

 break: Set a breakpoint at a specific line or function.

« continue: Continue running the program until the next breakpoint.

 backtrace (bt): Show the call stack to see how the program reached
current point.

» Info locals: Display local variables in the current stack frame.

Breakpoints and Backtrace

« Breakpoints temporarily halt the program execution at a specific point.

» Backtrace reveals the path taken by the program to reach current
execution point.

Examples of GDB Session

(gdb) break add

Breakpoint 1 at 6x...: file main.cpp, line 4.
(gdb) run

Starting program: /path/to/your_program

Breakpoint 1, add (x=8, y=1) at main.cpp:4
4 return x + y;
(gdb) info locals

X =0
y =1
(gdb) next

5 }

Examples of GDB Session

(gdb) print x

$1 =10

(gdb) print vy

$2 = 1

(gdb) continue

Continuing.

sum:

(gdb) backtrace

0 add (x=1, y=2) at main.cpp:4
1 Ox... in main () at main.cpp:8

Using Print Statements for Debugging

 Print statements allow you to track how your program’s execution flow
and how variables change over time.

std::cout << "Loading page: " << page_id << std::endl;
std::cout << "Evicting page: " << evictedPageld << std::endl;

Overload << operator

 Print statements allow you to track how your program’s execution flow
and how variables change over time.

// Define the operator<< function

std::ostream& operator<<(std::ostream& os, const Person& person) {
0os << "Person[name=" << person.name << ", age=" << person.age << "]";
return os;

$
int main() {

Person alice("Alice", 36);
std::cout << alice << std::endl;

}

Person[name=Alice, age=36]

Conclusion

* Multi-Threading

* Synchronization

* Fine-Grained Locking

» Debugging

